
Fast ℓ1-SPIRiT Compressed Sensing Parallel Imaging MRI:
Scalable Parallel Implementation and Clinically Feasible Runtime

Mark Murphy, Marcus Alley, James Demmel, Kurt Keutzer, Shreyas Vasanawala, and
Michael Lustig

Abstract
We present ℓ1-SPIRiT, a simple algorithm for auto calibrating parallel imaging (acPI) and
compressed sensing (CS) that permits an efficient implementation with clinically-feasible
runtimes. We propose a CS objective function that minimizes cross-channel joint sparsity in the
Wavelet domain. Our reconstruction minimizes this objective via iterative soft-thresholding, and
integrates naturally with iterative Self-Consistent Parallel Imaging (SPIRiT). Like many iterative
MRI reconstructions, ℓ1-SPIRiT’s image quality comes at a high computational cost. Excessively
long runtimes are a barrier to the clinical use of any reconstruction approach, and thus we discuss
our approach to efficiently parallelizing ℓ1-SPIRiT and to achieving clinically-feasible runtimes.
We present parallelizations of ℓ1-SPIRiT for both multi-GPU systems and multi-core CPUs, and
discuss the software optimization and parallelization decisions made in our implementation. The
performance of these alternatives depends on the processor architecture, the size of the image
matrix, and the number of parallel imaging channels. Fundamentally, achieving fast runtime
requires the correct trade-off between cache usage and parallelization overheads. We demonstrate
image quality via a case from our clinical experimentation, using a custom 3DFT Spoiled Gradient
Echo (SPGR) sequence with up to 8× acceleration via poisson-disc undersampling in the two
phase-encoded directions.

Keywords
Autocalibrating Parallel Imaging; SPIRiT; Compressed Sensing; GPGPU; Parallel Computing

1 Introduction
Imaging speed is a major limitation of MR Imaging, especially in comparison to competing
imaging modalities such as Computed Tomography (CT). MR allows much more flexible
contrast-generation and does not expose patients to ionizing radiation, and hence does not
increase risk of cancer. However, other imaging modalities are substantially more popular,
as MR scans are slow, expensive, and in some cases less robust. Patient motion during long
scans frequently causes image artifacts, and for uncooperative patients, like children,
anesthesia is a frequent solution. Acquisition time in MRI can be reduced by faster scanning
or by subsampling. Parallel imaging [31, 29, 14] is a well-established acceleration technique
based on the spatial sensitivity of array receivers. Compressed sensing (CS) [7, 10, 21] is an
emerging acceleration technique that is based on the compressibility of medical images.
Attempts to combine the two have mostly focussed on extensions of iterative SENSE [28]
with SparseMRI [21]. In [4] Block et al., added total-variation to a SENSE reconstruction
from radial sampling, Liang et al., in [19] showed improved acceleration by first performing
CS on aliased images and then applying SENSE to unfold the aliasing, Otazo et al. used
compressed sensing with SENSE to accelerate first-pass cardiac perfusion [27]. More

NIH Public Access
Author Manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

Published in final edited form as:
IEEE Trans Med Imaging. 2012 June ; 31(6): 1250–1262. doi:10.1109/TMI.2012.2188039.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

recently [34, 39] have presented some improvements, again, using an extension of SENSE.
The difficulty in estimating exact sensitivity maps in SENSE has created the need for
autocalibrating techniques. One class of autocalibrating algorithms extends the SENSE
model to joint estimation of the images and the sensitivity maps [41, 35]. Combination of
these approaches with compressed sensing have also been proposed. Knoll et al. [17]
proposed a combination with Uecker’s non-linear inversion and Huang et al. [15] proposed a
self-feeding SENSE combined with compressed sensing.

A different, yet very popular class of autocalibrating techniques are methods like GRAPPA
[14] that do not use the sensitivity maps explicitly. In [22] we proposed an optimized
iterative method, SPIRiT, and demonstrated the combination with non-linear regularization.
In [20] we presented and extension, ℓ1-SPIRiT, that synergistically combines SPIRiT with
compressed sensing and in [38, 37] we presented more details and clinical results in
pediatric patients.

The combination of compressed sensing with parallel imaging has the advantage of
improved image quality, however it comes at a cost. These algorithms involve substantially
more computation than direct or iterative linear reconstructions.

In this paper we discuss the ℓ1-SPIRiT reconstruction. ℓ1-SPIRiT solves a constrained non-
linear optimization over the image matrix. The non-linearity of this optimization necessitates
an iterative reconstruction, and we describe our simple and efficient POCS algorithm in
Secion 3.

A recent trend in MRI has been to accelerate reconstructions by implementing and
optimizing them for massively parallel processors. Silicon manufacturing technology has
recently experienced the end of a trend that produced the incredible pace of comptuational
speed during the 1990’s [12]. In the past decade, all major microprocessor vendors have
increased the computational throughput of their designs by introducing programmer-visible
parallelism. Intel and AMD provide 4–16 CPU cores per socket, and GPGPUs typically
have 16–32 massively multithreaded vector cores per socket. In each case, the
computational throughput of the processor is proportional to the number of cores, and future
designs will have larger numbers of cores.

This paper discusses the massively parallel implementation of ℓ1-SPIRiT on these
processors. The resulting sub-minute runtimes demonstrate that computational expense is
not a substantial obstacle to clinical deployment of ℓ1-SPIRiT. Many previous works have
demonstrated substantial improvement in reconstruction runtime using GPUs and multi-core
CPUs as parallel execution platforms. Chang and Ji [8] demonstrated multi-channel
acceleration by solving SparseMRI reconstruction separately for each channel and reporting
1.6–2.0 acceleration using 4 cores. More recently Kim et al. [16] present a high-performance
implementation of a SENSE based compressive sensing recosntruction, describing many
low-level optimizations that apply for both CPU and GPU architectures.

Stone et al. [33] describe the implementation of an iterative reconstruction using the
Conjugate Gradient (CG) algorithm to solve regularized linear reconstructions for non-
cartesian trajectories. Their implementation relies on a highly optimized GPU
implementation of a non-uniform Fourier transform (NDFT) to perform sub-minute
noncartesian reconstructions. Wu et al. [40, 43] have generalized this work to model other
acquisition effects in the NDFT, such as off-resonance and sensitivity encoding. Several
other works have discussed the GPU implementation of Gridding [3], a highly accurate
NDFT approximation. Gregerson [13] discusses the performace trade-offs of different
parallelization strategies for the gridding interpolation. Obeid et al [26] use a spatial-
partitiong approach to optimize gridding interpolation, and reporting 1–30 second runtimes.

Murphy et al. Page 2

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Nam et al. [1] describe another gridding implementation achieving sub-second interpolations
for highly undersampled data. Several other works have presented GPU implementations of
Parallel Imaging (PI) reconstructions with clinically-feasible runtimes. Roujol et al. [30]
describe GPU implementation of temporal sensitivity encoding (TSENSE) for 2D
interventional imaging. Sorenson et al. [32] present a fast iterative SENSE implementation
which performs 2D gridding on GPUs. Uecker [36] describes a GPU implementation of a
non-linear approach to estimate PI coil sensitivity maps during image reconstruction.

This work presents the parallelization of an autocalibrating approach, ℓ1-SPIRiT, via multi-
core CPUs and GPUs and the resulting clinically-feasible reconstruction runtimes. Moreover
we discuss the approach taken to parallelizing the various operations within our
reconstruction, and the performance trade-offs in different parallelization strategies.
Additionally, we discuss the data-size dependence of performance-relevant implementation
decisions. To our knowledge, no previous works have addressed this issue.

2 iTerative Self-Consistent Parallel Imaging Reconstruction (SPIRiT)
SPIRiT is a coil-by-coil autocalibrating parallel imaging method and is described in detail in
[22]. SPIRiT is similar to the GRAPPA parallel imaging method in that it uses
autocalibration lines to find linear weights to synthesize missing k-space. The SPIRiT model
is based on self-consistency of the reconstructed data with the acquired k-space data and
with the calibration.

SPIRiT is an iterative algorithm in which in each iteration non-acquired k-space values are
estimated by performing a linear combination of nearby k-space values. The linear
combination is performed using both acquired k-space samples as well as estimated values
(from the previous iteration) for the non-acquired samples. If we denote xi as the entire k-
space grid of the ith coil, then the consistency criterion has a form of a series of convolutions
with the so called SPIRiT kernels gij. The SPIRiT kernels are obtained by calibration from
auto calibration lines similarly to GRAPPA. If Nc is the total number of channels, the
calibration consistency criterion can be written as

The SPIRiT calibration consistency for all channels can be simply written in matrix form as

where x is a vector containing the concatenated multi-coil data and G is an aggregated
operator that performs the appropriate convolutions with the gij kernels and the appropriate
summations. As discussed in [22], the G operator can be implanted as a convolution in k-
space or as multiplication in image space.

In addition to consistency with the calibration, the reconstruction must also be consistent
with the acquired data Y. This can be simply written as

Murphy et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

where D is an operator that select the acquired k-space out of the entire k-space grid. In [22]
two methods were proposed to find the solution that satisfies the constraints. Here we would
like to point out the projection over convex sets (POCS) approach which uses alternate
projections that enforce the data consistency and calibration consistency. In this paper we
extend the POCS approach to include sparsity constraints for combination with compressed
sensing.

As previously mentioned, the convolution kernels gi,j are obtained via a calibration from the
densely sampled auto-calibration region in the center of k-space, commonly referred to as
the Auto-Calibration Signal or ACS lines. In the reconstruction we would like to find x that
satisfies x = Gx. However in the calibration x is known and G is unknown. We can therefore
solve for the gij’s by reformatting the data x appropriately and solving a series of least-
squares problems to calibrate gij. This procedure is similar to calibrating GRAPPA kernels.

3 ℓ1-SPIRiT Reconstruction
Variations of the ℓ1-SPIRiT reconstruction have been mentioned in several conference
proceedings [20, 24, 18, 38]. More detailed descriptions are given in [22] and in [37]. But
for the sake of completeness and clarity we include here a detailed description of the variant
that is used in this paper.

ℓ1-SPIRiT is an approach for accelerated sampling and reconstruction that synergistically
unifies compressive sensing with auto-calibrating Parallel imaging. The sampling is
optimized to provide the incoherence that is required for compressed sensing yet compatible
to parallel imaging. The reconstruction is an extension of the original SPIRiT algorithm that
in addition to enforcing consistency constraints with the calibration and acquired data,
enforces joint-sparsity of the coil images in the Wavelet domain. Let y be a the vector of
acquired k-space measurements from all the coils, F a Fourier operator applied individually
on each coil-data, D a subsampling operator that chooses only acquired k-space data out of
the entire k-space grid, G an image-space SPIRiT operator that was obtained from auto-
calibration lines, Ψ a wavelet transform that operates on each individual coil separately. ℓ1-
SPIRiT solves for the multi-coil images concatenated into the vector x which minimizes the
following problem:

(1)

(2)

(3)

The function Joint ℓ1(·) is a joint ℓ1-ℓ2-norms convex functional and is described later in more
detail. Minimizing the objective (1) enforces joint sparsity of wavelet co-efficients between
the coils. The constraint in (2), is a linear data-consistency constraint and in (3) is the
SPIRiT parallel imaging consistency constraint. The Wavelet transform [5] Ψ is well-known
to sparsify natural images, and thus used frequently in Compressive Sensing applications as
a sparsifying basis. Just as the Fourier transform, it is a linear operation that can be
computed via a fast O(n log n) algorithm.

As previously mentioned, in this work we solve the above problem via a an efficient POCS
algorithm, shown in Figure 1. The POCS algorithm converges to a fixed-point that satisfies
the above constraints, often within 50–100 iterations.

Murphy et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

3.1 Joint-Sparsity of Multiple Coils
We perform soft-thresholding on the Wavelet coefficients to minimize the ℓ1-objective
function (1). The soft-thresholding function (x) is defined element-wise for x ∈ as:

where |x| is the complex modulus of x. The parameter λ estimates the amplitude of noise
and aliasing in the Wavelet basis, and the soft-thresholding operation is a well-understood
component of many denoising [11] and compressive sensing algorithms [9].

The individual coil images are sensitivity weighted images of the original image of the
magnetization. Edges in these images appear in the same spatial position, and therefore
coefficients of sparse transforms, such as wavelets, exhibit similar sparsity patterns. To
exploit this, we use a joint-sparsity model. In compressed sensing, sparsity is enforced by
minimizing the ℓ1-norm of a transformed image. The usual definition of the ℓ1-norm is the

sum of absolute values of all the transform coefficients, ,
where c is the coil index and r is the spatial index. In a joint-sparsity model we would like to
jointly penalize coefficients from different coils that are at the same spatial position.
Therefore we define a joint ℓ1 as:

In a joint ℓ1-norm model, the existence of large coefficient in one of the coils, protects the
coefficients in the rest of the coils from being suppressed by the non-linear reconstruction.
In the POCS algorithm joint sparsity is enforces by soft-thresholding the magnitude of the
wavelet coefficients across coils, at a particular position.

3.2 Computational Complexity
If nc is the number of PI channels and v is the number of voxels per PI channel, the
computational complexity of our algorithm is:

T is the number of iterations the POCS algorithm performs. The algorithm often converges
with sufficient accuracy within 50–100 iterations. The constants CW, CF, CS, and CC
indicate that the relative computational cost of the Wavelet transforms, Fourier transforms,
and SPIRiT interpolation and calibration are heavily dependent on input data size. Section 6
presents more detailed runtime data.

The term represents the SPIRiT calibration, which performs a least-norm least-squares fit
of the SPIRiT model to a densely sampled autocalibration region in the center of k-space.

Solving each of these systems independently leads to an algorithm, which is
prohibitively expensive for large coil arrays. However, the nc linear systems are very closely
related and can be solved efficiently with only a single Cholesky decomposition of a square

matrix of order O(nc), hence the complexity of our method. See Appendix A for a

Murphy et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

complete derivation of the algorithm. This derivation can potentially be used to accelerate
the computation of GRAPPA kernels as well.

The ncv log v term represents the Fourier and Wavelet transforms, and the term
represents the image-domain implementation of the k-space SPIRiT interpolation. This k-
space convolution is implemented as multiplication in the image domain, hence the linearity

in v of this term. Due to the complexity, SPIRiT interpolation is asymptotically the
bottleneck of the POCS algorithm. All other operations are linear in the number of PI
channels, and at worse log-linear in the number of voxels per channel. There are several
proposed approaches that potentially reduce the complexity of the SPIRiT interpolation
without degrading image quality. For example ESPIRiT [18] performs an eigen
decomposition of the G matrix, and uses a rank-one approximation during POCS iterations.
Also, coil array Compression [6, 42] can reduce the number of parallel imaging channels to
a small constant number of virtual channels. Our software includes implementations of both
of these approaches, and in practice the ℓ1-SPIRiT solver is rarely run with more than 8
channels.

One could solve the ℓ1-SPIRiT reconstruction problem (Eqns 1–3) via an algorithm other
than our POCS approach, for example non-linear Conjugate Gradients (NLCG). The
computational complexity of alternate algorithmic approaches would differ only in constant
factors. The same set of computations would still dominate runtime, but a different number
of iterations would be performed and potentially a different number of these operations
would be computed per iteration. End-to-end reconstruction times would differ, but much of
the performance analysis in this work applies equally well to alternate algorithmic
approaches.

4 Fast Implementation
The POCS algorithm is efficient: in practice, it converges rapidly and performs a minimal
number of operations per iteration. Still, a massively parallel and well-optimized
implementation is necessary to achieve clinically feasible runtimes. A sequential C++
implementation runs in about 10 minutes for the smallest reconstructions we discuss in this
paper, and in about 3 hours for the largest. For clinical use, images must be available
immediately after the scan completes in order to inform the next scan to be prescribed.
Moreover, time with a patient in a scanner is limited and expensive: reconstructions
requiring more than a few minutes of runtime are infeasible for on-line use.

In this section, we discuss the aspects of our reconstruction implementation pertinent to
computational performance. While previous works have demonstrated the suitability of
parallel processing for accelerating MRI reconstructions, we provide a more didactic and
generalizable description intended to guide the implementation of other reconstructions as
well as to explain our implementation choices.

4.1 Parallel Processors
Many of the concerns regarding efficient parallel implementation of MRI reconstructions are
applicable to both CPU and GPU architectures. These two classes of systems are
programmed using different languages and tools, however have much in common. Figure 2
establishes a four-level hierarchy that one can use to discuss parallelization decisions. In
general, synchronization is more expensive and aggregate data access bandwidth is less at
“higher” levels of the hierarchy (i.e. towards the top of Figure 2). For example, Cuda
GPGPUs can synchronize threads within a core via a syncthreads() instruction at a cost of a
few processor cycles, but synchronizing all threads within a GPU requires ending a grid
launch at a cost of ≈ 5 μs, or 7,500 cycles. CPU systems provide less elaborate hardware-

Murphy et al. Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

level support for synchronization of parallel programs, but synchronization costs are similar
at the corresponding levels of the processor hierarchy. On CPUs, programs synchronize via
software barriers and task queues implemented on top of lightweight memory-system
support. With respect to data access, typical systems have ≈ 10 TB/s (1013 bytes/s)
aggregate register-file bandwidth, but only ≈ 100 GB/s (1011 bytes/s) aggregate DRAM
bandwidth. Exploiting locality and data re-use is crucial to performance.

In this work, we do not further discuss cluster-scale parallelization (among Nodes in Figure
2). The CPU parallelization we’ll describe in this section only leverages the parallelism
among the multiple Sockets/Cores a single Node. As indicated by Figure 2, parallelization
decisions at this level are analogous to decisions among the multiple GPUs in a single
system, but we leave more detailed performance analysis of cluster-parallelization to future
work.

4.2 Data-Parallelism and Geometric Decomposition
The computationally intense operations in MRI reconstructions contain nested data
parallelism. In particular, operations such as Fourier and Wavelet transforms are performed
over k-dimensional slices through the N-dimensional reconstruction volume, with k < N. In
most cases the operations are performed for all k-dimensional (k-D) slices, providing
another source of parallelism to be exploited for accelerating the reconstruction. The k-D
operations themselves are parallelizable, but usually involve substantial synchronization and
data-sharing. Whenever possible, it is very efficient to exploit this additional level of
parallelism. For the purposes of software optimization, the size and shape of the N-
dimensional (N-D) data are important. The Geometric Decomposition (GD) design pattern
[23] discusses the design of parallel programs in which the data involved have geometric
structure. GD suggests the parallelization should follow a division of the data that follows
this structure, in order to achieve good caching and inter-thread communication behavior.

Recall from Figure 2 that modern processor architectures provide four levels at which to
exploit parallelism. An efficient parallel implementation must decide at which levels of the
processor hierarchy to exploit the levels of the nested parallelism in MRI reconstruction.

In volumetric MRI reconstructions, all of these operations are applied to the 4-D array
representing the multi-channel 3D images. Figure 3 illustrates that the exploitable
parallelism of operations over these arrays is two-level: operations like Fourier and Wavelet
transforms applied to the individual channels’ images exhibit massive voxel-wise
parallelism and require frequent synchronization; but the transforms of the 4–32 channels
can be performed independently and in parallel.

In cartesian acquisisions, the readout direction is never undersampled. Similarly in stack-of-
spirals or stack-of-radial acquisitions, the same non-cartesian sampling of x − y slices is
used for every z position. In these cases, the 3D reconstruction can be decoupled into
independent 2D reconstructions for each undersampled slice. Parallelizing over independent
2D reconstructions is very efficient, as the decoupled 2D reconstructions require no
synchronization. Our Cuda ℓ1-SPIRiT solver is able to run multiple 2D problems
simultaneously per GPU in batch mode. Large batch sizes require more GPU memory, but
expose more parallelism and can more effectively utilize the GPU’s compute resources.

4.3 Size-Dependence and Cache/Synchronization Trade-off
One can produce several functionally equivalent implementations by parallelizing at
different levels of the hierarchy in Figure 2. These different implementations will produce
identical results1, but have very different performance characteristics. Moreover, the
performance of a given implementation may differ substantially for different image matrix

Murphy et al. Page 7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

sizes and coil array sizes. In general, the optimal implementation is a trade-off between
effective use of the cache/memory hierarchy and amortization of parallelization overheads.

For example, one may choose to exploit the voxel-wise parallelism in an operation only
among the vector lanes within a single processor core. The implementation can then exploit
parallelism over multiple channels and 2D slices over the multiple cores, sockets, and nodes
in the system. Utilizing this additional parallelism will increase the memory footprint of the
algorithm, as the working set of many 2D slices must be resident simultaneously. This
consideration is particularly important for GPU systems which have substantially less
DRAM capacity than CPU systems.

On the other hand, one may leverage voxel-wise parallelism among the multiple cores
within a socket, the multiple sockets within the system, or among the multiple nodes. In
doing so the implementation is able to exploit a larger slice of the system’s processing and
memory-system resources while simultaneously reducing memory footprint and working-set
size. The favorable caching behavior of the smaller working set may result in a more
efficient implementation. However it is more expensive to synchronize the higher levels of
the processing hierarchy. Furthermore for problems with smaller matrix sizes, voxel-wise
parallelism may be insufficient to fully saturate the processing resources at higher levels.
Even when caching behavior is more favorable, this over-subscription of resources may
degrade performance.

Which implementation provides better performance depends both on the size of the input
data and on the size of the processor system. When the image matrix is very high-resolution
(i.e. has a large number of voxels) or the processing system is relatively small (i.e. a small
number of processor cores), then one can expect a high degree of efficiency from exploiting
voxel-wise parallelism at higher levels of the hierarchy. If the image matrix is relatively
small or the processor system is very large, then one should expect that parallelism from the
Channel and Decoupled-2D levels of Figure 3 is more important. As the number of
processing cores per system and the amount of cache per core both continue to increase over
time, we expect the latter case to become more common in the future.

4.4 Parallel Implementation of ℓ1-SPIRiT
In the case of ℓ1-SPIRiT, there are four operations which dominate runtime: SPIRiT auto-
calibration, Fourier transforms during the k-space consistency projection, Wavelet
transforms during the joing soft-thresholding, and the image-domain implementation of
SPIRiT interpolation. Figure 4 depicts the overall flow of the iterative reconstruction. Note
that PI calibration must be performed only once per reconstruction, and is not part of the
iterative loop.

SPIRiT Auto-Calibration—Our ℓ1-SPIRiT implementation performs auto-calibration by
fitting the SPIRiT consistency model to the densely sampled Auto-Calibration Signal
(ACS), which requires solving a least-squares least-norm problem for each PI channel. Note
that while we perform the POCS iterations over decoupled 2D slices, we perform calibration
in full 3D. The SPIRiT interpolation kernels for the 2D problems are computed via an
inverse Fourier transform in the readout direction.

As discussed in Appendix A, the auto-calibration is computationaly dominated by two
operations: the computation of a rank-k matrix product A*A and a Cholesky factorization A
= LL*, which itself is dominated by rank-k products. Numerical linear algebra libraries for

1Identical up to round-off differences in floating point arithmetic, which is not always associative or commutative

Murphy et al. Page 8

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

both CPUs and GPUs are parallelized via an output-driven scheme that requires very little
inter-thread synchronization. For example, when computing a matrix-matrix product C = AB
each element ci,j is computed as an inner product of a row ai of A with a column bj of B. All
such products can be computed independently in parallel, and are typically blocked to
ensure favorable cache behavior.

The SPIRiT Operator in Image Space—Figure 4 (b) illustrates the image-domain
implementation of SPIRiT interpolation Gx. Gx computes a matrix-vector multiplication per
voxel – the length nc (# PI channels) vector is composed of the voxels at a given location in
all PI channels. For efficiency in the Wavelet and Fourier transforms, each channel must be
stored contiguously – thus the cross-channel vector for each voxel is non-contiguous. Our
implementation of the interpolation streams through each channel in unit-stride to obviate
inefficient long-stride accesses or costly data permutation. The image-domain
implementation is substantially more efficient than the k-space implementation, which
performs convolution rather than a multiplication. However, the image-domain
representation of the convolution kernels requires a substantially larger memory footprint, as
the compact k-space kernels must be zero-padded to the image size and Fourier transformed.

Since SPIRiT’s cross-coil interpolation is an all-to-all operation, there are such kernels.
This limits the applicability of the image-domain SPIRiT interpolation when many large-
coil-array 2D problems are in flight simultaneously. This limitation is more severe for the
Cuda implementation than the OpenMP implementation, as GPUs typically have
substantially less memory capacity than the host CPU system.

Enforcing Sparsity by Wavelet Thresholding—Figure 4 (c) illustrates Wavelet Soft-
thresholding. Similarly to the Fourier transforms, the Wavelet transforms are performed
independently and in parallel for each channel. Our Wavelet transform implementation is a
multi-level decomposition via a separable Daubechies 4-tap filter. Each level of the
decomposition performs low-pass and high-pass filtering of both the rows and columns of
the image. The number of levels of decomposition performed depends on the data size: we
continue the wavelet decomposition until the approximation coefficients are smaller than the
densely sampled auto-calibration region. Our OpenMP implementation performs the
transform of a single 2D image in a single OpenMP thread, and parallelizes over channels
2D slices.

We will present performance results for two alternate GPU implementations of the Wavelet
transform. The first parallelizes a 2D transform over multiple cores of the GPU, while the
second is parallelized only over the vector lanes within a single core. The former is a finer-
grained parallelization with a small working set per core, and permits an optimization that
greatly improves memory system performance. As multiple cores share the transform for a
single 2D transform, the per-core working set fits into the small l1-cache of the GPU.
Multiple Cuda thread blocks divide the work of the convolutions for each channel’s image,
and explicitly block the working data into the GPU’s local store. Parallelism from multiple
channels is exploited among multiple cores when a single 2D transform cannot saturate the
entire GPU. The latter parallelization exploits all voxel-wise parallelism of a 2D transform
within a single GPU core, and leverages the channel-wise and slice-wise parallelism across
multiple cores. The working set of a single 2D image does not fit in the l1 cache of the GPU
core and we cannot perform the explicit blocking performed in the previous case.

Enforcing k-space acquisition consistency—Figure 4 (d) illustrates the operations
performed in the k-space consistency projection. The runtime of this computation is
dominated by the forward and inverse Fourier transforms. As the FFTs are performed
independently for each channel, there is nc-way embarrassing parallelism in addition to the

Murphy et al. Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

voxel-wise parallelism within the FFT of each channel. FFT libraries typically provide APIs
to leverage the parallelism at either or both of these levels. The 2D FFTs of phase-encode
slices in ℓ1-SPIRiT are efficiently parallelized over one or a few processor cores, and FFT
libraries can very effectively utilize voxel-wise parallelism over vector lanes. We will
present performance results for the GPU using both the Plan2D API, which executes a single
2D FFT at a time, and the PlanMany API which potentially executes many 2D FFTs
simultaneously. The latter approach more easily saturates the GPU’s compute resources,
while the former approach is a more fine-grained parallelization with potentially more
efficient cache-use.

5 Methods
Section 6 presents performance results for a representative sample of datasets from our
clinical application. We present runtimes for a constant number of POCS iterations only, so
the runtime depends only on the size of the input matrix. In particular, our reported runtimes
do not depend on convergence rates or the amount of scan acceleration. We present
performance results for six datasets, whose sizes are listed in Table 1.

We present several performance metrics of interest. First, we shall discuss the end-to-end
runtime of our reconstruction to demonstrate the amount of wall-clock time the radiologist
must wait from the end of the scan until the images are available. This includes the PI
calibration, the POCS solver, and miscellaneous supporting operations. To avoid data-
dependent performance differences due to differing convergence rates, we present runtime
for a constant (50) number of POCS iterations.

To demonstrate the effectiveness of our O(n3) calibration algorithm, we compare its runtime
to that of the “obvious” implementation which uses ACML’s implementation of the Lapack
routine cposv to solve each coil’s calibration independently. The runtime of calibration does
not depend on the final matrix size, but rather on the number of PI channels and the number
of auto-calibration readouts. We present runtimes for calibrating 7 × 7 × 7 kernels averaged
over a variety of ACS sizes.

We also present per-iteration runtime and execution profile of the POCS solver for several
different parallelizations, including both CPU and GPU implementations. The per-iteration
runtime does not depend on the readout length or the rate of convergence. Since we
decouple along the readout dimension, POCS runtime is simply linear in nx. Presenting per-
iteration runtime allows direct comparison of the different performance bottlenecks of our
multiple implementations.

Additionally, we explore the dependence of performance on data-size by comparing two
alternate implementations parallelized for the GPU. The first exploits voxel-wise parallelism
and channel-wise parallelism at the Socket-level from Figure 2, and does not exploit
Decoupled-2D parallelism. This implementation primarily synchronizes via ending Cuda
grid launches, incurring substantial overhead. However, the reduced working-set size
increases the likelihood of favorable cache behavior, and enables further caching
optimizations as described in Section 4.4 Fourier transforms are performed via the 2D API,
which expresses a single parallel FFT per grid launch. Fermiclas GPUs are able to execute
multiple grid launches simultaneously, thus this implementation expresses channel-wise
parallelism as well. The second implementation exploits voxel-wise parallelism only within
a core of the GPU, and maps the channel-wise and Decoupled-2D parallelism at the Socket-
level. This implementation is able to use the more efficient within-core synchronization
mechanisms, but has a larger working set per core and thus cannot as effectively exploit the
GPU’s caches. It also launches more work simultaneously in each GPU grid launch than
does the first implementation, and can more effectively amortize parallelization overheads.

Murphy et al. Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Fourier transforms are performed via the “Plan Many” API, which expresses the parallelism
from all FFTs across all channels and all slices simultaneously.

All performance data shown were collected on our dual-socket × six-core Intel Xeon X5650
@2.67GHz system with four Nvidia GTX580s in PCI-Express slots. The system has 64GB
of CPU DRAM, and 3GB of GPU DRAM per card (total 12 GB). We leverage Nvidia’s
Cuda [25] extensions to C/C++ to leverage massively parallel GPGPU processors, and
OpenMP 2 to leverage multi-Core parallelism on the system’s CPUs. Additionally, multiple
OpenMP threads are used to manage the interaction with the system’s multiple discrete
GPUs in parallel. We leverage freely available high-performance libraries for standard
operations: linear system solvers, matrix factorizations, Fourier transforms.

6 Performance Results
Figures 5–10 present performance data for our parallelized ℓ1-SPIRiT implementations.

Figure 5 shows stacked bar charts indicating the amount of wall-clock time spent during
reconstruction of the six clinical datasets, whose sizes are listed in Section 5. The POCS
solver is run with a single 2D slice in flight per GPU. This configuration minimizes memory
footprint and is most portable across the widest variety of Cuda-capable GPUs. It is the
default in our implementation. The stacked bars in Figure 5 represent:

3D Calibration—The SPIRiT calibration that computes the SPIRiT G operator from the
ACS data as described in Section 3. Figure 9 presents more analysis of this portion.

POCS—The per-slice 2D data are reconstructed via the algorithm described in Figure 1.
Figure 6 presents a more detailed analysis of the runtime of this portion.

other—Several other steps must also be performed during the reconstruction, including
data permutation and IFFT of the readout dimension.

Figures 6 and 7 show the contribution of each individual algorithmic step step to the overall
runtime of a single iteration of the 2D POCS solver. In Figure 6, the solver is parallelized so
that a single 2D problem is in-flight per GPU. In Figure 7, a single 2D problem is in flight
per CPU core. The stacked bars in Figure 6 and Figure 7 are:

FFT—The Fourier transforms performed during the k-space consistency projection.

SPIRiT Gx—Our image-domain implementation of the SPIRiT interpolation, which
performs a matrix-vector multiplication per voxel.

Wavelet—The Wavelet transforms performed during wavelet soft-thresholding.

other—Other operations that contribute to runtime include data movement, joint soft-
thresholding, and the non-fourier components of the k-space projection.

Figure 8 compares the runtime of the Parallel GPU and CPU POCS implementations to the
runtime of a sequential C++ implementation. The reported speedup is computed as the ratio
of the sequential runtime to the parallel runtime.

2http://www.openmp.org

Murphy et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

http://www.openmp.org

Figure 9 demonstrates the runtime of the efficient Cholesky-based SPIRiT calibration
algorithm described in Appendix A. The left graph compares the runtime of of our efficient
O(n3) calibration to the naïve O(n4) algorithm. The right plot shows what fraction of the
efficient algorithm’s runtime is spent in the matrix-matrix multipliction, the Cholesky
factorization, and the other BLAS2 matrix-vector operations.

7 Discussion
Figures 5 and 6 present performance details for the most portable GPU implementation of
the POCS solver which runs a single 2D slice per GPU. As shown in Figure 5, our GPU-
parallelized implementation reconstructs datasets A-D at 8 channels in less than 30 seconds,
and requires about 1 minute for the larger E and F datasets. Similarly, our reconstruction
runtime is 1–2 minutes for all but the 32-channel E and F data, which require about 5

minutes. Due to the complexity of calibration, calibration requires a substantially
higher fraction of runtime for the 32-channel reconsturctions, compared to the 8 an 16-

channel reconstructions. Similarly, Figure 6 shows that the SPIRiT interpolation is a
substantial fraction of the 32-channel POCS runtimes as well. Figures 5 and 6 demonstrate
another important trend of the performance of this GPU implementation. Although dataset D
is 4× larger than dataset A, the 8-channel GPU POCS runtimes differ only by about 10%.
The trend is clearest in the performance of the Fourier and Wavelet transforms, whose
runtime is approximately the same for datasets A-D. This is indicative of the inefficiency of
the CUFFT library’s Plan2D API for these small matrix sizes. In a moment we’ll discuss
how an alternate parallelization strategy can substantially improve efficiency for these
operations.

Figures 7 presents the averaged per-iteration execution profile of the OpenMP-parallelized
CPU POCS solver, which uses an #pragma omp for to perform a single 2D slice’s
reconstruction at a time per thread. The relative runtimes of the Fourier and Wavelet
transforms are more balanced in the CPU case. In particular, the CPU implementation does
not suffer from low FFT performance for the small data sizes. The FFT is run sequentialy
within a single OpenMP thread, and it incurs no synchronization costs or parallelization
overhead.

Figure 8 presents the speedup of the multi-GPU solver and the multicore CPU solver over a
sequential C++ implementation. Note that the 4-GPU implementation is only about 33%
faster than the 12-CPU implementantation for the smallest data size (dataset A at 8
channels), while for the larger reconstructions the GPU implementation is 5 × – 7× faster.
The OpenMP parallelization consistently gives 10 × – 12× speedup over sequential C++,
while the multi-GPU paralellization provides 30 × – 60× speedup for most datasets.

Figure 9 demonstrates the enormous runtime improvement in SPIRiT calibration due to our
Cholesky-based algorithm described in Section 3 and derived in Appendix A. The runtime
of our calibration algorithm is dominated by a single large matrix-matrix multiplication,
Cholesky decomposition, and various BLAS2 (Matrix-vector) operations. For 8 channel
reconstructions, the O(n3) algorithm is faster by 2 – 3×, while it is 10× faster for 32 channel
data. In absolute terms, 8-channel calibrations require less than 10 seconds when computed
via either algorithm. However, 32 channel calibrations run in 1–2 minutes via the Cholesky-
based algorithm, while the O(n4) algorithm runs for over 15 minutes.

Figure 10 provides a comparison of alternate parallelizations of the POCS solver and the
dependence of performance on data size. The “No Batching” implementation exploits the
voxel-wise and channel-wise parallelism within a single 2D problem per GPU Socket. The
remaining bars batch multiple 2D slices per GPU Socket. The top bar graph shows runtimes

Murphy et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

for a small 256 × 58 image matrix, and the bottom graph shows runtimes for a moderately
sized 232 × 252 matrix. Both reconstructions were performed after coil-compression to 8
channels.

Fourier transforms in the No Batching implementation are particularly inefficient for the
small data size. The 256 × 58 transforms for the 8 channels are unable to saturate the GPU.
The “Batched 1x” bar uses the PlanMany API rather than the Plan2D API. This change
improves FFT performance, demonstrating the relative ineffectiveness of the GPU’s ability
to execute multiple grid launches simultaneously. Performance continues to improve as we
increase the number of slices simultaneously in-flight, and the FFTs of the small matrix are
approximately 5 faster when batched 32×. However, for the larger 232 × 252 dataset, 32×
batching achieves performance approximately equal to the non-batched implementation.
That the 1× batched performance is worse than the non-batched performance likely indicates
that the larger FFT is able to exploit multiple GPU cores.

Our Wavelet transforms are always more efficient without batching, as the implementation
is able to exploit the GPU’s small scratchpad caches (Cuda shared memory) as described in
Section 4.4. The wavelet transform performs convolution of the low-pass and high-pass
filters with both the rows and the columns of the image. Our images are stored in column-
major ordering, and thus we expect good caching behavior for the column-wise
convolutions. However, the row-wise convolutions access the images in non-unit-stride
without our scratchpad-based optimizations. Comparing the runtimes of the “No Batching”
and “Batched 1x” Wavelet implementations in Figure 10 shows that our cache optimization
can improve performance by 3 × – 4×. This is a sensible result, as we use 4-tap filters and
each pixel is accessed 4 times per convolution. The cache optimization reduces the cost to a
single DRAM access and 3 cached accesses.

Note that performance could be improved by choosing different parallelization strategies for
the various operations. In particular, the best performance would be achieved by using a
batched implementation of the Fourier transforms, while using the un-batched
implementation of the Wavelet transforms. Such an implementation would still require the
larger DRAM footprint of the batched implementation, as multiple 2D slices must be
resident in GPU DRAM simultaneously. However it could achieve high efficiency in the
Wavelet transform via the caching optimization, and also in the Fourier transforms via
higher processor utilization. Although our current implementation does not support this
hybrid configuration, Figure 11 shows that it could perform up to 2× faster for the 256 × 58
dataset. We also anticipate that as Moore’s Law scaling will result in in higher numbers of
processor cores per socket in the fugure, this type of parallelization may become
increasingly important: relative to larger processors, the majority of clinical datasets will
appear smaller.

8 Image Quality
Figure 12 displays the image quality our reconstruction achieves. Our 3-Dimensional
Compressed Sensing pulse sequence is a modified 3DFT spoiled gradient-echo (SPGR)
sequence which undersamples in both of the phase-encoded dimensions (y) and (z). The
readout dimension (x) is fully sampled. In most cases we perform partial k-space acquisition
along readout. Our ℓ1-SPIRiT solver ignores this fact, and only attempts to reconstruct the k-
space volume within the fully x-sampled region. Our reconstruction is performed on-line,
with sub-minute runtimes for matrix sizes typically acquired in the clinic. Our clinical
imaging is performed using 3T and 1.5T GE systems with a with 32-channel pediatric torso
coil. Typical scan times are 10–15 seconds and reconstruction times of 2–3 minutes, 30–45
seconds of which are the POCS solver. Acquisitions are highly accelerated, with 4× – 7×

Murphy et al. Page 13

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

undersampling of phase encodes. The remainder of the reconstruction time is spent doing
grad-warp and homodyne processing steps, which have not been optimized or parallelized
for GPGPUs.

9 Conclusion
We have presented ℓ1-SPIRiT, a compressive sensing extension to the SPIRiT parallel
imaging reconstruction. Our implementation of ℓ1-SPIRiT for GPGPUs and multi-core CPUs
achieves clinically feasible sub-minute runtimes for highly accelerated, high-resolution
scans. We discussed in general terms the software implementation and optimization
decisions that contribute to our fast runtimes, and how they apply for the individual
operations in ℓ1-SPIRiT. We presented performance data for both CPU and GPU systems,
and discussed how a hybrid parallelization may achieve faster runtimes. Finally, we present
an image quality comparison with a competing non-iterative Parallel Imaging reconstruction
approach.

In the spirit of reproducible research, our software and scripts to generate the results in this
paper are available at: http://www.eecs.berkeley.edu/~mlustig/Software.html

References
1. Akcakaya, Mehmet; Basha, Tamer; Manning, Warren; Nam, Seunghoon; Nezafat, Reza; Stehning,

Christian; Tarokh, Vahid. A gpu implementation of compressed sensing reconstruction of 3d radial
(kooshball) acquisition for high-resolution cardiac mri. Proceedings of the International Society for
Magnetic Resonance in Medicine; 2011.

2. Beatty, PJ.; Brau, A.; Chang, S.; Joshi, S.; Michelich, C.; Bayram, E.; Nelson, T.; Herfkens, R.;
Brittain, J. A method for autocalibrating 2d-accelerated volumetric parallel imaging with clinically
practical reconstruction times. Proceedincs of the Joint Annual Meeting ISMRM-ESMRMB; 2007.
p. 1749

3. Beatty PJ, Nishimura DG, Pauly JM. Rapid gridding reconstruction with a minimal oversampling
ratio. IEEE Trans Med Imaging. Jun.2005 24:799–808. [PubMed: 15959939]

4. Block, Kai Tobias; Uecker, Martin; Frahm, Jens. Undersampled radial mri with multiple coils.
iterative image reconstruction using a total variation constraint. Magn Reson Med. Jun; 2007 57(6):
1086–98. [PubMed: 17534903]

5. Buccigrossi RW, Simoncelli EP. Image compression via joint statistical characterization in the
wavelet domain. IEEE Trans Image Processing. 1999; 8:1688–1701.

6. Buehrer, Martin; Pruessmann, Klaas P.; Boesiger, Peter; Kozerke, Sebastian. Array compression for
MRI with large coil arrays. Magn Reson Med. 2007; 57(6):1131–9. [PubMed: 17534913]

7. Candès EJ, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from
highly incomplete frequency information. IEEE Transactions on Information Theory. 2006; 52:489–
509.

8. Chang, Ching-Hua; Ji, Jim. Compressed sensing mri with multichannel data using multicore
processors. Magn Reson Med. Oct; 2010 64(4):1135–9. [PubMed: 20564584]

9. Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems
with a sparsity constraint. Comm Pure Applied Mathematics. 2004; 57:1413–1457.

10. Donoho DL. Compressed sensing. IEEE Transactions on Information Theory. 2006; 52:1289–
1306.

11. Donoho DL, Johnstone IM. Ideal spatial adaptation via wavelet shrinkage. Biometrika. 1994;
81:425–455.

12. Asanovic, et al. Technical report. EECS Department, University o California; berkeley: Dec. 2006
The landscape of parallel computing research: a view from berkeley.

13. Gregerson, Anthony. Technical report. University of Wisconsin; Madison: 2008. Implementing
fast mri gridding on gpus via cuda.

Murphy et al. Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

http://www.eecs.berkeley.edu/~mlustig/Software.html

14. Griswold, Mark A.; Jakob, Peter M.; Heidemann, Robin M.; Nittka, Mathias; Jellus, Vladimir;
Wang, Jianmin; Kiefer, Berthold; Haase, Axel. Generalized autocalibrating partially parallel
acquisitions (GRAPPA). Magn Reson Med. 2002; 47(6):1202–10. [PubMed: 12111967]

15. Huang, Feng; Chen, Yunmei; Yin, Wotao; Lin, Wei; Ye, Xiaojing; Guo, Weihong; Reykowski,
Arne. A rapid and robust numerical algorithm for sensitivity encoding with sparsity constraints:
self-feeding sparse sense. Magn Reson Med. Oct; 2010 64(4):1078–88. [PubMed: 20564598]

16. Kim, Daehyun; Trzasko, Joshua D.; Smelyanskiy, Mikhail; Haider, Clifton R.; Manduca,
Armando; Dubey, Pradeep. High-performance 3d compressive sensing mri reconstruction. Conf
Proc IEEE Eng Med Biol Soc. 2010; 2010:3321–4. [PubMed: 21096822]

17. Knoll, Florian; Clason, Christian; Bredies, Kristian; Uecker, Martin; Stollberger, Rudolf. Parallel
imaging with nonlinear reconstruction using variational penalties. Magn Reson Med. Jun.2011

18. Lai, Peng; Lustig, Michael; Brau, Anja CS.; Vasanawa la, Shreyas; Beatty, Philip J.; Alley,
Marcus. Efficient ℓ1-SPIRiT reconstruction (ESPIRiT) for highly accelerated 3D volumetric MRI
with parallel imaging and compressed sensing. Proceedings of the International Society for
Magnetic Resonance in Medicine; 2010. p. 345

19. Liang, Dong; Liu, Bo; Wang, Jiunjie; Ying, Leslie. Accelerating sense using compressed sensing.
Magn Reson Med. Dec; 2009 62(6):1574–84. [PubMed: 19785017]

20. Lustig, M.; Alley, M.; Vasanawala, S.; Donoho, DL.; Pauly, JM. ℓ1-SPIRiT: Autocalibrating
parallel imaging compressed sensing. Proceedings of the International Society for Magnetic
Resonance in Medicine; 2009. p. 379

21. Lustig, Michael; Donoho, David L.; Pauly, John Mark. Sparse MRI: The application of
compressed sensing for rapid MR imaging. Magn Reson Med. 2007; 58(6):1182–1195. [PubMed:
17969013]

22. Lustig, Michael; Pauly, John M. SPIRiT: Iterative self-consistent parallel imaging reconstruction
from arbitrary k-space. Magnetic Resonance in Medicine. 2010; 64(2):457–471. [PubMed:
20665790]

23. Mattson, Timothy; Sanders, Beverly; Massingill, Berna. Patterns for parallel programming. 1.
Addison-Wesley Professional; 2004.

24. Murphy, M.; Keutzer, K.; Vasanawala, S.; Lustig, M. Clinically feasible reconstruction time for ℓ1-
SPIRiT parallel imaging and compressed sensing MRI. Proceedings of the International Society
for Magnetic Resonance in Medicine; 2010. p. 4854

25. Nvidia. [Online; accessed 25 July, 2011] Compute Unified Device Architecture (Cuda). http://
www.nvidia.com/object/cuda_get.html

26. Obeid, Nady; Atkinson, Ian; Thulborn, Keith; Hwu, Wen-Mei. Gpu-accelerated gridding for rapid
reconstruction of non-cartesian mri. Proceedings of the International Society for Magnetic
Resonance in Medicine; 2011.

27. Otazo, Ricardo; Kim, Daniel; Axel, Leon; Sodickson, Daniel K. Combination of compressed
sensing and parallel imaging for highly accelerated first-pass cardiac perfusion mri. Magn Reson
Med. Sep; 2010 64(3):767–76. [PubMed: 20535813]

28. Pruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary
k-space trajectories. Magn Reson Med. Oct; 2001 46(4):638–51. [PubMed: 11590639]

29. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. Sense: sensitivity encoding for fast mri.
Magn Reson Med. Nov; 1999 42(5):952–62. [PubMed: 10542355]

30. Roujol S, de Senneville BD, Vahala E, Sorensen TS, Moonen C, Ries M. Online real-time
reconstruction of adaptive tsense with commodity cpu/gpu hardware. Magnetic Resonance in
Medicine. 2009; 62:1658–1664. [PubMed: 19902515]

31. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (smash): fast imaging
with radiofrequency coil arrays. Magn Reson Med. Oct; 1997 38(4):591–603. [PubMed: 9324327]

32. Sorensen, Thomas Sangild; Prieto, Claudia; Atkinson, David; Hansen, Michael Schacht;
Schaeffter, Tobias. Gpu accelerated iterative sense reconstruction of radial phase encoded whole-
hyeart mri. Proceedings of the International Society for Magnetic Resonance in Medicine; 2010.

33. Stone, Samuel S.; Haldar, Justin P.; Tsao, Stephanie C.; Hwu, Wenmei W.; Liang, Zhi-Pei; Sutton,
Bradley P. Accelerating advanced mri reconstructions on gpus. Proceedings of the 5th conference
on Computing Frontiers; 2008.

Murphy et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

http://www.nvidia.com/object/cuda_get.html
http://www.nvidia.com/object/cuda_get.html

34. Trzasko, Joshua D.; Haider, Clifton R.; Borisch, Eric A.; Campeau, Norbert G.; Glockner, James
F.; Riederer, Stephen J.; Manduca, Armando. Sparsecapr: Highly accelerated 4d cemra with
parallel imaging and nonconvex compressive sensing. Magn Reson Med. Oct; 2011 66(4):1019–
32. [PubMed: 21608028]

35. Uecker, Martin; Hohage, Thorsten; Block, Kai Tobias; Frahm, Jens. Image reconstruction by
regularized nonlinear inversion–joint estimation of coil sensitivities and image content. Magn
Reson Med. Sep; 2008 60(3):674–82. [PubMed: 18683237]

36. Uecker, Martin; Zhang, Shuo; Frahm, Jens. Nonlinear inverse reconstruction for real-time mri of
the human heart using undersampled radial flash. Proceedings of the International Society for
Magnetic Resonance in Medicine; 2010.

37. Vasanawala, Shreyas S.; Alley, Marcus T.; Hargreaves, Brian A.; Barth, Richard A.; Pauly, John
M.; Lustig, Michael. Improved pediatric MR imaging with compressed sensing. Radiology. Aug;
2010 256(2):607–16. [PubMed: 20529991]

38. Vasanawala, SS.; Murphy, MJ.; Alley, MT.; Lai, P.; Keutzer, K.; Pauly, JM.; Lustig, M. Practical
parallel imaging compressed sensing MRI: Summary of two years of experience in accelerating
body MRI of pediatric patients. Proceedings of IEEE International Symposium on Biomedical
Imaging; Chicago. 2011. p. 1039-1043.

39. Wu, Bing; Millane, Rick P.; Watts, Richard; Bones, Philip J. Prior estimate-based compressed
sensing in parallel mri. Magn Reson Med. Jan; 2011 65(1):83–95. [PubMed: 21031492]

40. Wu, Xiao-Long; Gai, Jiading; Lam, Fan; Fu, Maojing; Haldar, Justin; Zhuo, Yue; Liang, Zhi-Pei;
Hwu, Wen mei; Sutton, Bradley. Impatient mri: Illinois massively parallel acceleration toolkit for
image reconstruction with enhanced throughput in mri. Proceedings of the IEEE International
Symposium on Biomedical Imaging (ISBI); 2011.

41. Ying, Leslie; Sheng, Jinhua. Joint image reconstruction and sensitivity estimation in sense (jsense).
Magn Reson Med. Jun; 2007 57(6):1196–202. [PubMed: 17534910]

42. Zhang, Tao; Lustig, Michael; Vasanawala, Shreyas; Pauly, John. Array compression for 3d
cartesian sampling. Proceedings of the International Society for Magnetic Resonance in Medicine;
2011. p. 2857

43. Zhuo, Yue; Wu, Xiao-Long; Haldar, Justin P.; Hwu, Wen-Mei W.; Liang, Zhi-Pei; Sutton, Bradley
P. Multi-gpu implementation for iterative mr image reconstruction with field correction.
Proceedings of the International Society for Magnetic Resonance in Medicine; 2010.

A O(n3) SPIRiT Calibration
As discussed in Section 3, our ℓ1-SPIRiT calibration solves a least-norm, least-squares
(LNLS) fit to the fully-sampled auto-calibration signal (ACS) for each channel’s
interpolating coefficients. As each channel’s set of co-efficients interpolates from each of
the the nc channels, the matrix used to solve this system has O(nc) columns. Solving the nc

least-squares systems independently requires time, and is prohibitively expensive. This

section derives our algorithm for solving them in time using a single matrix-matrix
multiplication, single Cholesky factorization, and several inexpensive matrix-vector
operations.

We construct a calibration data matrix A from the calibration data in the same manner as
GRAPPA [14] and SPIRiT [22] calibration: each row of A is a window of the ACS the same
size as the interpolation coefficients. This matrix is Toilets, and multiplication Ax by a

vector x ∈ computes the SPIRiT interpolation: .

The LNLS matrices for each channel differ only by a single column from A. In particular,
there is a column of A that is identical to the ACS of each coil. Consider the coil
corresponding to column i of A, and let b be that column. We define N = A – bei′ – A with
the ith column zeroed out. We wish to solve Nx = b in the least-norm least-squares sense, by

Murphy et al. Page 16

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

solving (N*N +εI)x:= Ñx = N*b. The runtime of our efficient algorithm is dominated
computing the product N*N and computing the Cholesky factorization LL* = Ñ.

Our derivation begins by noting that:

Where we have defined b̃ = A*b with entry i multiplied by to avoid adding eb*be′. If we
have a Cholesky factorization LL* = A*A + εI:

Where we’ve defined b̂ = L−1 b̃ = L−1 A*b, and ê = L−1e. These vectors can be computed
with BLAS2 triangular solves and matrix-vector multiplications. In fact, we can aggregate
the b’s and e’s from all parallel imaging channels into matrices and compute all b̂’s and ê’s
with highly efficient BLAS3 solves. Now, to solve the system of equations Ñx = b̃:

It remains to compute the inverse of (I − b̂ê* − êb̂*). We can define two matrices B̂, Ê ∈ ,
where B ̂ = − (b̂, ê), and Ê = (ê, b̂). Using the Sherman-Morrison-Woodbury identity:

Note that I + Ê*B ̂ is a 2 × 2 matrix that is very inexpensive to invert. Thus we have our final
algorithm:

Murphy et al. Page 17

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 1.
The POCS algorithm. Line (A) performs SPIRiT k-space interpolation, implemented as
voxel-wise matrix-vector multiplications in the image domain. Line (B) performs Wavelet
Soft-thresholding, computationally dominated by the forward/inverse Wavelet transforms.
Line (C) performs the k-space consistency projection, dominated by inverse/forward Fourier
transforms.

Murphy et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 2.
The four-level hierarchy of modern parallel systems. Nodes contain disjoint DRAM address
spaces, and communicate over a message-passing network in the CPU case, or over a shared
PCI-Express network in the GPU case. Sockets within a node (only one shown) share
DRAM but have private caches – the L3 cache in CPU systems and the L2 cache in Fermi-
class systems. Similarly Cores share access to the Socket-level cache, but have private
caches (CPU L2, GPU L1/scratchpad). Vector-style parallelism within a core is leveraged
via Lanes – SSE-style SIMD instructions on CPUs, or the SIMT-style execution of GPUs.

Murphy et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 3.
Hierarchical sources of parallelism in 3D MRI Reconstructions. For general reconstructions,
operations are parallelizable both over channels and over image voxels. If there is a fully-
sampled direction, for example the readout direction in Cartesian acquisitions, then
decoupling along this dimension allows additional parallelization.

Murphy et al. Page 20

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 4.
(a) Flowchart of the ℓ1-SPIRiT POCS algorithm and the (b) SPIRiT, (c) Wavelet joint-
threshold and (d) data-consistency projections

Murphy et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 5.
Reconstruction runtimes of our ℓ1-SPIRiT solver for 8-, 16-, and 32-channel reconstructions
using the efficient Cholesky-based calibration and the multi-GPU POCS solver.

Murphy et al. Page 22

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 6.
Per-iteration runtime and execution profile of the GPU POCS solver.

Murphy et al. Page 23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 7.
Per-iteration runtime and execution profile of the multi-core CPU POCS solver.

Murphy et al. Page 24

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 8.
Speedup of parallel CPU and GPU implementations over the sequential C++ runtime.

Murphy et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 9.
3D SPIRiT Calibration runtimes.

Murphy et al. Page 26

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 10.
Data Size dependence of performance and comparison of alternate parallelizations of the
POCS solver.

Murphy et al. Page 27

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 11.
Performance achievable by a hybrid parallelization of the POCS solver on the 256 × 58
dataset.

Murphy et al. Page 28

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 12.
Image quality comparison of GE Product ARC (Autocalibrating Reconstruction for
Cartesian imaging) [2] reconstruction (left images) with our ℓ1-SPIRiT reconstruction (right
images). These MRA images of a 5 year old patient were acquired with the 32-channel
pediatric torso coil, have FOV 28 cm, matrix size 320 × 320, slice thickness 0.8 mm, and
were acquired with 7.2× acceleration, via undersampling 3.6× in the y-direction and 2× in
the z-direction. The pulse sequence used a 15 degree flip angle and a TR of 3.9 ms. The ℓ1-
SPIRiT reconstruction shows enhanced detail in the mesenteric vessels in the top images,
and and the renal vessels in bottom images.

Murphy et al. Page 29

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Murphy et al. Page 30

Table 1

Table of dataset sizes for which we present performance data. nx is the length of a readout, ny and nz are the
size of the image matrix in the phase-encoded dimensions, and nc is the number of channels in the acquired
data. Performance of SPIRiT is very sensitive to the number of channels, so we present runtimes for the raw
32-channel data as well as coil-compressed 8- and 16-channel data.

Dataset nx ny nz nc

A 192 256 58 8, 16, 32

B 192 256 102 8, 16, 32

C 192 256 152 8, 16, 32

D 192 256 190 8, 16, 32

E 320 260 250 8, 16, 32

F 320 232 252 8, 16, 32

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 June 01.

