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Abstract

Herein, we report for the first time the design and synthesis of a novel cyclotide able to efficiently
inhibit HIV-1 viral replication by selectively targeting cytokine receptor CXCRA4. This was
accomplished by grafting a series of topologically modified CVX15 based peptides onto the loop
6 of cyclotide MCoT]I-1. The most active compound produced in this study was a potent CXCR4
antagonist (ECsg ~ 20 nM) and an efficient HIV-1 cell-entry blocker (ECsg ~ 2 nM). This
cyclotide also showed high stability in human serum thereby providing a promising lead
compound for the design of a novel type of peptide-based anti-cancer and anti-HIV-1 therapeutics.

INTRODUCTION

Chemokine receptors are G protein-coupled receptors (GPCRs) that play a key regulatory
role in embryonic development and controlling leukocyte functions during inflammation and
immunity.1=3 The CXCR4 receptor is one of the 19 chemokine receptors known so far. This
receptor is activated exclusively by the cytokine CXCL12, also known as stromal cell-
derived factor-1a (SDF1a). Activation of CXCR4 promotes chemotaxis in leukocytes,*
progenitor cell migration,® and embryonic development of the cardiovascular,
hemaotopoietic and central nervous system.5=2 CXCR4 has also been associated with
multiple types of cancers where its overexpression/activation promotes metastasis,
angiogenesis and tumor growth and/or survival.1% 11 Furthermore, CXCR4 is involved in
HIV replication, as it is a co-receptor for viral entry into host cells.12 13 Altogether, these
features make CXCR4 a very attractive target for drug discovery.14-16 Hence, several small
molecules and small peptides have been developed to antagonize CXCR4 for anti-cancer
and anti-HIV activity.1> CXCR4 antagonists have also been shown to induce the
mobilization of hematopoietic stem cells (HSCs) by disrupting the CXCR4-CXCL12
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interaction, which is required for retaining HSCs in the bone marrow,17-19 and therefore
have been used to facilitate the mobilization of HSCs to the periphery for their isolation.20

Cyclotides are small globular microproteins (ranging from 28 to 37 amino acids) with a
unique head-to-tail cyclized backbone, which is stabilized by three disulfide bonds forming
a cystine-knot motif 21-23 (Fig. 1A). This cyclic cystine-knot (CCK) framework provides a
rigid molecular platform24 25 with exceptional stability towards physical, chemical and
biological degradation.22 23 These micro-proteins can be considered natural combinatorial
peptide libraries structurally constrained by the cystine-knot scaffold and head-to-tail
cyclization, but in which hypermutation of essentially all residues is permitted with the
exception of the strictly conserved cysteines that comprise the knot.26-28 Furthermore,
naturally-occurring cyclotides have shown to posses various pharmacologically-relevant
activities,?2 29 and have been reported to cross cell membranes.30: 31 Altogether, these
features make the cyclotide scaffold an excellent molecular framework for the design of
novel peptide-based therapeutics,23: 32 making them ideal substrates for molecular grafting
of biological peptide epitopes.33-36

Several small disulfide cyclic peptides derived from the horseshoe crab peptides
polyphemusin-1/11 have recently been reported to be efficient CXCR4 antagonists and
effective as anti-HIV-1 and antimetastatic agents.37-3% Some of these peptides, however,
have shown limited proteolytic stability and/or poor bioavailability.38 By using the crystal
structure of CXCR4 bound to the polyphemusin-derived peptide CVX15%0 we report here
for the first time the design and synthesis of an engineered cyclotide able to effectively
antagonize CXCR4 and inhibit CXCR4-tropic HIV-1 entry in human lymphocytes.

RESULTS AND DISCUSSION

To produce a novel cyclotide with CXCR4 antagonistic activity, we used MCoT]I-1 as a
molecular scaffold (Fig. 1A). MCoTI-cyclotides have been recently isolated from the
dormant seeds of Momordica cochinchinensis, a plant member of the cucurbitaceae family,
and are potent trypsin inhibitors (K;~ 20-30 pM).*1 MCoTI-cyclotides show very low
toxicity in human cells3? and represent a desirable molecular scaffold for engineering new
compounds with unique biological properties.33-3

According to the X-ray crystal structure of CVX15 bound to CXCR4, the N- and C-termini
of the CVX15 peptide are deeply buried into the CXCR4 binding pocket (Fig. 1B).
Therefore, a circularly permuted version of the CVX15 peptide was grafted into loop 6 of
the cyclotide MCoTI-I in order to preserve the biological activity of the grafted peptide. The
CVX15 sequence was designed by linking the original N- and C-termini directly or through
a flexible Gly,, (n =1, 2) linker, removing residues D-Pro8 and Pro® and leaving the new N-
and C-terminal groups on residues Tyrl0 and Lys’, respectively (Figs. 1B and 1C). Residue
GIn® was also replaced by citruline, which has been shown to increase the affinity of
CVX15 for CXCR4.42 We also explored the effect of replacing the original Cys residues in
the CVX15-based sequence, which are involved in a disulfide bond, by Ala residues to see
the effect on the biological activity of the resulting cyclotides. The different sequences were
grafted onto loop 6 by replacing residue Asp32, or the peptide segment Gly30-Gly34 (Fig.
1C). Loop 6 of MCoTI-cyclotides has been shown to be less rigid in solution?4 25 and quite
tolerant to sequence grafting.33-36

All grafted MCo-CVX cyclotides were chemically synthesized using Fmoc-based solid-
phase peptide synthesis on a sulfonamide resin.3 Activation of the sulfonamide linker with
iodoacetonitrile, followed by cleavage with ethyl mercaptoacetate and acidolytic
deprotection, provided the fully deprotected linear peptide a-thioester (Table S1). The
corresponding peptide thioester precursors were efficiently cyclized and folded in a one-pot
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reaction using sodium phosphate buffer at pH 7.2 in the presence of 1 mM GSH. The
cyclization/folding reactions were complete in 24-96 h (Figs. 2A and S1, Table 1). The
cyclization/folding yields ranged from around 20% (MCoTI-CVX-4c) to 80% (MCo-
CVX-5¢) (Table 1). Folded MCo-CVX cyclotides were purified by reverse-phase HPLC and
characterized by ES-MS confirming =95% purity (Figs. 2B and S1, and Table 1). Grafted
MCo-CVX-5c cyclotide was also characterized by 1H-NMR indicating that adopts a native
cyclotide fold (Figs. 2C and S2).

Next, we tested the ability of the CVX15-grafted cyclotides to inhibit SDF1a—mediated
CXCR4 activation using a CXCR4-p-lactamase U20S cell-based fluorescence assay (Fig
3A). All grafted cyclotides were able to block SDF1a-mediated CXCR4 activation in a dose
dependent manner with ECsgq values ranging from 23.8 £ 0.3 oM (MCo-CVX-3a) to 19 £ 3
nM (MCo-CVX-5c¢). Intriguingly, the peptide CVVX15 GIn6Cit alone showed an ECs( value
of 71 £ 13 nM, which is around 3 times weaker than that of the best cyclotide inhibitor
(MCo-CVX-5c). As expected, the naturally-occurring cyclotide MCoT]I-1 did not show any
inhibitory activity in this assay (Fig. 3A), indicating that the biological activity of grafted
MCo-CVX cyclotides is specific and comes from the grafted sequence. The small molecule
AMD3100 20 was also used as positive control. The importance of the original Cys residues
in peptide CVX15 is highlighted by comparing the ECsg values of the cyclotides grafted
onto Asp32. Mutation of the Cys residues to Ala significantly reduced the biological activity
of the corresponding cyclotides. For example, cyclotides MCo-CVX-1c and MCo-CVX-3c
were around 10-times more potent than the corresponding mutants MCo-CVX-1a and MCo-
CVX-3a, respectively. The decrease in potency was less pronounced in cyclotide MCo-
CVX-2a, where this mutation resulted only in a ~ 2-fold decrease in ECsq value (Fig. 3A).
The length of Gly linker used to build the CVVX15-based insert, that was grafted onto the
cyclotide scaffold, was also critical to the biological activity of the resulting grafted MCo-
CVX cyclotides. The most active cyclotide in this series was MCo-CVX-1c (EC5p =0.10 =
0.01 M), which was designed by linking directly the original N- and C-termini of the
CVX15 peptide. Addition of extra Gly residues on MCo-CVX-2c and MCo-CVX-3c had a
detrimental effect on their potencies yielding ECsq values around 2 uM and 3 pM,
respectively (Fig. 3A and Table 1). These results are likely due to the increase in flexibility
provided by the extra Gly residues, which may reduce the binding energy. Interestingly, the
position on loop 6 where the CVVX15-based peptide was grafted was also important for the
biological activity of the resulting grafted cyclotides. The most active cyclotide was MCo-
CVX-5¢ (ECsg = 19 £ 3 nM), where the CVVX15-based peptide is grafted between residues
Gly30 and Gly34. Grafting the bioactive peptide farther away from the cyclotide core
resulted in less active cyclotides. Thus cyclotides MCo-CVX-1c (graft at residue Asp32) and
MCo-CVX-4c (graft at residue Asp32 but with extra Gly residues at both termini of the
peptide graft) showed ECsg values of 102 = 12 nM and 39 £ 1 nM, respectively (Fig. 3A
and Table 1).

Cyclotide MCo-CVX-5¢ was also able to inhibit SDF1a-induced Erk phosphorylation and
internalization of CXCR4 in a dose dependent manner, confirming that this cyclotide is an
efficient CXCR4 antagonist (Figs. 3B and S3). In these experiments, cyclotide MCo-
CVX-5c¢ was around 10 times more active than the peptide CVX15 GIn6Cit. More
importantly, cyclotide MCo-CVX-5c also inhibited the entry and replication of CXCR4-
tropic HIV-1 in human lymphocyte MT4 cells in a dose dependent manner with an ECsxg
value of 2.0 £ 0.3 nM (Fig. 3C). The ECsq value for peptide CVX15 GIn6Cit was around 8-
times higher (Fig. 3C), which is in agreement with the data obtained in the inhibition of Erk
phosphorylation and CXCR4 internalization. More notably, cyclotide MCo-CVX-5¢ showed
a CCsq (cytoxic concentration to reduce 50% cell viability) value in MT4 cells greater than
10 uM (data not shown), therefore providing a selectivity index of more than 4,000. It is
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also worth noting that cyclotide MCo-CVX-5¢ was 3-times more potent than Raltegravir,*3
an integrase inhibitor recently approved by the FDA to treat HIV infection (Fig. 3C).

We also studied the biological stability of MCo-CVX-5c¢ and compare it to that of the empty
scaffold (MCoTI-I) and the grafted peptide (CVX15 GIn6Cit) (Fig. S4). This was
accomplished by incubating the corresponding peptides in human serum at 37° C. The
quantitative analysis of undigested polypeptides was performed using liquid
chromatography coupled with tandem mass spectrometry (LC-MS/MS). Naturally occurring
MCoTI-cyclotides present a very rigid structure,24 25 which makes them extremely stable to
proteolytic degradation. Remarkably, cyclotide MCo-CVX-5c¢ showed greater stability in
human serum (1, = 62 = 3 h) than the parent cyclotide MCoT]I-1 (t1/, = 52 = 3 h, Fig. S4).
In contrast, peptide CVX15 GIn6Cit was degraded considerably faster under the same
conditions (t1/» =21 + 4 h, Fig. S4). A linearized, reduced and alkylated version of MCo-
CVX-5¢ was also rapidly degraded (t1/» = 21 + 3 min) indicating the importance of the
circular Cys-knot topology for proteolytic stability. We also investigated the fraction of
cyclotide bound to serum proteins. Serum binding has been recently used to extend serum
half-life of bioactive peptides.# The binding, however, has to be reversible in order to be
pharmacologically useful. Cyclotides MCoTI-1 and MCo-CVX-5c¢ were both found to be
more than 99% bound to serum proteins under the conditions employed in the serum
stability assay. The fact that these cyclotides are almost completely degraded after 120 h of
treatment (Fig. S4) suggests that their binding to serum proteins may be reversible. To
further explore this possibility, we studied the association and dissociation rate constants of
MCo-CVX-5¢ to human serum proteins. This was accomplished by biolayer interferometry
analysis using the commercially available platform Blitz from ForteBio. The results
indicated that the cyclotide MCo-CVX-5c is able to bind serum proteins with an association
and dissociation constant rates of 3.6 + 0.7 x 103 M 1s71and 1.4 £ 0.2 x 1072571,
respectively (Fig. S5), which provide a relatively weak dissociation constant of ~ 4 uM
when compared to the low nanomolar affinity of MCo-CVX-5c¢ for the CXCR4. These
results are in agreement with the biological activities found for MCo-CVX-5c, which were
obtained in the presence of human serum, 2% and 12% for the CXCR4 translocation and
HIV-1 cell entry inhibition assays, respectively.

CONCLUSIONS

In summary we report here for the first time the design and synthesis of a novel cyclotide
able to efficiently inhibit the GPCR CXCR4. This was successfully accomplished by
grafting a series of topologically modified CVX15 based peptides onto loop 6 of the
cyclotide MCoTI-I. TH-NMR studies also revealed that the grafting of CVX15 based
peptides onto this loop did not affect the native cyclotide scaffold, indicating the tolerance of
this loop for the grafting of long peptide sequences.2% 35 The most active compound
produced in this study, MCo-CVX-5c, is a potent CXCR4 antagonist (ECgsg = 19 + 3 nM)
and an efficient HIV-1 cell-entry blocker (ECgg = 2.0 + 0.3 nM). Intriguingly, cyclotide
MCo-CVX-5¢ was significantly more active than the cyclic peptide CVX15 GIn6Cit used in
the design of the grafted cyclotide. Although more detailed structural studies are required to
analyze the interaction between the cyclotide MCo-CVX-5¢ and CXCR4, altogether these
results suggest that some of the residues from the neighboring loops in the cyclotide may
contribute positively to the interaction with CXCRA4. To further explore this possibility we
built a model of MCo-CVX-5c¢ bound to CXCR4 using the crystal structure of CVX15-
CXCR4 (PDB: 30E0)*0 and the solution structure of MCoTI-11 (PDB: 11B9)*° (Fig. S6).
According to this model, loops 2 and 5 may be in close proximity to the extracellular
receptor surface facilitating new interactions. This should make possible the design of even
more potent antagonists based on MCo-CVX-5c by the introduction of appropriate
mutations in these loops to improve the molecular complementarity between the cyclotide

J Med Chem. Author manuscript; available in PMC 2013 December 13.



1X31-)lew1a1ems 1X31-){Jewiaremsg

1Xa1-)lewarems

Aboye et al.

Page 5

and receptor surfaces. It is also worth noting that the cyclotide MCo-CVX-5c¢ showed a
remarkable resistance to biological degradation in human serum, with a 4/, value of 62 = 3
h. This value is similar to that of the cyclotide MCoTI-I and significantly higher that the
half-life of the peptide CVX15 (t1/2 = 21 = 4 h). In addition, the binding affinity of
cyclotide MCo-CVX-5c to serum proteins was significantly weaker than for CXCR4, which
should be able to decrease the renal clearance of this cyclotide without affecting its activity.
Although further analysis will be required to evaluate the therapeutic value of these
compounds /n vivo, altogether, our results show that engineered cyclotides hold great
promise for the development of a novel type of peptide-based therapeutic able to efficiently
target extracellular protein/protein interactions. Our results demonstrate for the first time the
design of an engineered cyclotide able to target the GPCR CXR4 with low nanomolar
affinity and significant serum stability, thereby providing a promising lead compound for the
design of anti-cancer and anti-HIV-1 compounds.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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loop 3

MCoTI-I

-

loop 6 H-RRBCYXKpPYRXCRGp-OH

1 10 20 30
LVCPKILQRCRRDSDCPGACICRGNGYCGS@MJ
loop 1 | loop2 | loop3 I loop 5

Grafting positions

Cyclotide Sequence grafted (Xxx=-Xxx)
MCo-CVX-la YRXARGp--RRBAYXK Ser’-Gly*
MCo-CVX-1lc YRXCRGp--RRBCYXK Ser!-Gly*?
MCo-CVX-2a YRXARGpG-RRBAYXK Ser3-Gly*?
MCo-CVX-2¢ YRXCRGpG-RRBCYXK Ser3!-Gly*
MCo-CVX-3a YRXARGPGGRRBAYXK Ser3!-Gly*
MCo-CVX-3c YRXCRGPGGRRBCYXK Ser3-Gly*?
MCo-CVX-4c | GYRXCRGp--RRBCYXKG Ser3!-Gly*
MCo-CVX-5¢ YRXCRGp--RRBCYXK Ser?°-val?!

Figure 1.

Design of MCoTl-based cyclotides to target the cytokine receptor CXCR4. A. Primary and
tertiary structures of cyclotide MCoTI-I. Structure is based on a homology model using the
solution structure of MCoTI-11 as template (PDB: 11B9).4> The backbone cyclized peptide
(connecting bond shown in green) is stabilized by the three-disulfide bonds (shown in red).
The residues used for the grafting of a CVX15-based peptide are shown in blue on the
structure and sequence of MCoTI-1. B. Sequence and co-crystal structure of peptide CVX15
bound to cytokine receptor CXCR4 (PDB: 30E0).40 Peptide CVX15 is shown as a ribbon
representation in green with the side-chains of the Cys residues involved in the disulfide
bond in ball-and-stick form. The solvent accessible surface of the binding site of CXCR4 is
shown in grey. C. Scheme depicting the approach used to design the different MCo-CVX
cyclotides. A circularly permuted version of CVX15 was grafted onto loop 6 of MCoTI-I at
different residues. The CVX15-based insert was created by joining the C and N-terminus
directly through a flexible Gly,, linker and opening the new sequence at the D-Pro-Pro
segment. Residues in red denote mutations or extra Gly residues introduced to increase
flexibility. Single letter codes B, X and p represent the amino acid, 2-naphthylalanine,
citruline and D-proline, respectively. Molecular graphics were built with Yasara
(www.yasara.org).
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Figure2.

Chemical synthesis and characterization of cyclotide MCo-CVX-5c. A. Analytical HPLC
traces of the linear thioester precursor, GSH-induced cyclization/folding crude after 96 h and
purified cyclotide. An arrow indicates the desired peptide. B. ES-MS characterization of
pure MCo-CVX-5¢. The expected average molecular weight is shown in parenthesis. C.
Chemical shifts differences of the backbone, NH and H® protons between the common
sequence (residues 1 through 29) of MCoTI-124 25 and MCo-CVX-5c (Table S2).
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Compound | EC,,/ nM

m MCoTH NB

O AMD3100 25403
V¥ CVX15-GIn6Cit| 71£13
MCo-CVX-1a | 1040 115
MCo-CVX-1c | 102212
MCo-CVX-2a | 4900 600
MCo-CVX-2¢ | 2140 + 300
MCo-CVX-3a |23800 3000
MCo-CVX-3c | 3110 480

Compound

W MCoTHI

O AMD3100
4 MCo-CVX-5¢
OMCo-CVX-4c | 39%1
@ MCo-CVX-1c | 10212
V CVX15-GIn6Cit| 71£13
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Figure 3.

Biological characterization of MCo-CV X cyclotides. A. Competitive inhibition of SDFla-
mediated CXCR4 activation by different cyclotides. The peptide CVX15 GIn6Cit and the
small molecule CXCR4 antagonist AMD3100 were used as controls. The assay was
performed using CXCR4-bla U20S cells. B. Inhibition of Erk phosphorylation (residues
Thr292 and Tyr2%4) by cyclotide MCo-CVX-5c. Cyclotide MCoTI-1 and peptide CVX15
GIn6Cit were used as negative and positive controls, respectively. Erk phosphorylation was
visualized by Western blot using CaOV3 cells treated with increasing amounts of CXCR4
inhibitor in the presence of SDF1a. C. Dose response inhibition of HIV-1 replication in
MT-4 cells by cyclotides MCoTI-1 and MCo-CVX-5c¢. The peptide CVX15 GIn6Cit and the
small molecule HIV-1 integrase inhibitor, Raltegravir, were used as positive controls.
Cyclotide MCoTI-1 was used as negative control. The average of standard deviation of three
experiments is shown. NB and ND stand for not bound and not determined, respectively.
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