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Major depressive disorder is a chronic, remitting syndrome involving widely distributed circuits in the brain. Stable alterations

in gene expression that contribute to structural and functional changes in multiple brain regions are implicated in the

heterogeneity and pathogenesis of the illness. Epigenetic events that alter chromatin structure to regulate programs of gene

expression have been associated with depression-related behavior, antidepressant action, and resistance to depression or

‘resilience’ in animal models, with increasing evidence for similar mechanisms occurring in postmortem brains of depressed

humans. In this review, we discuss recent advances in our understanding of epigenetic contributions to depression, in

particular the role of histone acetylation and methylation, which are revealing novel mechanistic insight into the syndrome that

may aid in the development of novel targets for depression treatment.
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INTRODUCTION: WHY EPIGENETICS?

Major depressive disorder (MDD) is a chronic and
debilitating syndrome that affects B16% of the US
population (Kessler et al, 2003), and is ranked second
globally in terms of disease burden (Murray and Lopez,
1997). It is evident from DSM-IV that major depression is a
complex and heterogeneous disorder with a wide spectrum
of symptoms including depressed mood, anhedonia,
disturbed sleep, appetite, and energy, reduced concentra-
tion, excessive guilt, and suicidal thoughts (American
Psychiatric Association, 2000). The etiology of the disorder
is still not well understood. Meta-analysis of a large body of
genetic epidemiological studies has revealed that heritability
of major depression is between B31 and 42% (Sullivan
et al, 2000); however, human GWAS studies have largely
failed to produce reproducible gene loci that are contri-
buting significantly to the disease (Bosker et al, 2011).
Furthermore, the heritability of major depression is
considerably lower compared with other psychiatric dis-
orders such as schizophrenia and bipolar disorder, which
show heritability rates of 70–80% (Kendler, 1983). The
high discordance rate (50%) among monozygotic twins for
MDD provides further evidence that genetics alone do not

account fully for the illness (Fraga et al, 2005). Epidemio-
logical evidence also links environmental factors, especially
exposure to stressful life events, with an increased risk for
depression (Hammen, 2005; Kessler, 1997). However, there
is a remarkable individual variability in vulnerability to
environmental stress, with many psychiatric disorders
associated with a history of stress and most individuals
showing normal outcomes despite stress exposure (Dudley
et al, 2011). Owing to the lack of success of traditional
genetic or environmental approaches alone to explain MDD,
a recent prevalent theory in the field has focused on the
interplay between genetic and environmental factors,
specifically how susceptibility and resilience to disease is
determined by the penetrance of highly complex genetic
variation moderated by environmental cues and possibly
stochastic or random events during brain development
(Kendler, 1998; Lesch, 2011; Vialou et al, 2012).

The term ‘epigenetics’, coined by Waddington in the
1940s to address the central question of how a common
genome generates numerous distinct cell types, originally
referred to phenotypes resulting from interactions bet-
ween genes and environment (Waddington, 1940, 1957;
Waddington and International Union of Biological
Sciences., 1968). Up to that point, the field had focused
on the coupling between genetic and phenotypic vari-
ation. Waddington and others wanted to understand why
frequently genetic and phenotypic variations appeared
uncoupled (Jablonka and Lamb, 2002), one of the main
issues facing the field of psychiatry today. The definition ofReceived 1 March 2012; revised 12 April 2012; accepted 16 April 2012
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epigenetics has changed over time, and the term now refers
to the potentially heritable, but environmentally modifiable,
regulation of genetic function and expression that is
mediated through non-DNA-encoded mechanisms (Russo
et al, 1996; Wu and Morris, 2001). Epigenetics has surfaced
to the forefront as a mechanism by which environmental
cues can be translated into precise and highly stable
alterations in chromatin structure that ultimately lead to
the persistent expression of altered gene programs.

Evidence derived mostly from a large body of research in
animal models suggests that transcriptional dysregulation
may underlie the behavioral manifestation of many psychia-
tric disorders including depression (Charney and Manji,
2004; Krishnan and Nestler, 2008). Accordingly, a recent
hypothesis is that certain environmental factors hijack the
brain’s epigenetic machinery, best understood for its role in
normal development and differentiation, and in combination
with genetic predispositions produce many of the behavioral
manifestations of these disorders (Peter and Akbarian, 2011;
Renthal and Nestler, 2009). In fact, it has been demonstrated
that, during the lifetime of monozygotic twins, there is
a profound accumulation of epigenetic differences, likely
because of different life experience as well as random events
during development (Fraga et al, 2005). Numerous studies in
animals have also shown that early life stress can leave
persistent epigenetic marks in the genome, which alter gene
expression and can influence neural and behavioral function
through adulthood (McGowan et al, 2009, 2011; Murgatroyd
et al, 2009; Weaver et al, 2004). In addition, recent evidence
that monoamine oxidase inhibitors, a commonly used class
of antidepressants, are potent inhibitors of the histone
demethylase LSD1, and that valproate, an anticonvulsant
used widely as a mood stabilizer, is also an inhibitor of
histone deacetylases (HDACs), has given further impetus to
the study of epigenetics mechanisms in the pathophysiology
of depression (Harwood, 2003; Lee et al, 2006); although it is
far from clear that these chromatin mechanisms account for
the clinical actions of these drugs.

In this review, we first provide an overview of approaches
ranging from animal models to human imaging studies, and
then summarize results from those studies that have led to
our understanding of the neural circuitry and associated
molecular alterations in relevant brain regions implicated in
the pathophysiology of depression. We then provide a very
brief overview of epigenetic mechanisms, with a special
focus on histone acetylation and methylation. Finally, we
discuss the limited, albeit growing, number of studies in the
field of epigenetics and depression, and relate how
alterations in chromatin (both in terms of global/genome-
wide changes as well as promoter-specific changes) may be
linked to altered molecular patterns observed in depression.

ANIMAL MODELS OF DEPRESSION

The multitude of symptoms relevant to the diagnosis of
human depression, and their varied prevalence and

subjective nature, has posed significant challenges in the
development of etiologically valid animal models of
depression (Nestler and Hyman, 2010). One avenue upon
which the field has capitalized is the observation that
stressful life events, including trauma and emotional loss,
are associated with heightened risk for depression in
humans. The development of animal stress paradigms
combined with the ability to objectively measure anhedonia
and homeostatic symptoms in rodents have helped inform
the neural circuitry and neuroadaptations underlying
depression.

Animal models used to study depression can be broadly
clustered into two categories; those employing acute stress
procedures and those involving more chronic exposure to
stressful stimuli. Acute stress paradigms such as the forced
swim or tail suspension tests involve a short duration
physical stress during which an animal’s coping response is
assessed by measuring time spent responding actively vs
passively. Chronic stress paradigms involve prolonged
exposure to either physical stressors (chronic mild or
unpredictable stress; Willner, 2005) or bouts of social
subordination (chronic social defeat stress; Berton et al,
2006). Such chronic stress assays, as well as chronic
social isolation, produce anhedonia-like symptoms, charac-
terized by a decrease in reward-related behaviors such
as preferences for sucrose or high fat diets and social
interaction (Berton et al, 2006; Wallace et al, 2009).
Anhedonic phenotypes resulting from exposure to chronic
stress paradigms are rarely seen following acute stress,
suggesting the former is more successful at recapitulating
behavioral features of human depression. Additionally, the
anhedonia resulting from chronic stress can be effectively
reversed by chronic but not acute treatment with current
antidepressant medications (eg, Berton et al, 2006; Wallace
et al, 2009), a treatment course comparable to that required
in humans, whereas a single dose of antidepressant is
sufficient to increase active responding in the forced swim
and tail suspension tests (Cryan et al, 2002; Nestler et al,
2002). Together, these data suggest that chronic stress
paradigms are more effective at modeling at least certain
features or subtypes of the human depression syndrome,
with acute studies providing insight into neuronal adapta-
tions that regulate responses to stressful events.

CIRCUIT AND MOLECULAR MECHANISMS
OF DEPRESSION

Postmortem and neuroimaging studies of depressed
patients have revealed that human depression likely affects
numerous regions of the brain, which may account for some
of the complexity and heterogeneity of the disorder.
Functional changes throughout the brain’s cortical-stria-
tal-limbic circuitry have been reported, suggesting altered
cognition (prefrontal cortex (PFC) and hippocampus),
emotional (amygdala) and reward (nucleus accumbens
(NAc)) processing, and homeostatic and stress responses
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(eg, hypothalamic-pituitary-adrenal or HPA axis) during
the course of depression. For example, studies have revealed
decreased gray-matter volume in the PFC and hippocampus
of depressed individuals (Drevets, 2001; Harrison, 2002;
Sheline, 2003), hypermetabolism in the amygdala and frontal
cortical regions (Drevets, 2003, 2007; Drevets et al, 2008; Fu
et al, 2004), alterations in spine morphology (Christoffel et al,
2011) as well as decreased activation of the NAc in response
to rewarding stimuli (Epstein et al, 2006), and hyperactivity
of the HPA axis (Gold and Chrousos, 2002).

Molecular adaptations occurring throughout the cortical-
striatal-limbic circuitry in human and animal models of
depression are thought to underlie morphological and
functional changes that contribute to the disease state
(Figure 1). Human postmortem studies have revealed a
decrease in brain-derived neurotrophic factor (BDNF) in the
hippocampus of patients suffering from depression (Dwivedi
et al, 2003). BDNF, the most active member of the
neurotrophin family, regulates neuronal differentiation and
growth (Benraiss et al, 2001; Pencea et al, 2001), and the
decrease observed in depression may contribute to the
reduction in hippocampal volume seen in depressed patients.
Reduced levels of hippocampal BDNF are corroborated in
both acute (Barrientos et al, 2003) and chronic (Nibuya et al,
1995) stress paradigms in animals. Evidence that antidepres-
sant treatment in humans and animals causes an increase in
hippocampal BDNF, and that antidepressant responses are
lost upon BDNF knockout, suggests that this molecular
adaptation is relevant for part of the symptomatology of
depression (Coppell et al, 2003; Gervasoni et al, 2005;
Monteggia et al, 2007; Nibuya et al, 1995; Shimizu et al, 2003;
Xu et al, 2003). Interestingly, a similar hippocampal profile
has been reported for several other growth factors, such as
VGF, vascular endothelial growth factor (VEGF) and its

receptor (VEGF type 2), in chronic stress models (Heine et al,
2005; Thakker et al, 2007; Warner-Schmidt and Duman,
2007). In addition to decreases in neuronal growth factors,
both acute and chronic stress models in rodents produce an
increase in hippocampal proinflammatory cytokine IL-1b
and NF-kb signaling, molecular adaptations that are linked
to both depressive-like phenotypes and decreased hippo-
campal cell proliferation (Goshen et al, 2008; Johnson et al,
2005; Koo and Duman, 2008; Koo et al, 2010).

Depressed patients and animals subjected to chronic
stress exhibit structural alterations in the PFC, including
decreased PFC volume and dendritic retraction and spine
loss (Cook and Wellman, 2004; Drevets, 2000, 2001;
Goldwater et al, 2009; Liston et al, 2006). Depressed patients
also display decreased levels of the NR2A and NR2B
NMDA glutamate receptor subunits as well as a reduction
in PSD-95, all of which are crucial for the structural
integrity and function of dendritic spines (Gambrill and
Barria, 2011). Chronic stress decreases levels of BDNF in the
PFC (Fumagalli et al, 2004) and, similar to the hippo-
campus, levels are increased after treatment with anti-
depressants (Balu et al, 2009). Interestingly, neuropeptide Y,
which antagonizes the actions of corticotrophin-releasing
hormone (Giesbrecht et al, 2010; Heilig, 2004), is also
decreased in the PFC of depressed patients and suicide
victims (Caberlotto and Hurd, 2001; Widdowson et al,
1992). Adding complication to molecular approaches in
treating depression is that molecular adaptations do not
occur globally but are often region- and cell type-specific.
For example, in contrast to what has been observed in the
PFC, NR2A, and PSD-95 are both increased in the amygdala
of depressed humans (Karolewicz et al, 2009).

The NAc, best established for its role in processing reward
information, has been hypothesized to underlie symptoms
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Figure 1. Circuitry with molecular adaptations overlaid onto different brain regions. Multiple brain regions are implicated in the pathophysiology of
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of anhedonia in depressed patients (Nestler and Carlezon,
2006). Much of what is known about the molecular
adaptations in the NAc in depression has been derived
from chronic stress paradigms in rodents, particularly the
chronic social defeat paradigm, with most key findings
validated in the NAc of depressed humans. One advantage
of chronic social defeat is that mice show phenotypically
divergent responses, with some animals showing suscepti-
bility and others demonstrating resilience (Krishnan et al,
2007), a phenomenon that could translate to differences
in stress vulnerability seen in humans. BDNF levels are
increased in the NAc after chronic social defeat in
susceptible animals but not in their resilient counterparts
(Berton et al, 2006; Krishnan et al, 2007). In addition, this
selective increase in BDNF, demonstrated in the NAc of
depressed humans as well, is associated with the activation
of downstream signaling molecules such as phosphorylated
akt thymoma viral oncogene and extracellular signal
regulated kinase (Berton et al, 2006; Krishnan et al, 2007;
Wilkinson et al, 2011). More recent evidence suggests a
similar molecular distinction between susceptibility and
resilience in the Wingless (WNT) signaling cascade in the
NAc, with downregulation of WNT-dishevelled (DVL)
signaling and associated upregulation of glycogen synthase
kinase 3b signaling in susceptible mice but upregulation in
resilient mice (Wilkinson et al, 2011). Downregulation of
WNT-DVL signaling was corroborated in the NAc of human
depressed patients examined postmortem. Changes in NAc
spine morphology after chronic social defeat stress,
specifically, an increase in stubby spines with smaller
postsynaptic densities on NAc medium spiny neurons, are
also specific to susceptible animals and absent in those
demonstrating behavioral resilience (Christoffel et al, 2011).
This adaptation appears to be mediated by induction of IkB
kinase, which is a downstream target of BDNF and several
other neurotrophic factors and a known regulator of spine
morphology (Russo et al, 2009).

Observations in the chronic social defeat model, that
mice with identical genetic backgrounds not only show

differences in the development of anhedonic responses after
exposure to the same environmental stress, but also show
differences in the development of molecular adaptations in
brain regions compromised in depression, suggests an
interaction between genes and the environment that may be
regulated through epigenetic mechanisms. Indeed, several
regulators of chromatin structure are altered in human
depression and animal models involving chronic stress, as
will be seen below.

EPIGENETIC MECHANISMS

The eukaryotic genome contains a massive amount of
genetic material (B2 m of linear DNA) that has to be
condensed into a microscopic nucleus (B10 mm diameter).
Chromatin, the histone, and non-histone proteins asso-
ciating with DNA serves as an organizer of the genome by
condensing the double-stranded DNA into multiple levels of
higher order structures (Figure 2a). Chromatin also creates
a barrier for transcription, replication, recombination, and
repair, such that special molecular machinery must be
recruited to reversibly disrupt and modify chromatin to
balance between the effective storage vs functional utility of
the genome. The structural unit of chromatin is the
nucleosome, which is an octamer of core histones H2A,
H2B, H3, and H4 around which 147 bp of DNA is super-
helically wrapped. A fifth histone molecule, known as H1,
serves as a linker that helps compact the nucleosomes into
higher order structures (Allan et al, 1986).

Each of the H2A, H2B, H3, and H4 histone molecules has
a globular histone fold domain that accounts for B75% of
its mass and contributes to the core nucleosome, whereas
the remaining 25% is contributed by N-terminal tails that
protrude from the core through the gyres and grooves
of DNA molecules (Wolffe and Hayes, 1999). Numerous
types of posttranslational modifications on these tails, such
as acetylation and methylation, are reversibly added and
removed by ‘writers’ and ‘erasers,’ respectively. Lysine
residues on histone N-termini tails that are known to be
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Figure 2. Chromatin structure and histone modifications at N-terminal histone tails. (a) The eukaryotic genome is organized by wrapping DNA around
histone octamers to form the basic units of chromatin, nucleosomes, which are then further organized and compacted into higher ordered structures.
(b) The histone octamer consists of two copies each of H2A, H2B, H3, and H4. In addition to globular domains, they each have N-termini tails that
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acetylated or methylated are highlighted in Figure 2b. These
modifications are important for chromatin structure and
function, and can work by two non-exclusive mechanisms.
First, chromatin structure and compaction can be altered
because of steric or charge introduced by the modifications.
Second, these posttranslational modifications serve as recogni-
tion sites that recruit machinery with ‘reader’ domains for these
modifications such as the transcription complex, other histone
modifiers, and ATP-dependent remodeling enzymes, to disrupt,
rearrange, or reassemble chromatin. Strahl and Allis (2000)
proposed the ‘histone code hypothesis,’ which postulates that
the vast combinatorial possibilities of these distinct posttransla-
tion modifications bring about distinct downstream events by
recruiting distinct proteins that diferentially recognize combi-
nations of these marks by their reader domains. This body of
knowledge, in combination with studies demonstrating that
environmental factors can recruit epigenetic machinery via
several intracellular signaling pathways including in neuronal
systems (Borrelli et al, 2008), suggest that the diversity of life
experience can transduce differential epigenetic changes on
top of existing genetic vulnerabilities to result in the complex
and heterogeneous phenotypes we observe in psychiatric
disorders including MDD.

An additional well-studied epigenetic mechanism is the
methylation of the DNA molecule itself. Detailed mecha-
nisms of DNA methylation as well as their relation to
psychiatric disorders are reviewed elsewhere in this issue (see
Fan 2012; Zhang et al, 2012, this issue). In addition, more
detailed descriptions of the basic chromatin structure and its
diverse regulation are also reviewed elsewhere (see Maze
et al, 2012, this issue). Here, we focus on two of the best-
studied posttranslational modifications of histones in depres-
sion models, histone lysine (K) acetylation and methylation.

Histone Acetylation

Allfrey et al were the first to demonstrate hyperacetylated
histones in actively transcribed regions of chromatin and
hypoacetylated histones in transcriptionally silent regions.
The first direct link between transcriptional activation and
histone acetylation was the discovery that coactivator
complexes required for transcriptional activation function
as histone acetyltransferases (HATs) (Brownell et al, 1996;
Ogryzko et al, 1996), enzymes that add acetyl groups
to histone tails. Later studies found that transcriptional
co-repressor complexes contain HDACs (Alland et al, 1997;
Taunton et al, 1996), enzymes that remove acetyl groups
from histone tails. Histone acetylation states are highly
dynamic, with estimates of half-lives in the range of minutes
within transcriptionally active chromatin (Zhang and Nelson,
1988). Further evidence comes from studies demonstrating
that lysine–to-glutamine mutations that mimic lysine acet-
ylation in N-termini of H3 and H4 relieve the requirement for
HAT activity in transcriptional activation (Zhang et al, 1998).
Genome-wide analyses have found histone acetylation
to be localized mainly within promoters but also at lower
levels throughout the genome (Wang et al, 2008).

One hypothesis of the mechanism by which acetylation
activates transcription is that it neutralizes the positive
charge of the histone molecule, thereby disrupting inter-
action with the negatively charged DNA, leading to a more
relaxed and accessible chromatin template (Choi and Howe,
2009; Kouzarides, 2007). Several studies suggest that
although acetylated tails still make contact with DNA
(Mutskov et al, 1998) they wrap DNA with reduced affinity,
which results in more mobility with respect to the DNA
surface compared with unmodified tails (Cary et al, 1982;
Lutter et al, 1992). In addition to disruption of the nucleo-
some structure itself, histone acetylation has been found
to disrupt the stability of higher order structure (Tse
et al, 1998); however, the level of charge neutralization
necessary to facilitate this destabilization is so low that
other structural features must amplify the consequences of
acetylation (Wolffe and Hayes, 1999). Two possibilities are
steric structural alterations to the tail domain as well as
recruitment of factors that bind acetylated histone residues
(proteins with bromodomains, such as transcription
factors) or exclusion of factors that do not bind acetylated
residues.

HATs are broadly classified into type A and type B based
on the functional localization in the nucleus and cytoplasm,
respectively (Selvi and Kundu, 2009). Type A HATs are
further divided into five classes based on the structural and
functional differences (Grant and Berger, 1999). HDACs are
mainly classified into four classes (Hildmann et al, 2007;
Selvi and Kundu, 2009). Class I includes HDAC 1–3 and 8.
These are located in the nucleus and are mainly involved in
epigenetic regulation. Class II comprises HDAC4–7, 9, and
10. These HDACs contain domains that allow them to be
shuttled between the nucleus and cytoplasm, and function
to deacetylate both histones and cytoplasmic proteins. Class
III HDACs, also known as the sirtuins, are distinguished by
their NAD dependence, and are important regulators of
metabolism and transcription through the deacetylation of
numerous histone and non-histone substrates (Schwer and
Verdin, 2008). Class IV refers to HDAC11 about which little
is known (Gao et al, 2002). There is some residue specificity
for HATs and HDACs, although targeting is quite broad
compared with the histone methylation machinery; indivi-
dual lysine residues appear to serve as substrates for many
different HATs and HDACs and a single HAT or HDAC may
act on multiple residues (Khan and Khan, 2010; Selvi and
Kundu, 2009). There are also some overlapping functions of
histone acetylation at the same residue; eg, transcriptional
activation vs DNA repair. However, the targeting of HATs
to a given residue is largely unknown, with the likely
involvement of several associated proteins (Khan and Khan,
2010; Selvi and Kundu, 2009).

Histone Lysine Methylation

Although histone methylation can occur at lysine, arginine,
or histidine residues (Izzo and Schneider, 2010), we focus
here on lysine methylation, the only form implicated to date
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in depression. The function of lysine methylation depends
on the residue as well as the valence state of the methylation
(Berger, 2007). A lysine residue can be mono-, di-, or
trimethylated. Site- and state-specific lysine methylation is
catalyzed by a group of lysine methyltransferases (KMT).
With the exception of DOT1 (the KMT that catalyzes H3K79
methylation), all other KMTs contain the conserved SET
domain (Izzo and Schneider, 2010). Lysine methylation is
reversed by two classes of histone lysine demethylases. The
first is the amine oxidase domain-containing enzymes, and
the second class the jumonji domain-containing proteins,
which are Fe(II)- and 2-oxoglutarate-dependent oxygenases.
Five residues in the N-terminal tails of H3 and H4 (H3K4,
H3K9, H3K27, H3K36, and H4K20) are known to be
methylated and potently regulate transcription (Izzo and
Schneider, 2010). Two residues in the H3 globular domain
(H3K64 and H3K79), and several sites in H2A, H2B, and
H1 are also methylated, although the functions of these
modifications are largely unknown. H3K9, H3K27, and
H4K20 methylation are associated with transcriptional silen-
cing and heterchromatin formation/maintenance, whereas
H3K4 and H3K36 methylation are associated with active
transcription (Berger, 2007; Izzo and Schneider, 2010). The
mechanism by which these methylation marks exert their
functional effects is likely through the recruitment of different
complexes of proteins with reader domains that specifically
recognize these various methylation modifications.

HISTONE ACETYLATION AND METHYLATION
IN DEPRESSION

Histone Acetylation

The first evidence that histone acetylation has a role in
depression were observations that systemic or intracerebral
administration of various HDAC inhibitors (HDACi), either
alone or in combination with antidepressants, improved
antidepressant responses in a variety of animal models
(Covington et al, 2009, 2011b; Schroeder et al, 2007; Semba
et al, 1989; Tsankova et al, 2006; Uchida et al, 2011; Weaver
et al, 2004; Yamawaki et al, 2011; Zhu et al, 2009). Although
one study failed to demonstrate antidepressant activity of
systemically administered sodium butyrate, a non-selective
HDACi, this may be explained by differences in dose as well
as experimental paradigm (Gundersen and Blendy, 2009).

A study from our laboratory demonstrated that histone
acetylation (H3K14ac) is transiently decreased and then
persistently increased in the NAc after chronic social defeat
stress, and that this is mirrored by a reduction in HDAC2
levels (Covington et al, 2009). These changes were also
observed in the NAc of depression patients in postmortem
examination. The observation that MS275 (a specific class I
HDACi) directly infused into the NAc is robustly anti-
depressant initially suggests that histone acetylation has an
adaptive role in stress and depression (Covington et al,
2009). A later study supported such an adaptive role
of histone acetylation by demonstrating that animals

overexpressing dominant-negative HDAC2 in the NAc
exhibited ‘antidepressant-like’ behavior compared with
control animals, whereas animals overexpressing a version
of HDAC2 that strongly associates with chromatin (it lacks
S-nitrosylation sites) exhibit more depression-like behavior
(Uchida et al, 2011). In contrast, studies with HDAC5, a
Class II HDAC, reveal that this molecule is protective and
may exert resilience-like effects in the NAc. Mice susceptible
to chronic social defeat stress demonstrated a decrease
in HDAC5 expression whereas chronic antidepressant
(imipramine) treatment increased the HDAC5 expression.
In addition, mice lacking HDAC5 exhibited increased
depressive-like behaviors after chronic social defeat stress
compared with control animals (Renthal et al, 2007). These
studies suggest that there may be at least two distinct
populations of genes in the NAc mediating susceptibility to
stress and depression (Figure 3). Gene targets of HDAC2
may be pro-resilient and mediate antidepressant responses,
whereas those of HDAC5 may have the opposite role.
Another possible explanation for HDAC2 vs HDAC5
differences could be the non-histone targets of HDAC5, as
it is localized in the cytoplasm as well as the nucleus.

Similarly, a large body of literature has suggested
that histone acetylation in the hippocampus has an
overall adaptive role in stress and antidepressant responses.
Several studies have reported increased histone acetylation
or phosphoacetylation (phosphorylation and acetylation
of nearby residues in H3) in several subregions of the
hippocampus after exposure to a variety of acute stressors
(predator stress, social defeat stress, and forced swim
stress) in both mice and rats, and that these have an
adaptive role in memory formation (Bilang-Bleuel et al,
2005; Chandramohan et al, 2008; Radley et al, 2011; Reul
and Chandramohan, 2007). However, opposite to what was
observed in the NAc after chronic social defeat stress, there
wasFfollowing a transient increaseFa persistent decrease
in histone acetylation (H3K14Ac) in the hippocampus
(Covington et al, 2011b). These changes were reversed by
imipramine, suggesting that the persistent decrease in
acetylation in the hippocampus may be maladaptive, an
interpretation supported by antidepressant-like responses
elicited upon intra-hippocampal administration of HDACi
(Covington et al, 2011b).

In a rat model of individual differences to stress, high
responders (HR), which exhibit lower levels of anxiety and
higher preference for sucrose solution over water when
compared with low responders (LR), have higher levels of
CREB-binding proteinFa type of HAT, lower levels of
HDAC3, and higher global levels of acetylated H3 and H2B
in the hippocampus (Hollis et al, 2011). Following chronic
social defeat, HR rats had a significant reduction in body
mass gain, reduced sucrose preference, and decreased social
interaction whereas LR rats did not demonstrate these
depression-like behaviors. Correspondingly, HR rats had
decreased levels of H3 and H2B acetylation in hippocampus,
whereas LR rats showed increased H3 acetylation after
chronic social defeat, possibly explaining their respective
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susceptibility and resilience to the chronic stress (Hollis
et al, 2011). Curiously, levels of H4 acetylation were
decreased in both groups following chronic social defeat
(Hollis et al, 2011). One possible explanation for these
surprising results might be the lack of specificity of the
acetyl-H4 antibody used. However, a similar observation
has been reported at the BDNF promoter after electro-
convulsive seizures (ECS) (Tsankova et al, 2004). It was
hypothesized in this latter study that the downregulation of

H4 acetylation at the BDNF P2 promoter might represent
the suppression of this specific promoter to allow for other
promoters to override control of BDNF expression. These
data thus highlight possible differential roles for H3 vs H4
acetylation, and suggest the importance of complementing
studies of global histone modifications with genome-wide
analyses of such changes at specific gene promoters (see
below under Identification of gene targets: genome-wide
and promoter-specific studies).
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In another study in rats using a different depression
model, chronic variable stress, decreased acetylation
(H4K12Ac), and phosphoacetylation (H3K9S10) were
observed in CA3 and dentate gyrus (DG) of stressed rats
compared with control (Ferland and Schrader, 2011).
Corresponding to the decreased acetylation, there was
increased HDAC5 expression as well as HDAC Class I/II
and sirtuin activities in subregions of the hippocampus
(Ferland and Schrader, 2011).

The adaptive role of histone acetylation in the hippo-
campus in stress models has been demonstrated in several
investigations. As noted above, infusion of the HDACi
MS275 directly into the hippocampus was sufficient in
reversing the anhedonia (measured by sucrose preference)
observed after chronic social defeat stress, without affecting
other measures such as social avoidance and immobility in
the forced swim test (Covington et al, 2011b). This points to
regional specificity in terms of regulating different aspects
of the wide spectrum of behavioral disturbances observed
with depression. Interestingly, MS275 infusion into the
hippocampus in combination with social housing was able
to reverse the social avoidance phenotype (Covington et al,
2011b). In contrast to the antidepressant-like actions of
HDAC5 in the NAc, this HDAC seems to have a pro-
depressive role in the hippocampus (Tsankova et al, 2006).
Expression of HDAC5, but not of several other HDACs, is
downregulated in the hippocampus of socially defeated
mice that have been treated with imipramine (Tsankova
et al, 2006). At the same time, overexpression of HDAC5
blocks the antidepressant effect of imipramine in this
paradigm (Tsankova et al, 2006). Two non-exclusive
explanations exist for the apparent opposite roles of HDAC5
in hippocampus vs NAc in depression models. First, HDAC5
could be part of different complexes in different brain
regions and thereby target different subsets of genes that

differentially contribute to depression vulnerability. Second,
HDAC5 could regulate the same subsets of genes in different
brain regions, with these genes mediating opposite effects
on depression-related behavior. Indeed, numerous genes
have been shown to exert opposite effects in depression
models when acting in hippocampus vs NAc (Nestler and
Carlezon, 2006). Studies that examined HDAC5 levels in the
cortex of different inbred mouse strains found a negative
correlation between HDAC5 levels and depressive-like
behaviors, specifically, that high HDAC5 expression is
associated with less depressive-like behavior (Benton et al,
2011), agreeing with observations in NAc and opposite to
what is observed in hippocampus.

NAc and hippocampus are by far the most investigated
regions in the study of epigenetics and depression; however,
a limited amount of literature is available for other regions
in the brain’s cortical-striatal-limbic circuit. Following
chronic social defeat stress, acetylation of H3K14 is
increased in the amygdala at both 1 and 24 h after the last
defeat, but returns to baseline after longer periods
(Covington et al, 2011b). HDACi (MS275) infusion into
the amygdala reverses social avoidance but not anhedonia,
suggesting that the acetylation in the amygdala may be
adaptive with respect to some aspects of depression-like
behavior. In rats that have undergone acute social defeat,
H3 acetylation is decreased transiently in the amygdala,
although there was no effect of chronic social defeat in rats
(Hollis et al, 2011). Another study examining chronic
variable stress in rats found reduced HDAC5 levels in the
central amygdala in male rats (Sterrenburg et al, 2011),
similar to what was observed in NAc after chronic social
defeat stress in mice (Renthal et al, 2007). From a limited
number of studies examining the medial PFC, global levels
of histone acetylation do not seem to change after acute or
chronic stress in rodent models (Covington et al, 2011b;

Figure 3. Epigenetic changes in the depressed brain. Summary of epigenetic changes reported to date in the brain and periphery in depressed
humans or after chronic stress in animal models, as well as after antidepressant treatment (or in resilient or remitted subjects). Global as well as
representative promoter-specific changes are shown. Changes marked by green arrows are thought to be adaptive/antidepressant/pro-resilient.
Changes marked by red arrows are thought to be pro-depressive. Changes marked by blue arrows have as yet an unclear role in depression. Solid-line
arrows represent established connections, whereas dotted-line arrows represent putative connections. In the nucleus accumbens (NAc) of a stress-
susceptible mouse strain (ie, balb/c), global HDAC2 expression and HDAC2 binding on specific genes (eg, Gdnf) were increased after chronic stress
(Uchida et al, 2011). These changes reversed by antidepressant treatment, while the opposite adaptive changes were observed in a more resilient stain
of mice (c57b1/6) and in humans (Covington et al, 2009). On the contrary, HDAC5, a class II HDAC, were decreased in animals susceptible to stress and
was increased after antidepressant treatment (Renthal et al, 2007). These results suggest that there may be two distinct groups of pro-resilient/
antidepressant genes: those targeted by HDAC5 and that show decreased acetylation (and possibly decreased transcription), and those targeted by
HDAC2 and that show increased acetylation (and possibly increased transcription). In addition, global levels of repressive histone methylation machinery
for H3K9 (G9a, GLP, and SUV39H1), which presumably control global H3K9me2 levels, as well as H3K9me2 binding on specific genes (eg. Hras), were
decreased in the NAc of susceptible animals after chronic social defeat stress, while the opposite changes were observed in resilient animals (Covington
et al, 2011a). Also, histone methyltransferase (MLL1) and demethylase (LSD1) for H3K4 were decreased in susceptible animals, while they were
increased in resilient animals after social defeat, with no change in global levels of H3K4 methylation (Covington et al, 2011a). The role of these changes
are yet unclear. A ChIP-chip study has revealed dynamic changes in repressive histone methylation (H3K9/K27 methlation) in the upstream regulatory
regions genome-wide after social defeat, with more genes showing increased methylation (eg, Ikbkb and Jundm2) and putative decreased transcription
(Wilkinson et al, 2009). Many of these changes were reversed by antidepressant treatment or were not observed in resilient animals. In the hippocampus
of susceptible rodents after various stress paradigms, global acetylation levels on numerous histone residues were decreased, accompanied by
increased HDAC expression or activity (Covington et al, 2011b; Hollis et al, 2011; Ferland and Schrader, 2011). These changes were either not observed,
returned to baseline, or changed in the opposite direction in resilient animals or after antidepressant treatment. Similar changes were observed for
H3K9me3 in the hippocampus (Hunter et al, 2009). Gene-specific epigenetic changes were also observed in the hippocampus (eg, Bdnf, Nr3c1 gene
cluster, and Grin2b). In the peripheral blood of depressed patients, HDAC2,4, and 5, as well as SIRT1, 2, and 6 were increased only in the depressive
and not in the remissive state, while HDAC6 and 8 were increased in all patients regardless of states (Iga et al, 2007; Hobara et al, 2010; Abe et al, 2011).
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Hollis et al, 2011). More studies into these regions are
necessary to expand upon these initial findings.

A large number of studies have also examined the histone
acetylation machinery as potential biomarkers in peripheral
blood cells of depressed human patients. One study found
that HDAC2 and HDAC5 were increased in patients in their
depressive but not remitted state, whereas HDAC6 and
HDAC8 were decreased in patients regardless of their states,
and HDAC4 was increased in the depressive state of bipolar
patients (Hobara et al, 2010). Studies in mice suggest that
these changes are unlikely due to antidepressant treatment
(Hobara et al, 2010). The induction of HDACs 2/5 and 4
in unipolar and bipolar patients, respectively, only in the
depressive state suggests that these changes may be
associated with depression symptoms rather than adaptive
responses, and agree with the general consensus (albeit with
some exceptions) that histone acetylation in brain has a
pro-adaptive role in stress and depression. Further con-
curring with the pro-depressive role of HDAC5 in the
hippocampus, another study found that peripheral expres-
sion of HDAC5 was higher in drug-free depressive patients
compared with controls, with this effect reversed after
chronic antidepressant treatment (Iga et al, 2007). Although
the study of sirtuins in depression is largely lacking, one
study found that SIRTs 1, 2, and 6 are decreased in both
MDD and bipolar patients in the depressive state but not
remitted state. This finding suggests an interesting role for
these class III HDACs that deserve further investigation
(Abe et al, 2011).

Histone Methylation

Chronic social defeat stress has been found to decrease
several histone methyltransferases (G9a, GLP, and
SUV39H1), and a co-repressor (CoREST) involved in trans-
criptional repressive complexes, in the NAc of susceptible
animals whereas these molecules are upregulated in resilient
mice (Covington et al, 2011a). Specifically H3K9me2,
a mark catalyzed by G9a and GLP and mainly associated
with euchromatic gene repression, was also decreased in
susceptible mice only (Covington et al, 2011a). Similar
changes were seen in the NAc of depressed humans.
Overexpression of G9a in the NAc exerted antidepressant-
like behaviors, whereas knockdown of G9a exerted pro-
depressant-like effects (Covington et al, 2011a). This
evidence suggests that histone methylation, at least at the
H3K9 residue, is pro-adaptive in response to stress and
depression. Furthermore, genome-wide studies, described
further below, have revealed a widespread H3K9/K27
methylation changes at the promoters of many genes in
two models of depression, social defeat and social isolation,
the majority of which are reversed by chronic anti-
depressant treatment and not observed in resilient mice
(Wilkinson et al, 2009). It is curious to note that MLL and
LSD1, a methyltransferase and demethylase of H3K4,
respectively, are both decreased in the NAc of susceptible
mice and increased in resilient animals after chronic social

defeat stress (Covington et al, 2011a). These changes are
associated with no global change in the methylation state of
H3K4, although unpublished genome-wide data from our
laboratory has demonstrated different levels of this mark at
numerous specific genes in the NAc of susceptible and
resilient mice.

Stress regulation of histone methylation in the hippo-
campus has been examined in only one study to date
(Hunter et al, 2009). Acute and subchronic (7 day) stress
increased global levels of H3K9me3 in the DG and CA1
regions, whereas chronic (21 days) stress decreased the
same mark in these regions, and the latter effect was
reversed by antidepressant treatment. H3K9me3 is typically
thought to be involved in heterochromatin formation and
maintenance, but has recently been shown to be regulated
by several types of chronic stimuli; for example, cocaine
treatment (Maze et al, 2011), as well as being involved in
regulating transcription of a very small subset of genes
(Jiang et al, 2010). The Hunter et al (2009) study suggests
that H3K9me3 may have an adaptive role in stress models, a
possibility supported by the antidepressant effects of
overexpressing SETDB1 (a KMT that catalyzes H3K9me3)
in broad forebrain regions (Jiang et al, 2010). Further work
is needed to understand the underlying mechanisms
involved, in particular, whether these adaptive effects of
H3K9me3 are mediated by the repression of specific genes
or, rather, of intergenic elements. One possible gene target,
directly implicated in antidepressant-like responses, is
H3K9me3-mediated repression of grin2b, which encodes
the NR2b subunit of NMDA receptors (Jiang et al, 2010).

Acute or 7 days of stress also reduced global levels of
H3K27me3 in subregions of the hippocampus, although
no effects were observed after longer periods of stress,
whereas acute but not prolonged stress decreased
H3K9me1. The 7- and 21-day restraint stress, respectively,
decreased and increased H3K4me3. More experiments are
needed to understand the functional consequences of these
various modes of histone methylation in hippocampus.

Identification of Gene Targets: Genome-Wide
and Promoter-Specific Studies

The above sections reviewed global changes in histone
acetylation and methylation machineries in various depres-
sion models, but the far more important functional question
is: at what specific genes or intergenic regions does such
regulation occur to control depression-related behavior?
Recent work is beginning to address this key question.

BDNF is one target gene whose epigenetic regulation has
been implicated in depression models. An early study
demonstrated that repeated ECS, a well-known treatment of
depression, induces H3 and H4 acetylation at promoter
regions of the bdnf gene as well as several others (c-fos and
creb) in the hippocampus, changes that correlated well
with expression of these genes after ECS (Tsankova et al,
2004). In a follow-up study, it was demonstrated that
chronic social defeat stress decreased total BDNF mRNA
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expression in hippocampus, which was reversed by chronic
imipramine treatment (Tsankova et al, 2006). The decrease
in BDNF mRNA was correlated with an increase in the
repressive H3K27me2 mark at BDNF promoters after
chronic social defeat stress, and this induction of repressive
methylation was persistent despite chronic imipramine
treatment (Tsankova et al, 2006). Instead, like ECS, chronic
imipramine treatment caused an induction of acetylated
H3 (as well as H3K4me2) on bdnf promoters that correlated
with the reversal of BDNF expression (Tsankova et al,
2006).

Prenatal exposure to methylmercury causes a decrease in
BDNF expression in the DG that is reversed by chronic
treatment with fluoxetine (Onishchenko et al, 2008). Similar
to our observations with stress, the reduction in BDNF
expression after exposure to methylmercury was correlated
with an increase in H3K27me3 and a reduction in H3
acetylation at bdnf promoters. This reduction in H3
acetylation, but not the induction H3K27me3, was reversed
by chronic fluoxetine treatment (Onishchenko et al, 2008).
It is curious to note that a single immobilization stress,
which induces a transient decrease in BDNF mRNA levels in
the hippocampus, also induced a transient decrease in
H3 acetylation that returns to baseline by 24 h (Fuchikami
et al, 2009). A study examining the induction of BDNF
after chronic postnatal fluoxetine exposure in normal mice
did not find corresponding changes in H3 acetylation or
methylation changes, and points to the necessity for
preexisting stress states for epigenetic changes associated
with antidepressant treatment (Karpova et al, 2009).

Epigenetic alterations have been observed for other
neurotrophic factors as well as downstream signaling
proteins in regions in addition to the hippocampus. In the
orbitofrontal cortex of suicide completers, it was found that
expression of TrkB.T1, a truncated version of the TrkB
receptor, was decreased with a corresponding increase in
H3K27me3 at its gene promoter (Ernst et al, 2009). In a
study of the NAc, GDNF, glial cell line-derived neurotrophic
factor, was found to be pro-adaptive to stress (Uchida
et al, 2011). In a more susceptible strain of mice (Balb/c),
GDNF expression is decreased in NAc after chronic variable
stress and reversed by chronic imipramine treatment. This
was associated with decreased acetylated H3, decreased
H3K4me3, and increased HDAC2/MeCP2 recruitment at the
gdnf promoter, changes reversed by imipramine treatment.
Acetylated H4 and H3K27me3 were not affected. In the
more resilient strain of mice (c57bl/6), GDNF was increased
in NAc by chronic stress, and this effect was associated with
increased acetylated H3 and decreased H3K27me3. H4
acetylation was not affected and H3K4me3 was paradoxi-
cally decreased after stress. In addition, we have observed
induction of RAS-MAPK-CREB signaling, potentially down-
stream of BDNF/TrkB, in the NAc of susceptible animals in
response to chronic social defeat stress (Covington et al,
2011a). This induction of RAS expression in the NAc of
susceptible animals is associated with a decrease in the
repressive H3K9me2 mark, whereas the animals resilient to

stress do not show changes in RAS induction, an effect
accompanied by induction of H3K9me2 at the ras promoter
(Covington et al, 2011a).

In a landmark series of experiments by Micheal Meaney
and colleagues (Weaver et al, 2004), offspring of mothers
that receive low levels of maternal care/grooming (LG) show
increased stress reactivity and anxiety-related behavior in
adulthood compared with those that receive high levels of
maternal care/grooming (HG) (Weaver et al, 2004). LG
animals show a decreased hippocampal glucocorticoid receptor
mRNA expression in the hippocampus and corresponding
decreased H3K9 acetylation around the GR gene promoter
compared with HG animals (Weaver et al, 2004). They also
show lower levels of glutamic acid decarboxylase 1 (GAD1)
and corresponding decreased H3K9 binding at the gad1
promoter (Zhang et al, 2010). In a more recent study,
H3K9ac difference were assessed across B7 Mb of chromo-
some 18 containing NR3C1 (GR receptor) in addition to the
protocadherin gene cluster (McGowan et al, 2011). The
authors found approximately equal numbers of peaks and
valleys showing hyper and hypoacetylated regions in HG vs
LG animals. This illustrates that epigenetic responses to
maternal care is coordinated in an uneven manner in clusters
across broad genomic areas, and involves changes in both
genic and intergenic regions.

Despite numerous studies examining promoter-specific
epigenetic changes, there are still a very limited number of
genome-wide studies that have examined widespread
epigenetic changes in animal models of depression. Only
two genome-wide studies relating epigenetics and depres-
sion have been published thus far (Covington et al, 2009;
Wilkinson et al, 2009). One study examined global gene
expression profiles in the NAc after chronic social defeat
stress with or without chronic administration of fluoxetine
or intra-NAc MS275 (Covington et al, 2009). Chronic social
defeat stress induced significant gene expression changes in
a large number of genes, more of which showed a decreased
rather than increased expression. This is somewhat
surprising given that global levels of histone acetylation
and repressive methylation in the NAc increased and
decreased, respectively, after chronic social defeat stress,
and necessitate the investigation of other posttranslational
modifications in this stress paradigm (Covington et al, 2009,
2011a). MS275 and fluoxetine exerted similar antidepressant
actions, and were able to reverse a large proportion of gene
expression changes induced by chronic social defeat stress,
possibly through the induction of histone acetylation.
Although there was a common subset of genes similarly
regulated by MS-275 and fluoxetine, a significant propor-
tion of genes were differentially regulated across the two
treatments. Genes/molecular pathways that were regulated
by chronic social defeat stress but reversed after MS-275
included actin cytoskeleton reorganization machinery,
transcription factors, signaling molecules, as well as a
number of neurotransmitter receptors. Work is now needed
to explore the functional influence of the various genes that
comprise these clusters in stress models.
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The second study utilized ChIP-chip to examine the
distribution of repressive histone methylationFusing an
antibody that recognizes both H3K9me2 and H3K27me2-
Facross the genome in the NAc in two models of
depression, chronic social defeat stress, and prolonged
social isolation in adulthood (Wilkinson et al, 2009). Many
of the methylation changes observed in the NAc of
susceptible animals after chronic social defeat stress were
reversed by chronic imipramine treatment and were not
observed in resilient animals. In both stress models, there
were significant and dynamic changes in repressive methyla-
tion in the upstream regulatory regions genome wide, with
more genes showing increased H3 methylation, agreeing with
the gene expression changes after chronic stress described in
the above genome-wide study (Covington et al, 2009). This
is opposite to our biochemical data showing reduced global
levels of H3K9me2 in the NAc after chronic social defeat
stress, and no change in global levels of H3K27me2
(Covington et al, 2011a). The reason for these paradoxical
findings is unknown, but likely reflects marked differences
between global levels of a histone mark and changes that
occur at specific genomic loci. Interestingly, a small but
significant (B20%) proportion of the genes identified in the
ChIP-chip study showed similar regulation between the
two depression models (Wilkinson et al, 2009). Many of the
similarly regulated genes exhibited upregulation in NAc and
are involved in inflammatory or cell death pathways as well
as in gene regulation.

CONCLUSIONS AND FUTURE DIRECTIONS

Histone acetylation and methylation are important in
numerous cellular processes, and more recently have been
implicated in several psychiatric disorders including drug
addiction and schizophrenia (Maze et al, 2010; Peter and
Akbarian, 2011; Renthal and Nestler, 2009). It is evident
from initial studies reviewed here that both of these forms
of histone modification have important roles in the
pathophysiology of depression. One theme that we can take
away from these initial studies is that, unlike cocaine
addiction where several modifications that result in a more
permissive state of gene regulation also enhance behavioral
responses to the drug, there are no generalizations that can
be made for gene activation/repression in the pathophysio-
logy of depression. Depending on the brain region and
histone modification involved, epigenetic regulation that
either enhances or represses gene transcription can be
associated with depression-related behavior or its treat-
ment. Presumably, elucidating the complex array of genes
that show altered patterns of histone acetylation and
methylation, as well as of several additional chromatin
modifications, in several limbic brain regions will reveal
how epigenetic mechanisms control lasting changes in gene
expression, or regulation of intergenic regions, that
influence the development and treatment of depression.

Moving forward, it is clear that much further work is
necessary to fully elucidate the epigenetic basis of depres-
sion. One key question that is still not well-understood is
the targeting of different epigenetic regulators to different
genomic regions. This will require a large amount of
genome-wide studies (next generation ChIP sequencing) in
combination with various preclinical depression models
and postmortem human brain tissue. Furthermore, inves-
tigation of many more posttranslational modifications, both
in terms of more specific states of lysine acetylation and
methylation as well as numerous novel modifications such
as ADP-ribosylation, arginine methylation, novel histone
variants, and so on in more regions relevant in the
depression circuitry will provide crucial novel insights into
the molecular pathogenesis of this syndrome. Another
relatively unexplored areas of study in depression models
are the ATP-dependent chromatin remodelers that physi-
cally alter the packing state of chromatin and restructure
the nucleosome (including incorporating histone variants).
Preliminary studies from our laboratory have already
demonstrated potentially important roles of these molecules
in the pathophysiology of depression (unpublished Data,
Sun et al, SFN 2011). All of these studies will help us to
elucidate the complex interactions among stress-regulated
transcription factors, histone modifiers, and ATP-depen-
dent remodelers and will be necessary to fully understand
the global epigenetic landscape that accompanies the
development of depression or its treatment. Our hope and
expectation is that such studies will contribute to the
development of true biomarkers of the illness and provide a
unique path forward in constructing improved antidepres-
sant treatments.
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