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Abstract

HIV genomic sequence variability has complicated efforts to generate an effective globally
relevant vaccine. Regions of the viral genome conserved in sequence and across time may
represent the “Achilles’ heel” of HIV. In this study, highly conserved T-cell epitopes were
selected using immunoinformatics tools combining HLA-A2 supertype binding predictions with
relative global conservation. Analysis performed in 2002 on 10,803 HIV-1 sequences, and again
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in 2009, on 43,822 sequences, yielded 38 HLA-A2 epitopes. These epitopes were experimentally
validated for HLA binding and immunogenicity with PBMCs from HIV-infected patients in
Providence, Rhode Island, and/or Bamako, Mali. Thirty-five (92%) stimulated an IFNy response
in PBMCs from at least one subject. Eleven of fourteen peptides (79%) were confirmed as HLA-
A2 epitopes in both locations. Validation of these HLA-A2 epitopes conserved across time,
clades, and geography supports the hypothesis that such epitopes could provide effective coverage
of virus diversity and would be appropriate for inclusion in a globally relevant HIV vaccine.

1. Introduction

The development of a safe and efficacious HIV vaccine is believed to be essential for
stopping the AIDS pandemic [1-3]. Two major factors confounding vaccine design have
been the extensive viral diversity of HIV-1 worldwide and the ongoing evolution and
adaptation of virus sequences to HLA class | molecules driven by CD8* cytotoxic T-cell
(CTL)-mediated immune pressure [4,5]. In addition, the insufficient understanding of the
complex roles of innate and adaptive immune responses in natural infection, as well as of
the immune correlates of protection, has made developing a vaccine capable of responding
to these changes difficult. Indeed, the variability of HIVV-1 may in part help explain the
failure of recent HIV-1 candidate vaccines to elicit immune responses that recognize
contemporaneous circulating virus stains. Neither the AIDSVAX vaccine [6-8], designed to
generate antibody responses, nor the Merck AD5 [9,10], designed to raise T-cell responses,
was able to prevent infection or alter disease among high-risk HIV-negative individuals. It
has been suggested that these failures may be due to the inability of these vaccines to elicit
cross-reactive broadly neutralizing antibodies and sufficient breadth and magnitude of T-cell
responses at mucosal portals of entry [11-13]. The RV144 vaccine trial demonstrated modest
success, leading to a 31% lowered rate of HIV-1 infection in a specific subset of vaccinees
versus placebo groups [14]. While the correlates of immunity of that trial remain to be
understood, viral diversity is likely to be at least partially responsible for the limited
coverage.

HIV-1 specific CD4" T helper cells and CD8* cytotoxic T cells have been shown to play a
central role in control of the virus following infection [15-21]. CD4* T helper cells are
essential for the generation of both humoral and cellular responses against the virus [22,23],
while cytotoxic T cells play an important role in the resolution of acute viremia and in
control of persistent HIV-1 viral replication [17,24]. Recent longitudinal studies following
first CD8" CTL responses to founder virus in early infection have defined a narrow window
of opportunity for the CTL response to control infection and revealed multiple evolutionary
pathways utilized by the virus during acute infection to retain replicative fitness [25-28].
Moreover, roles for both cytolytic function of CD8+ T cells during nonproductive infection
and noncytolytic functions (e.g., MIP-18, MIP-1a, IFNy, TNFa, and IL-1) in resolution of
peak viremia have been identified [29,30]. Therefore, vaccines that stimulate virus-specific
T-cell responses will be able to boost humoral immune responses and may also delay the
progression of HIV-1 to AIDS in infected individuals. A robust T-cell response will be a
necessary component of any successful HIV vaccine; however, the ability of a vaccine to
account for the extraordinary viral diversity of HIV-1 continues to be a challenge. This
diversity extends not only to T-cell epitope differences across clades, but also to isolates
from a number of diverse clades that occupy a single geographic area [31].

One approach to address the problem of HIV-1 diversity is to develop multiple vaccines.
These vaccines could be developed on a clade-by-clade basis, whereby a single vaccine
represents isolates from a single clade, or on a geographically-specific basis, whereby
vaccines are derived from isolates commonly circulating in a particular country or region.
However, this multiple vaccine approach raises the question of how many vaccines would
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be needed to protect against each of the many clades of HIV. In a time of increasing global
connectedness and mobility, the notion of controlling a particular viral population and
keeping it geographically sequestered is unlikely to bear fruit.

In contrast to region-specific vaccine efforts, our approach is to develop a globally effective
vaccine. This vaccine would be comprised of epitopes targeting specific regions that are
conserved across clades and regional variations, which are considered to be the most stable
elements of the rapidly changing HIV-1 genome [32,33]. These regions may represent the
“Achilles’ heel” of the virus, as their persistence across time and space suggests they lie in
regions of the HIV genome that may be resistant to selective immunologic pressure because
they ensure viral fitness [34,35]. Other universal vaccine design strategies, such as the
Mosaic Vaccine Constructs and Conserved Elements concepts currently undergoing
preclinical studies, proffer global coverage based upon consensus plus most common
variants and Center-Of-Tree derivation [36-39].

“Protective” HLA class | alleles are associated with CTL responses that target conserved
regions of the viral genome located in functional or structural domains that, when mutated,
impart a substantial fitness cost on the virus [40,41]. Population-based studies have shown
that the number and rate of reverting mutations was highest in conserved residues in Gag,
Pol, and Nef (at equal frequency), while escape without reversion occurred in more variable
regions [42]. Another study found that the highest fitness cost, based upon identification of
reverting mutations across the entire HIV-1 subtype C proteome, occurred in target genes in
the rank order VPR>Gag>REV>Pol>Nef>VIF>Tat>Env>Vpu [42]. CD8+ CTL responses
broadly targeting Gag have proven to be important in virus control as well as elite
suppression in some individuals possessing “protective” HLA-B*57, HLA-B*5808, and
HLA-B*27 alleles [43]. It could be argued that only epitopes that can undergo escape
reversion mutations will elicit effective antiviral responses [44,45].

The biggest challenge for the rational design of an effective CD8+ T cell vaccine is the
identification of HLA-class I-restricted immunodominant epitopes in HIV-1 that are under
similar structural and functional constraint. Therefore, our strategy for HIV-1 vaccine design
is to select epitopes that can induce broad and dominant HLA-restricted immune responses
targeted to the regions of the viral genome least capable of mutation due to the high cost to
fitness and low selective advantage to the virus. Both DeL.isi and Sette have shown that
epitope-based vaccines containing epitopes restricted by the six supertype HLA can provide
the broadest possible coverage of the human population [46,47]. Thus epitopes that are
restricted by common HLA alleles and conserved over time in the HIV genome are good
targets for an epitope-based vaccine. Previously, we described the identification of 45 such
HIV-1 epitopes for HLA-B7 [32], sixteen for HLA-A3 [48], and immunogenic consensus
sequence epitopes representing highly immunogenic class 11 epitopes [49]. In this study, we
focus on the identification and selection of highly conserved and immunogenic HLA-A2
HIV-1 epitopes. The goal is to provide valuable information and strategies that would
contribute to the development of the GAIA vaccine or any other multi-epitope, pan-HLA-
reactive, globally relevant HIV vaccine.

The HLA-A2 supertype allele is highly prevalent in much of the world, especially in those
geographic areas under severe threat of HIV-1. It is common among Caucasian North
Americans, but slightly less common in African American (20%) and Hispanic populations
(34%) [50]. In China, where an HIV epidemic is beginning to emerge, HLA-A2 prevalence
is 53.3% [51]. Among the African population, HLA-A2 frequency ranges from 36% to 63%
with Mali, in particular, at 43% [52]. In this study, we present data using advanced
immunoinformatics tools to identify highly conserved putative HLA-AZ2 epitopes for HIV-1.
This analysis was conducted and epitopes were selected at two time points: first in 2002, and
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again in 2009. These two data sets allowed us to assess the persistence and conservation of
the selected epitopes, as the number of available HIV sequences expanded four-fold over
this time period. The immunogenicity of the 2002 and 2009 selected epitopes were
confirmed with in vitro assays using blood from HIV-positive subjects in Providence, Rhode
Island, and Bamako, Mali.

Materials and Methods

2.1 Selecting a highly conserved HIV-1 sequence data set

2.1.1 2002 sequence set—The sequences of all HIV-1 strains published on GenBank
between January 1st, 1990, and June 2002 were obtained. Sequences posted to GenBank
prior to December 31st, 1989, were excluded based on our observation that early sequences
were more likely to be derived from HIV clade B. Sequences shorter than 80% and longer
than 105% of a given protein’s nominal length were also excluded. Short sequences were
excluded because inclusion of these fragments skews the selection of conserved epitopes in
favor of regions of particular interest to researchers, such as the CD4 binding domain or the
V3 loop of HIV (unpublished observation). Longer sequences were excluded because these
sequences tend to cross protein boundaries, confusing the categorization process. A second
dataset was downloaded from the Los Alamos HIV Database using the same criteria, and the
two datasets were merged. The combined 2002 dataset contained 10,803 unique entries
selected for the next phase of analysis.

2.1.2 2009 sequence set—In June-July 2009, the informatics component was repeated to
assess the extent to which the predicted epitopes had been maintained in the expanding and
evolving set of available viral sequences. In addition, the EpiMatrix algorithm had
undergone revision which enabled it to be better at eliminating false positives (see 2.1.4
below); this updated EpiMatrix was employed to analyze the expanded sequence database.
The same steps described above were repeated with the sequences posted between January
1st, 1990, and June 30th, 2009. All other inclusion criteria were unchanged. Due to the
expansion of available HIV sequences, the combined dataset grew from 10,803 to 43,822
sequences. At the time we also performed a retrospective analysis of HIV sequences by year
(Figure 1) and selected additional epitopes (below).

2.1.3 Conservatrix—Conservatrix was used to search the 10,803 protein sequences from
2002 and the 43,822 protein sequences from 2009 for segments that were highly conserved
among the input sequences. Conservation selected in this way is a good marker for potential
high value of selected epitopes [53]. For each of the nine HIV genes, peptides were retained
for further analysis if they either were conserved in at least 5% of the input sequences or
were among the top 1,000 scoring peptides, whichever criterion was met first. All putative
epitopes were checked for human homology by BLAST, and those with significant
homology were excluded, a protocol that is standard in our epitope selection process [53].

2.1.4 EpiMatrix—The EpiMatrix algorithm was used to select peptides in 2002 from the
output of highly conserved 9- and 10-mers produced by Conservatrix [53]. Each amino acid
was scored for predicted affinity to the binding pockets using the EpiMatrix HLA-A2 matrix
motif. Normalized scores were then compared to the scores of known HLA-A2 ligands.
Peptides scoring higher than 1.64 on the EpiMatrix Z scale (the top 5% of all scores on the
normalized scale) were selected. This cutoff falls within the same Z-score range as
published HLA-AZ2 epitopes, and therefore these selected sequences serve as good
predictions of binding to HLA-A2 and represent the most useful potential candidates for
inclusion in an HIV vaccine. Although not designed to be so, the selected peptides are all
predicted to be potentially promiscuous binders, as they are predicted to bind alleles within
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the HLA-A2 supertype as well as many additional MHC-1 alleles. Additionally, epitopes
originally selected in 1997 for their estimated binding potential (EBP) [54] were re-screened
for putative binding to HLA-A2 using the EpiMatrix HLA-A2 matrix as described above,
The selected peptides were validated with in vitro HLA-A2 binding assays, and their ability
to elicit IFNy responses in PBMC cultures from HIV-1 infected individuals was assessed by
ELISpot.

The EpiMatrix HLA-A2 matrix motif was retrained on a more robust set of A2 epitopes
using the expanded set of sequences available in 2009. This updated matrix is believed to be
more accurate than the 2002 matrix and has demonstrated high prediction accuracy when
benchmarked against other prediction tools [55]. The updated EpiMatrix algorithm was used
in 2009 to scan the expanded number of available HIV sequences for putative binding to
HLA-A2, with the goal of reevaluating previously selected epitopes and identifying new
candidate epitopes to be considered for inclusion in a global HIV vaccine.

2.1.5 Epitope selection—An initial set of 25 peptides, including five epitopes originally
identified in 1997 [54], was selected in 2002 for putative binding to HLA-A2 as measured
by EpiMatrix score. The 2002 list of peptides consisted of six epitopes from ENV, four from
GAG, nine from POL, two from VIF, and one each in TAT, NEF, VPR, and VPU. HIV
sequences available in June 2009 were re-evaluated for putative binding to HLA-A2. This
analysis differed from that in 2002 in two important ways: it used the improved EpiMatrix
algorithm and drew from a database of HIV sequences that had expanded four-fold since
2002. Thirteen new highly conserved HLA-A2 epitopes were identified and selected for
validation studies, including two peptides from ENV, four from REV, three from VIF, and
one each from GAG, POL, NEF, and VPU. Fourteen epitopes from the 2002 epitope set
were reselected in 2009 for validation in Mali in in vitro studies based on updated EpiMatrix
scores and peptide availability. The complete list of peptides tested in this report is shown in
Table 1.

2.2 Peptide synthesis

Peptides corresponding to the 2002 epitope selections were prepared by 9-
fluorenylmethoxycarbonyl (Fmoc) synthesis on an automated Rainin Symphony/Protein
Technologies synthesizer (Synpep, Dublin, CA). The peptides were delivered 90% pure as
ascertained by HPLC.

Peptides corresponding to the 2009 epitope selections were prepared by solid-phase Fmoc
synthesis on an Applied Biosystems/Perceptive Model Pioneer peptide synthesizer (New
England Peptide, Gardner, MA). The peptides were delivered >80% pure as ascertained by
HPLC, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, and UV
scan at wavelengths of 220 and 280 (ensuring purity, mass, and spectrum, respectively).

2.3 Purified HLA class | binding assay

The MHC class | binding assays were performed as previously described [56]. The HLA
class I molecule was incubated at an active concentration of 2 nM together with 25 nM
human B2 microglobulin (32m) and an increasing concentration of the test peptide at 18°C
for 48h. The HLA molecules were then captured on an ELISA plate coated with the pan-
specific anti-HLA antibody W6/32, and HLA-peptide complexes were detected with an anti-
B2m specific polyclonal serum conjugated with horseradish peroxidase (Dako P0174),
followed by a signal enhancer (Dako Envision). The plates were developed, and the
colorimetric reaction was read at 450 nm using a Victor2 Multilabel ELISA reader. Using a
standard, these readings were converted to the concentration of HLA-peptide complexes
generated and plotted against the concentration of test peptide offered. The concentration of
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peptide required to half-saturate (EC50) the HLA was determined. At the limiting HLA
concentration used in the assay, the EC50 approximates the equilibrium dissociation
constant, Kp. The relative affinities of peptides, based on a comparison of known HLA-A2
ligands, were categorized as high binders (Kp<50 nM), medium binders (50 nM<Kp>500
nM), low binders (500nM<Kp>5,000nM), and non-binders (Kp>5,000 nM). Binding scores
for each of the selected peptides can be found in Table 1.

2.4 Blood samples

Interferon gamma ELISpot assays were performed using peripheral blood mononuclear cells
(PBMCs) separated by Ficoll density gradient centrifugation of whole blood. HIV-
seropositive subjects living in Providence, Rhode Island, and Bamako, Mali, were recruited
in accordance with all federal guidelines and institutional policies. Institutional review
boards in Providence and Bamako, Mali, approved the informed consent procedures and
research protocols at each of the sites. Informed consent was obtained prior to obtaining all
samples for this study.

2.5 Study cohorts

Patient study cohorts were from two geographically distinct locations: Providence, Rhode
Island, and Bamako, Mali. The Providence study subjects belonged to two cohorts (cohort
one and cohort two) of long-term slow or non-progressors (CD4>350 for >10 years with
minimal or no treatment) or from chronically HIV-infected patients (CD4>350 and not on
treatment). Subjects in cohort one were recruited from an HIV clinic at the Miriam Hospital
in Providence, Rhode Island, and were used to validate epitopes selected in 2002. Subjects
in cohort two were HIV-seronegative donors from the Rhode Island Blood Center (RIBC)
and were used to validate epitopes initially identified in 1997 and reselected in 2002.
Subjects in cohort 3 were HIV-1 infected, otherwise healthy (CD4>350) volunteers recruited
from the Bloc Espoir clinic situated in Sikoro, Bamako, Mali; these subjects were used to
validate epitopes that were either newly identified or reselected for study inclusion in 2009.

HLA typing was performed by the Transplant Immunology Laboratory at Hartford Hospital
and the Faculty of Science and Technology at the University of Bamako using the Micro
SSP HLA Class | DNA typing tray (One Lambda Inc., Canoga Park, CA).

2.6 ELISpot assays

The frequency of epitope-specific T lymphocytes was determined using Mabtech® IFNy
ELISpot kits according to the manufacturer’s instructions (Mabtech, Sweden). Washed
PBMCs from each donor were added at 2.5x10° cells per well to 96-well ELISpot plates
pre-coated with anti-IFNy antibody. Individual peptides were added to the ELISpot plate at
10pg/ml, as well as positive controls PHA (10 pg/ml) and the CEF peptide pool (10 pg/ml).
In assays done in Mali in 2009-2010, the CEF peptide pool was replaced with a pool of all
tested HIV peptides. Six to twelve wells of PBMCs per plate were cultured without peptide
to measure background. The ELISpot plates were incubated overnight at 37°C, and then
washed with PBS. Following the washes, biotinylated anti-IFNy was added, followed by
streptavidin-HRP. ELISpot plates were developed by the addition of filtered TMB substrate.
The frequency of antigen-specific cells was calculated as the number of spots per 10°
PBMCs seeded. Responses were considered positive if the number of spots was at least
twice background and was also greater than twenty spots per million cells over background
(one response over background per 50,000 PBMCs). The relatively lower number of spots
seen can be expected when stimulating cells directly ex vivo with peptide, as compared to
the larger responses seen when cells are stimulated with whole protein or peptide, incubated
for several days, and then re-stimulated. We considered positive results obtained by these
two criteria to be more stringent. Statistical significance was determined at p<0.05 by the
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two-tailed, non-parametric Mann-Whitney U-test comparing the number of spots in the
peptide wells with the number of spots in the control wells.

3.1 Epitope mapping and selection

Based on criteria described in the methods, 38 HLA-A2 peptides chosen for this study in
2002 or 2009 had EpiMatrix Z-scores between 1.81 and 4.61 at the time of selection.
Notably, five of these peptides, initially identified in 1997 for their estimated binding
potential (EBP; precursor to EpiMatrix scores), were selected for the current study after
reanalysis with the 2002 EpiMatrix algorithm, which revealed EpiMatrix Z-scores ranging
from 3.05 to 4.61. Since HIV sequence space has been well mapped for HLA-A2 epitopes, it
is not surprising that sixteen of the peptides selected using EpiMatrix had been published
when they were selected for inclusion in our prospective in vitro studies. Five of these
sixteen sequences were previously published as binders to alleles other than HLA-A2 (see
Table 1) but were not reported as epitopes for HLA-A2. Fourteen of the remaining 22
peptides that were novel at selection have since been published in the literature after we
performed the analysis (2002 and 2009); again, this is not surprising and reinforces the
utility of the approach for HLA A2, which can be applied to other HLA alleles. In this study,
we were able to identify eight novel, as yet unpublished HLA-A2 epitopes.

3.2 Conservation of HLA-A2 epitopes over time and sequence space

Overall stability is evident for each of the A2 epitopes selected using a dual conservation-
putative binding score approach (Figure 1). Even as the number of protein sequences has
increased significantly over the period from 1987 to 2009, the prevalence of each epitope
within those protein sequences has remained relatively constant. This data demonstrates that
the set of selected HLA-A2 epitopes is evolutionarily conserved and has now become
relatively stable within the diversity of HIV sequences. For each year from 1987 through
2009, conservation is calculated retrospectively as the proportion of each HIV-VAX epitope
to the total number of sequences within the epitope’s protein of origin available for that
year. Level trends across the evolutionary landscape indicate stable targets. The most highly
conserved HLA-A2 binding peptide found in this analysis was Gag-3003 (97% conserved
over the evolutionary landscape). This epitope, located in Gag p2419.07 TLNAWVKVV
(TV9), is a well-defined HLA-A2-restricted epitope located in helix 1 of the capsid protein.
It overlaps the well-known B*57 IW10 epitope and may be under some functional
constraint, although mutations are tolerated in this helix whereas mutations in helices two
and eight are not. CTL targeting the HLA-A2 epitope are subdominant but are reported to be
high avidity [57]. For the selected envelope peptides, ENV-3001 was present in the greatest
proportion of published envelope sequences, represented in 95% of the 258 envelope
sequences available in 1987. By 2009, though the number of envelope protein sequences
increased more than 47-fold to 12,233, the proportion of sequences containing the
ENV-3001 epitope remained at 93% (Figure 1). For comparison, GAG-1261, which
corresponds to the classical immunodominant HLA-A2-restricted Gag pl1777.g5
SLYNTVATL epitope, has been shown to be under strong selective pressure in HIV-1
infected individuals expressing HLA-A2 and shows significantly less conservation (31%).
Overall, the HLA-A2 selected epitopes in POL show the highest conservation. VPR, VPU,
and REV epitopes have the lowest total conservation, which is consistent with the high
Shannon entropy in these protein sequences [58,59].

In the course of this analysis we identified two immunogenic sequences in Gag, 1012 and
1014, which appear to change in conservation over time in an inverse relationship to one
another. As 1012 conservation increases, 1014 conservation decreases. While there is no
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obvious structural relationship that explains the compensatory mutations (1012 is part of
helix 7 and 1014 is part of helix 4), it is worth noting that Tang et al. have recently proposed
a possible structural connection [60]. It is unlikely that the directly inverse relationship
between Gag sequences is entirely random.

3.3 Conservation of HLA-A2 epitopes across years, clades, and countries

The conservation of the selected A2 epitopes across years, clades, and countries is shown in
Figure 2. Each column of the matrix represents the set of HIV proteins that falls into a given
category (year isolated, clade, or country), while each row of the matrix represents a single
9-mer or 10-mer that was selected as an A2 epitope. The bottom row of cells represents the
aggregate percent coverage for the set of 38 epitopes. This set of highly conserved A2-
restricted peptides covered between 33% (2007) and 100 % (1980) of strains in a given year,
between 15% (Equatorial New Guinea) and 84% (Malaysia) of strains in a given country,
and between 5% (clade O) and 100% (clade CGU) of strains in a given clade, with mean
conservations of 55%, 48%, and 45%, year, country, clade, respectively. This represents
remarkable breadth of coverage for a limited set of HLA-A2 epitopes, given the well-known
ability of HIV to mutate away from HLA-A2 [61,62].

3.4 In vitro peptide binding to soluble HLA-A2

3.5 Subjects

Thirty-four of the selected peptides were evaluated for binding to HLA-A2 in vitro using a
soluble HLA-A2 binding assay (Table 1). The remaining four peptides were not tested in
these assays due to limited peptide availability. Fifteen of the 34 peptides tested bound with
high affinity (44%), seven bound at intermediate affinity (21%), six bound at low affinity
(18%), and six showed no detectable binding (18%). We note as a mark of specificity that in
previous binding studies, none of eight B7- or All-restricted peptides [54] and none of 18
B27-restricted peptides [63] bound to HLA-A2. Fourteen of the fifteen peptides predicted as
high affinity binders generated positive ELISpot results in PBMCs from HIV-infected
subjects. One of the fifteen peptides, POL-1007, did not stimulate any IFNy response in this
cohort in spite of its very high predicted and observed binding affinity for A2. This peptide
was part of a longer peptide previously published as HIV-VAX-1047, an immunogenic
consensus sequence for MHC class 11 binding to DRB 0101 [64].

Several peptides elicited positive IFNy ELISpot responses in spite of their low in vitro HLA-
A2 binding affinity (Table 1). It is possible that these epitopes were presented in the context
of other HLA alleles in those subjects. In support of this hypothesis, an EpiMatrix analysis
predicts that several of these epitopes are able to bind to other class | alleles. However, as
not all of the HLA alleles for each subject were identified for this study, we are unable to
compare alternate predicted binding with the subjects’ alleles.

Subjects are listed in Table 2 along with their corresponding viral loads, CD4 T-cell counts,
and years since first identified as infected. Subjects were on antiretroviral therapy as
indicated. A criterion for entry into the study was a detectable viral load below 10,000
copies/ml, as we have observed that subjects with undetectable viral loads also have very
low CTL responses. Information on resistance, clinical course, and further details on the
stage of disease was not recorded in the initial study (initiated in 2002). Other than HIV
infection, all subjects were otherwise healthy at the time they were recruited.

A total of 24 HIV-infected subjects were recruited from clinics in Providence, Rhode Island.
Sixteen HIV-infected subjects (study subject cohort #1) were recruited from the Miriam
Hospital Immunology Center (Table 2a). Eight HIVV-infected subjects (study subject cohort
#2) were recruited from clinics at Roger Williams Hospital and Pawtucket Memorial
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Hospital; complete clinical information was not available for these donors (Table 2b). Eight
HIV-1 positive subjects (study subject cohort #3), who had been infected for less than a year
and were not receiving ART at the time of enrollment in the study, were recruited from the
Bloc Espoir HIV Clinic in Sikoro, Bamako, Mali (Table 2c).

3.6 ELISpot assays

3.6.1 United States and Mali—Immunoreactivity of predicted HLA-A2 epitopes in
HIV-infected subjects was evaluated in the United States following immunoinformatic
analysis in 2002 and in Mali following the 2009 analysis. Twenty-five epitopes were
assessed in United States studies, of which fourteen were selected for testing in Mali, based
on EpiMatrix scores, binding assay results, and peptide availability. Mali studies included an
additional thirteen newly identified putative epitopes, for a total of 27 epitopes assessed
there. Of the fourteen epitopes tested in both the United States and Mali, eleven (79%)
stimulated a positive IFNy ELISpot response in at least one patient from each of the
geographically distinct areas. Four of five ENV peptides (80%), three of three GAG peptides
(100%), three of four POL peptides (75%), and the one VIF peptide (100%) tested generated
a positive response in subjects from Providence and Mali. An additional three peptides—one
each in ENV, POL, and VPR—elicited positive responses in Mali only. The 27 epitopes
chosen in 2009 were also assessed in ELISpot assays of five HIVV-positive donors who were
confirmed to be HLA-A2 negative. Four of the five donors (80%) had no positive IFNy
responses to any of the 27 peptides tested; one donor responded to only one of 27 (3.7%)
peptides tested, demonstrating HLA-A2 specificity of the peptides selected for our present
study.

For the cohorts of chronically HIV-1-infected subjects from both the Miriam Hospital and
the clinic in Bamako, Mali, there was no clear association between viral load, CD4 T-cell
count, or years of known HIV infection with responses to HLA-A2 epitopes. In addition, no
clear association was found between having multiple A2 alleles and the number of epitopes
that elicited a detectable IFNy ELISpot result for a given donor. It is worth noting that, in
general, the subjects from Mali had an impressive number of epitope responses compared to
the Providence subjects (Table 3a-c). One patient in this group responded to 25 epitopes,
and four others with low viral loads responded to a mean of eleven epitopes. It is possible
that this is due to the fact that these subjects were recruited for the study less than a year
after they had been identified as HIVV-positive and/or due to the correlate that none of the
study participants in Mali had yet received long-term antiretroviral therapy. Notably, the one
Providence subject (H_0865) who was not receiving ART yet had a low viral load
responded to eight HLA-A2 epitopes.

3.6.2 Comparison with published HLA-A2 epitopes—The ELISpot analysis
reconfirmed eleven epitopes that were published for HLA-A2 prior to the time of selection
for this study (Table 1). Five of the epitopes that were initially identified and predicted by
our 2002 informatics analysis as entirely novel HLA-A2 epitopes have subsequently been
validated as A2-restricted epitopes by others (Table 1). These epitopes are ENV-1004
(TMGAASITL) [65], GAG-1012 (RMYSPVSIL) [66], POL-1006 (ALQDSGSEV) [67],
POL-1247 (HLKTAVQMAV) [54], and VIF-1237 (DLADQLIHLY) [54]. Thus sixteen of
the 38 epitopes have been validated by both our group and by other laboratories as HLA-A2
epitopes. In addition, assays confirmed five peptides that had been published epitopes prior
to selection for inclusion in our study, although they were not published in the context of
HLA-A2 (Table 1). Four of these epitopes were immunogenic in ELISpot assays with
PBMCs from HLA-A2 subjects, and while only two of these epitopes were tested in in vitro
binding assays, both bound to HLA-A2. The fifth epitope, POL-1016 (GLKKKKSVTV)
[67], did not elicit positive IFNy ELISpot responses in any subjects yet was shown to bind to

Vaccine. Author manuscript; available in PMC 2013 December 14.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Levitz et al.

Page 10

HLA-A2 with low affinity, indicating that this may still be a relevant candidate for inclusion
in a global vaccine (Table 1).

Since their original selection in the 2002 informatics analysis of novel peptides, 14 of the 22
novel epitopes have been published, nine of which have not been published with HLA-A2
restriction (Table 1). Of the nine peptides in this group, eight elicited IFNy ELI1Spot
responses in PBMCs from HIV-1-infected subjects possessing A2 alleles: ENV-1002
(AVLSIVNRV) [49], ENV-1005 (SLCLFSYHRL) [49], GAG-1013 (ELKSLYNTV) [68],
NEF-1015 (WLEAQEEEEV) [69], POL-1008 (ELAENREIL) [70], POL-1010
(DIQKLVGKL) [70], VPR-1019 (ETYGDTWTGV) [71], and VPU-1020
(TMVDMGHLRL) [70].

And finally, eight of the selected HLA-A2 epitopes are still novel for HIV-1 at the time of
submission. The following peptides were confirmed to be immunogenic in IFNy ELISpot
assays in PBMC cultures from our HIV-1 infected cohorts: ENV-1001 (GIKPVVSTQL) in
both Providence, Rl and Bamako, Mali; TAT-1017 (RLEPWKHPG) and VIF-1018
(KISSEVHIPL) in Providence; and REV-2001 (GVGSPQILYV), REV-2002 (ILVESPTVL),
VIF-3006 (KVGSLQYLA), VIF-3007 (SLQYLALTA), and VPU-3009 (KIDRLIDRI) in
Bamako. Epitope VPU-3009 did not elicit any positive IFNy ELISpot responses and has yet
to be described as an HIV-1 epitope in other publications even though it bound to HLA-A2
in vitro; this may due to the size of the study cohort or to false positive selection by our
immunoinformatics tools.

4. Discussion

A globally relevant vaccine for HIV-1 continues to remain elusive due to the dynamic and
extraordinary diversity of the virus. Virus-specific cytotoxic T-cell responses have been
shown to play a vital role in the control of primary and chronic HIV-1 infection
[16,20,72-74], and while T-cell epitopes continuously evolve under immune pressure, early
work showed fitness costs limited viral escape from CTL [75]. These findings suggest that a
vaccine capable of raising CTL to the most conserved epitopes would have the most success
at slowing or halting the progression of disease. This supports our firm belief that critical
highly conserved, high affinity epitopes available for vaccine design lie in restricted regions
of the HIV genome that are resistant to selective pressure, where mutations are slow to
evolve and exact a cost on virus replicative fitness. We have called these epitopes the
“Achilles’ heel” epitopes of HIV [32]. Due to HIV viral evolution in response to pressure
from HLA-restricted immune responses, many highly immunogenic T-cell epitopes may be
disappearing from the HIV genome, while highly conserved regions of the genome may also
evolve to escape human immune response [76,77].

In the work presented here, we have employed immunoinformatics methods to search
available HIV sequences for both highly conserved and immunogenic HLA-A2 epitopes.
Using this balanced strategy of selecting for both conservation and immunogenicity, 38 total
putative A2 epitopes were chosen and then tested in assays with PBMCs from HIV-1
infected subjects in two geographically distinct areas (Providence, Rhode Island, and
Bamako, Mali). This approach to epitope selection is contrasted with alternative approaches
in Figure 3. By way of comparison, if the peptide selections had been made to maximize
EpiMatrix score but not conservation, we would have obtained a set of peptides from
regions of the genome that was highly immunogenic but poorly conserved, covering only
33% of isolates (left bars). If we had instead selected peptides maximizing only for
conservation, we might have arrived at a maximally conserved but not very immunogenic
set, in this case 87% coverage of isolates with very low mean EpiMatrix score of -0.34
(middle bars). Choosing peptides at random would yield a set that covers approximately
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24% of HIV isolates but has very poor potential immunogenicity (data not shown). Thus, as
illustrated in Figure 3, a balanced approach, such as the one used for the epitopes described
here, leads to the selection of epitopes that are both immunogenic and highly conserved.

The importance of this approach for vaccine design is underscored by the re-evaluation of
our 2002 selections that was performed in 2009, at which time we also searched for new,
highly conserved epitopes. The relative conservation of the selected epitopes in spite of the
dramatic expansion of the number of available HIV sequences (4-fold over the intervening
seven years) suggests that these selected peptides may lie in positions of the viral protein
which are essential for functional or structural integrity of the virus and which would
compromise viral fitness, for example GAG 3003 is located in Gag p2419.27
TLNAWVKVV (TV9), is a well-defined HLA-A2-restricted epitope located in helix 1 of
the capsid protein and may be under some functional constraint [57]. Indeed, going further
back than 2002, as shown in Figure 1, many of our epitopes have remained present and
conserved in the same proportion of sequences since the first sequence of HIV was recorded.
The approach utilized in the current study, which limits selections to those regions that are
both conserved and immunogenic, may have uncovered the “Achilles’ heel” of the HIV
genome. In addition, this vaccine strategy excludes epitopes that elicit decoy responses to
the vast majority of HLA class | alleles seen during natural infection.

Furthermore, we tested our theory by validating the epitopes within a population
(Providence, Rhode Island, or Bamako, Mali) and across geographic space (cohorts in both
the United States and Mali). While the number of subjects tested in these two separate
locations is too small to draw population-based conclusions with statistical significance
between ELISpot results and either in vitro HLA-A2 binding or percent conservation in
protein of origin, we note that the observed responses on two continents point to the merit of
the approach and suggest that the approach may be used to identify highly conserved,
immunogenic HIV epitopes. Testing in larger cohorts will be an important aspect of future
studies.

Seventy-nine percent (79%) of the 14 peptides tested in both locations were positive in at
least one subject in each region. Given that the most common subtypes of HIV-1 are clade B
in the United States and clade A in Mali, this remarkable overlap in terms of peptide
recognition supports the hypothesis that immunogenicity of epitopes selected for this study
would not be limited by location and would be important for inclusion in a globally relevant
vaccine. That hypothesis is supported by the broad analysis shown in Figure 2 and by the
validation of some of the peptides in other countries [74,78,80,88,89]. In examining the
Providence and Mali cohorts, there are observable differences in the ELISpot responses.
Some of these differences may be related to the different disease statuses of these groups at
the time of enrollment in the study. For convenience (because few newly infected subjects
were being identified), subjects in the Providence cohort were selected based on their
willingness to participate and the stability of their HIV infection (Table 2a and b). In
contrast, the subjects in Mali had been identified as HIV positive less than one year prior to
the start of the study (Table 2¢), though as these donors were recruited from a clinic that had
just recently opened, it is possible that HIV infection could have been present for longer
periods without detection. The detection of immune response to these epitopes regardless of
phase of disease suggests that epitope conservation between peptide and patient sequence is
more important than stage of disease.

Seventy-five percent (75%) of the A2 peptides tested in Providence were positive in at least
one subject, and notably, seven of the eight subjects who did not respond to these epitopes
had been on long-term antiretroviral therapy (ART). Lower viral loads due to ART
diminishes responses to viral epitopes and lack of response in these subjects does not detract
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from the value of these epitopes [78,79]. Providence subjects 0865 and 0912 had the most
responses to the A2 epitopes, with eight and eleven responses, respectively. The broad
immune responses of subject 0865 was not surprising, as this subject was known to be a
long-term non-progressor who had been infected for over ten years while maintaining low
viral load and normal CD4+ T cell count without the use of ART. This further validates the
importance of broad immune response tied to survival. And though subject 0912 responded
to the most A2 epitopes, this patient’s viral load and CD4+ T cell counts were more
consistent with active disease. Information on ART adherence, resistance, clinical course,
and disease stage for this patient was not available for this study.

In general, ELISpot responses to the A2 epitopes in the Mali subjects were indicative of the
broad immune responses seen during the early stages of HIV infection (Table 2c). Subjects
15404, 15267, and 18349 demonstrated the broadest immune responses, responding to more
than 50% of the epitopes; these subjects had relatively low viral loads and normal CD4+ T
cells counts, consistent with early immune control. One study subject responded to more
than 90% of the epitopes tested and, although the most recent viral load was not available
for this particular donor during the study time period, this type of immune response could
also be expected in earlier stages of infection. Due to delays in diagnosis, not all subjects
recruited in Mali after their first positive HIV test were identified as HIV infected at an early
stage of disease. The one subject who did not respond to any of the 31 epitopes tested in
ELISpot assays (data not shown) had a very high viral load (445,000 copies/ml) and low
CDA4+ T cell count that would be more typical of chronic, untreated infection, a condition
that also contributes to lack of response, likely leading to the lack of positive IFNy responses
in ELISpot assays.

While 95% of the selected epitopes were positive in at least one subject in either Providence
or Mali, no single epitope was immunodominant within cohorts or across cohorts. This lack
of immunodominance illustrates the importance of including a broad array of epitopes for
the development of a globally relevant vaccine [80-82]. There were only three predicted
epitopes that did not elicit a positive response in this set of peptides; two of these epitopes
(POL-1007 and POL-1016) have been published by other groups, one as a class Il epitope
and the other for a different HLA restriction (Table 1), calling into question the possibility
that either these epitopes were not correctly predicted (by EpiMatrix) or were not properly
processed or presented on HLA-A2. POL-1007 did bind with very high affinity to HLA-A2
in vitro which supports its identification as an HLA-A2 epitope. The third epitope for which
no response was detected is a novel epitope identified in our 2009 analysis, VPU-3009. The
lack of immune response to this epitope may be a function of its low binding affinity to
HLA-A2.

Epitope-based vaccines containing epitopes restricted by six “supertype” HLA, such as
HLA-A2, are believed to be the best approach to generate broad T-cell responses with the
greatest possible coverage of the human population [47,48]. In this paper, we identified 38
potential HLA-A2 epitopes for inclusion in our GAIA or other pan-HLA-reactive HIV-1
vaccines, and of these, 36 are good candidates. In work published previously, our group
selected and confirmed epitopes immunogenic for HLA-B7 [32] and HLA-A3 [48], and a
prior publication by our group describes the validation of promiscuous “immunogenic
consensus sequence” class 1l epitopes in Providence and Bamako [49]. In addition to their
remarkable conservation across years, the utility of the HLA-A2 epitopes described here is
also supported by their aggregate conservation of 48% and 45% across countries and clades,
respectively (Figure 2). While it appears to be true that HLA-A2 haplotypes are less
equipped to fight HIV due to a low binding affinity for conserved epitopes, Altfeld et al.
have demonstrated that HLA-A2 can contribute to CTL responses in acutely HIV-1-infected
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individuals [83]. Furthermore, the fact that this study identified immunogenic, highly
conserved A2 epitopes brings hope to the field.

Other groups have made important strides in developing and evaluating vaccines that are
designed to achieve broad coverage of HIV strains, but these vaccines are derived with a
focus only on highly conserved regions of HIV consensus with the design of a novel protein,
or mosaic protein approach [84-86]. We would predict that some of the epitopes contained
within those regions would be less immunogenic than the ones described here and better
quality epitopes could potentially be reverse engineered into the mosaic sequence. Recently,
Perez et al. identified nine “super-type-restricted” epitopes recognized in a diverse group of
HIV-1-positive subjects; however, a single-epitope vaccine or an oligo-epitope vaccine,
such as one based on a handful of epitopes, risks selection of viral escape variants and might
allow re-infection with viral variants [87,88]. Going forward our strategy will be to continue
to use a balanced approach, identifying vaccine candidate epitopes based on both high
conservation and predicted immunogenicity while also validating them in vitro in more than
one cohort. We believe that the insertion of multiple highly conserved T-cell epitopes, as
identified here, in a single HIV vaccine construct would result in broader T-cell responses
that would improve the breadth of the immune response [89].

In this study, we have examined a large number of viral genomes representative of global
HIV-1 sequences across an evolutionary continuum to determine the most highly conserved
sequences across the entire viral proteome. Protective HLA class | alleles associated with
slow virus growth select epitopes that are highly immunogenic, where escape mutations
impart a substantial cost to replicative fitness. Based upon this principle we have identified
epitopes that are highly conserved and likewise have a weak selective evolutionary
advantage. Furthermore, we have validated HLA-A2 class | binding and immunogenicity
(i.e., proteasomal processing and TCR recognition) of these peptides in both acute and
chronically HIV-1-infected individuals.

Since this was a cross-sectional study of both chronic and early infected individuals to
evaluate immunogenicity it was not possible to determine when these responses arose during
the course of infection or what role they played in control of viral replication. Studies have
shown that CTL responses measured within individuals differ significantly between acute
and chronic infection, and early CTL responses are most predictive of disease course
[25,90]. It is encouraging that in the Mali cohort of early infected individuals not receiving
ART, four of eight patients controlling virus showed significant breadth of response (13 to
25 epitopes) while patients with more chronic infection (Providence) also responded. Thus
chronicity of HIV infection does not preclude immune response to highly conserved
epitopes.

It is well known that epitopes restricted by the few HLA class | alleles confer variable
degrees of protection during natural infection, underscoring the need to design a vaccine that
elicits immune responses that are substantially better than those seen during natural
infection. The identification of “Achilles’ heel” epitopes in this study is an important first
step. The biggest challenge for HIV vaccine design is to identify epitopes restricted by other
HLA class | and class 1 alleles and adopt new immunization strategies and adjuvants that
may lead to an effective way to prime the T-cell immune responses of these individuals
against conserved epitopes that would impart a substantial fitness cost on the virus and
control or prevent infection.

In summary, the challenges faced in HIV vaccine design necessitate a balanced approach to
epitope identification, combining computational tools with experimental strategies. Our
step-by-step immunoinformatics approach has successfully screened large amounts of
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sequence data and defined epitopes that are likely to accelerate vaccine development. On the
other hand, the experimental approach described here does highlight the need to further
validate some of the in silico predictions, as a few of our candidates did not prove to be
immunogenic in in vitro assays despite binding with high affinity to HLA-A2. The approach
described here appears to be an effective means of further triaging sequences to distill the
best vaccine immunogen candidates, particularly in terms of their conservation over time,
which would provide valuable information and strategies for groups developing multi-
epitope, pan-HLA-reactive vaccines for HIV and other pathogens. In this paper, we have
identified 38 highly conserved immunogenic T-cell epitopes. The combination of the
remarkable conservation and high immunogenicity of these epitopes over time and space
supports their potential inclusion in a globally relevant HIV vaccine.
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Figurel.

Conservation for this figure was calculated by year of report from GenBank based on
sequences available in 2009. Conservation data from this figure may differ from
conservation reported in the text or in Table 1, as the number of sequences available at the
time of peptide selection differs from the number available for analysis in 2009. Sequences
in each plot are listed from most to least conserved in 2009. Lines have been drawn to
indicate points at which peptides were identified: peptides 1237, 1247, 1249, 1257, and 1261
were identified in 1997; peptides 1001-1020 were identified in 2002; and peptides
2001-2004 and 3001-3009 were identified in 2009. Ten peptides per protein sequence were
selected at random and conservation calculated as previously described to highlight the high
conservation of the epitopes chosen for both conservation and EpiMatrix score; mean
conservation was calculated by averaging yearly conservation of the ten peptides within
each protein. The second y-axis charts the number of protein-specific sequences available at
each time point (dark, heavy lines) to demonstrate that in spite of the increased number of
sequences available in 2009 as compared to 1987, conservation of the epitopes has remained
stable.
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Figure2.

Conservation of the HIV-A2 peptides, both individually and in aggregate, across years,
countries, and clades. Each row of the matrix denotes a specific peptide, named by the
peptide’s protein of origin and its specific ID number. Each column of the matrix represents
a specific year, country, or clade, grouped as indicated. The percentage coverage of strains is
represented on a color gradient, with blue indicating values in the 10th percentile, yellow
indicating values in the 40th percentile, and red indicating values in the 80th percentile.
Black boxes indicate that no isolates of the protein were available for that year, clade, or
country. The bottom row represents the aggregate percent coverage for the set of 38
epitopes. Each cell of the matrix represents the percent coverage per peptide, except for the
bottom-row cells, which represent the aggregate percent coverage for the peptide set.
Column headers are listed here for space considerations: left to right, the year columns are
1980-2009; aggregate coverage of strains by year ranges from 24% (1980) to 58% (1982).
The countries left to right are: Afghanistan, Angola, Argentina, Austria, Australia, Belgium,
Burkina Faso, Burundi, Benin, Bolivia, Brazil, Botswana, Belarus, Canada, the Democratic
Republic of the Congo, the Central African Republic, Congo, Switzerland, the lvory Coast,
Chile, Cameroon, China, Colombia, Cuba, Cyprus, Germany, Djibouti, Denmark, Dominica,
the Dominican Republic, Ecuador, Estonia, Spain, Ethiopia, Finland, France, Gabon, Great
Britain, Georgia, Greenland, Guinea, Equatorial Guinea, Greece, Hong Kong, Haiti,
Indonesia, Israel, India, Italy, Jamaica, Japan, Kenya, Cambodia, South Korea, Kazakhstan,
Liberia, Luxembourg, Mali, Myanmar, Malawi, Malaysia, Namibia, Niger, Nigeria, the
Netherlands, Norway, Peru, Paraguay, Qatar, Reunion, Romania, the Russian Federation,
Rwanda, Saudi Arabia, San Marino, Senegal, Somalia, Chad, Turkey, Trinidad & Tobago,
Taiwan, Tanzania, Ukraine, Uganda, the United Kingdom, the United States, Uruguay,
Uzbekistan, Venezuela, Yemen, South Africa, Zambia, and Zimbabwe; aggregate coverage
of strains by country ranges from 15% (Equatorial Guinea) to 84% (Malaysia). The clades
left to right are: 01_AE, 0102A, 01A1, 01ADF2, 01AF2U, 01B, 01BC, 01C, 01DU,
01GHJKU, 02_AG, 02A, 02A1, 02A1U, 02B, 02C, 02D, 02G, 02GK, 020, 02U, 03_AB,
04_CPX, 05_DF, 06_CPX, 06A1, 07_BC, 07B, 08_BC, 09_CPX, 09A, 09A1KU, 10_CD,
11 CPX, 12 BF, 13_CPX, 13U, 14 BG, 15 01B, 16_A2D, 17_BF, 18 CPX, 19 _CPX,

20 _BG, 21_A2D, 22 _01A1, 23 _BG, 23A1, 24 BG, 25_CPX, 27_CPX, 28 BF, 29_BF,
31_BC, 32_06A1, 33_01B, 34_01B, 35_AD, 36_CPX, 37_CPX, 38_BF1, 39_BF, 40_BF,
42 _BF, 43 02G, A, A/G, Al, A1A2D, Al1B, AlC, A1CD, A1CDGKU, A1CG, A1D,
Al1DHK, A1F2, A1G, A1GHU, A1GJ, A1GU, AlU, A2, A2C, A2CD, A2D, A2G, A3, AC,
ACD, AD, ADGU, ADU, AE, AF2, AF2G, AG, AGH, AG-lbng, AGU, AHJU, AKU, B,
B’, B,C, BC, BCF1, BCU, BF, BF1, BG, C, CD, CGU, CRF01_AE, CRF01_AE/B, CRF01-
AE, CRF02, CRF02_AG, CRF06_cpx, CRF07_BC, CRF12_BF, CRF15 01B,
CRF16_A2D, CRF17_BF, CRF21_A2D, CRF25_AGU, CRF34 _01B, CRF35_AD,
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CRF37_cpx, CRF39_BF, CU, D, D/A, DU, E, E/A, F, F1, F2, F2KU, G, GKU, H, J, JU, K,

L, N, O, and U; aggregate coverage of strains by clade ranges from 4.5% (O) to 100%
(CGU).
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Figure 3.

The 38 highest scoring A2-restricted peptides from the HIV sequence were identified based
on their 2009 EpiMatrix score for binding to HLA-A2, and their scores were averaged; on
the left side of the graph, the conservation for these peptides was calculated based on the
average of the sequences available for analysis from GenBank for each peptide in 2009. As
shown on the left, though these peptides are high scoring, their overall conservation is low,
indicating that they would likely not be good candidates for inclusion in an HIV vaccine.
This analysis was then reversed to identify and take the average of the 38 most highly
conserved peptides, and EpiMatrix scores for these peptides were calculated and averaged,
as shown in the middle of the graph. Despite the high conservation of these peptides, the low
EpiMatrix scores indicate they would be unlikely to be immunogenic, rendering them
ineffective in the context of an HIV vaccine. The approach outlined in the current study
combines these two approaches, selecting peptides that are the most immunogenic and
conserved. This approach allows for the identification of peptides that are both
immunogenic and conserved, leading to a set of epitopes that would be the most useful for
inclusion in a pan-HLA-reactive global HIV vaccine.
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Table 2
HIV-infected subjects (3 cohorts): Immuneresponsestothe HL A-A2-restricted GAIA
Vaccine candidate epitopes

a: HIV-1-positive HLA-A2 subjects were recruited at the Miriam Hospital Immunology Center in Providence,
Rhode Island. The subjects are listed in column 1 and are displayed by lowest viral load to highest viral load,
as shown in column 2. Subjects’ most recent CD4 counts are shown in column 3. Column 4 shows the number
of years of known HIV-1 infection for each subject. These subjects were on antiretroviral therapy as indicated
in column 5. PBMCs from these subjects were evaluated for IFNy secretion in response to each of 20 A2
peptides (1001-1020); the number of epitopes to which each patient responded is shown in column 6. All
subjects were HLA-A2-positive, and HLA-A subtypes are shown in column 7. Fifteen of the 20 peptides
stimulated a positive response in at least one subject. Eight of the 16 subjects (50%) responded to at least one
of the peptides.

b: HIV-1-positive HLA-A2 subjects were recruited at Roger Williams Hospital and Pawtucket Memorial
Hospital in Rhode Island, or from clinics in Massachusetts. The subjects are listed in column 1. Other than
HLA-A typing, no clinical information is available for individual subjects within this cohort. Though viral
loads and CD4 counts (columns 2 and 3, respectively) by donor are unavailable, the criteria for entry into this
study cohort were a detectable viral load below 10,000 copies/ml and an absolute CD4 T cell count above 200
cells per CI. Information on duration of HIV infection and ARV treatment status, displayed in columns 4 and
5, respectively, was not accessible. PBMCs from these subjects were evaluated for IFNy secretion in response
to each of 5 A2 peptides (1237, 1247, 1249, 1257, and 1261); the number of epitopes to which each patient
responded is shown in column 6. All subjects were HLA-A2 positive, and HLA-A subtypes are shown in
column 7. Each of the five peptides stimulated a positive response in at least one subject. Two peptides, 1261
and 1249, generated positive responses in three out of eight subjects (37.5%) and two peptides, 1257 and
1237, stimulated a positive response in two out of eight subjects (25%). Peptide 1247 was positive in only one
subject in this cohort.

c¢: HIV-1-positive HLA-A2 subjects were recruited at the Bloc Espoir clinic in Sikoro, Bamako, Mali. The
subjects are listed in column 1 and are displayed by lowest viral load to highest viral load, as shown in column
2. Viral load data was unavailable for one subject, patient 0015404. Subjects’ most recent CD4 counts are
shown in column 3. Column 4 shows the number of years of known HIV-1 infection for each subject. None of
these subjects were on antiretroviral therapy, as indicated in column 5. PBMCs from these subjects were
evaluated for IFNy secretion in response to each of 27 A2 peptides (1001, 1002, 1004-1006, 1008, 1011-1014,
1019, 1237, 1247, 1257, 2001-2004, and 3001-3009). PBMCs from one subject (0015420) were tested with
the same set of 27 peptides, plus four additional peptides (1007, 1020, 1249, and 1261). The number of
epitopes to which each patient responded is shown in column 6. All subjects were HLA-A2-positive, and
HLA-A subtypes are shown in column 7. Twenty-six of the 27 epitopes (96%) were positive in at least one of
eight subjects tested, and seven of eight subjects (87.5%) responded to at least one epitope. One epitope
stimulated positive responses in six subjects (75%), one epitope stimulated positive responses in five subjects
(62.5%), six epitopes stimulated positive responses in four subjects (50%), nine epitopes stimulated positive
responses in 3 subjects (37.5%), eight epitopes stimulated positive responses in two subjects (25%), and one
epitope stimulated positive responses in one subject (12.5%).

a Study subject cohort #1 (Providence, Rl, USA)

Patient ID Most recent Most recent Yearssincefirst On ARV treatment  Number of HLA-A alleles
viral load CD4 count identified as positive epitope
infected responses
H_0863_1_102802 <50 809 4 Yes 3/20 A02011, A3001
H_0911 1 120203 <75 321 19 Yes 0/20 A0201
H_0848_1_100702 112 803 7 Yes 0/20 A02022, A03011
H_0865_1_102902 266 689 13 No 8/20 A02011
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a Study subject cohort #1 (Providence, RI, USA)

Patient 1D Most recent Most recent Yearssincefirst On ARV treatment  Number of HLA-A alleles
viral load CD4 count identified as positive epitope
infected responses
H_0852_1_100702 372 391 14.3 Yes 0/20 A02011
H_0845_1_100102 535 580 13 Yes 0/20 A02011, A3001
H_0881_1_012803 621 626 17 Yes 0/20 A02011, A29011
H_0834_1_091602 766 430 18 Yes 0/20 A02011, A66011
H_0836_1_091702 847 380 N/A Yes 3/20 A02011, A2901
H_0833_1_010703 1,098 1064 2.5 No 1/20 A0201, A0801
H_0856_1_101502 1,233 617 14 Yes 0/20 A01011, A02011
H_0854_1_101502 2,441 623 8 No 2/20 A02011, A3401
H_0912_1_120303 4,177 316 8 Yes 11/20 A0201
H_0840_1_092302 5,923 483 7 No 0/20 A02011, A03011
H_0843_1_100102 32,925 428 11 Yes 2/20 A02011, A7401
H_0858_1_011403 77,350 500 10 No 1/20 A02011, A2603
b Study subject cohort #2 (Providence, RI, USA)
Patient ID  Most recent viral Most recent CD4  Years since first On ARV treatment  Number of positive HLA-A alleles
load count identified as infected epitope responses
0902991 <10,000 >200 N/A N/A 3/5 A2, A30
H0014M <10,000 >200 N/A N/A 3/5 Al, A2
0517001 <10,000 >200 N/A N/A 2/5 A2, A3
H0023M <10,000 >200 N/A N/A 2/5 A2, A30
0906002 <10,000 >200 N/A N/A 1/5 A2, A3
0829001 <10,000 >200 N/A N/A 0/5 A2, A3
H0007M <10,000 >200 N/A N/A 0/5 A2, A29
H0204R <10,000 >200 N/A N/A 0/5 A2
¢ Study subject cohort #3 (Bamako, Mali)
Patient ID  Most recent Most recent Years since first ~ On ARV treatment  Number of HLA-A alleles
viral load CD4 count identified as positive epitope
infected responses

0015267 <25 1218 <1 No 16/27 A0231, A0285, A0286, A9206,

A0279
0015299 <400 471 <1 No 13/27 A0208
0018341 2541 689 <1 No 4/27 A0280, A0241, A0208
0018349 4700 674 <1 No 14/27 A0208
0018322 110,000 1443 <1 No 5127 A0250, A0258, A0265, A0273
0015269 226,000 796 <1 No 2127 A0209, A0231
0015420 445,000 364 <1 No 0/31 A0263, A0214
0015404 N/A 303 <1 No 25127 A02, A0285, A0286
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