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Abstract
The γ-index is used routinely to establish correspondence between two dose distributions. The
definition of the γ-index can be written with a single equation but solving this equation at millions
of points is computationally expensive, especially in three dimensions. Our goal is to extend the
vector-equation method in Bakai et al [1] to higher order for better accuracy and, as important, to
determine the magnitude of accuracy in a higher order solution. We construct a numerical
framework for calculating the γ-index in two and three dimensions and present an efficient
method for calculating the γ-index with 0th, 1st, and 2nd-order methods using tricubic spline
interpolation. For an intensity modulated radiation therapy example with 1.78 × 106 voxels the 0th-
order, 1st-order, 1st-order iterations and semi 2nd-order methods calculate the 3-dimensional γ-
index in 1.5, 4.7, 34.7, and 35.6 s with 36.7%, 1.1%, 0.2% and 0.8% accuracy, respectively. The
accuracy of linear interpolation with this example is 1.0%. We present efficient numerical
methods for calculating the 3-dimensional γ-index with tricubic spline interpolation. The 1st-order
method with iterations is the most accurate and fastest choice of the numerical methods if the dose
distributions may have large second-order gradients. Furthermore, the difference between
iterations can be used to determine the accuracy of the method.
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1. Introduction
The γ-index criterion of Low 1998 [2] is often used in radiation therapy to evaluate the
correspondence between two dose distributions, e.g. a measured dose distribution D0(ρ⃗0)
and a planned dose distribution D(ρ⃗). This method is commonplace in external beam therapy
[3] for commissioning and quality assurance.

The γ(ρ⃗0) is the minimum point-to-surface distance (PSD) between points on a reference
surface and an evaluation surface in an abstract vector space where the first 1, 2 or 3
coordinates represent space and an additional coordinate represents dose. Mathematically,
this is given by

(1)
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where ρ⃗ is a spatial vector to a point. The vector notation with an arrow denotes vectors of
the spatial coordinates. The selected distance and dose tolerances for the comparison are
given by δd0 and δD0, respectively.

Correspondence between the two distributions is acceptable when the fraction of points with
γ ≤ 1 equals or exceeds a selected pass rate within a region of interest. For example, AAPM
Task Group 119 performed a multi-institutional comparison of data from intensity
modulated radiation therapy (IMRT) commissioning with a distance/dose tolerance of 3
mm/3%, respectively, with a pass rate of 90% and the region of interest given by either a
rectangle or the region with dose >10% of the maximum dose [3].

The 3-dimensional γ-index [4][5] is of special interest, but computationally complex, as
treatment plans have margins around the clinical target volume in 3-dimensions and delivery
uncertainties exist in 3-dimensions. A 2-dimensional γ-index for a 3-dimensional problem
could give false-negative results in planes with steep longitudinal dose gradients that are, in
fact, acceptable given the margins.

The minimum PSD in its simplest form is determined by interpolating dose distributions and
searching over the interpolated grid for the minimum PSD for different ρ⃗. We call this
method “Trial and Error (TAE).” Depuydt et al [6] describe the complexity of the problem
and the sensitivity of γ to the pitch of the interpolation grid. Other methods improve on this
technique, such as the vector-equation method of Bakai et al [1], the geometric interpretation
of Ju et al [4], and the distance transform approach of Chen et al [7].

Bakai et al 2003 [1] use a vector equation to determine the minimum distance between a
point and the tangent of the D(ρ⃗) dose surface at ρ⃗0. Their result, the χ-index, is positive or
negative depending on the sign of the dose difference. They calculate the χ-index in 58 ×
103 voxels within 0.2 s (excluding the time for polynomial interpolation of D(ρ⃗) on the ρ⃗0
grid). Their 3-dimensional example shows the accuracy of the number of points with |χ| ≥ 1
relative to the number of points with γ ≥ 1 is 0.7% in 2 spatial dimensions and 0.3% in 3
spatial dimensions. Nevertheless, the γ-index rather than the χ-index has been the mainstay
of dose distribution comparisons in Medical Physics and we explore more accurate
numerical techniques in order to be compatible with the existing definition of γ.

Ju et al 2008 [4] subdivide the D(ρ⃗) dose distribution into simplexes and determine the
minimum PSD between a point and a simplex by geometric methods. This technique
implicitly applies linear interpolation between the D(ρ⃗) grid points and can be applied in 3
spatial dimensions. In 2 spatial coordinates, their method can be visualized by subdividing
the dose surface into flat triangles, which are 2-simplexes, and finding the smallest distance
between a point and the triangle. To reduce the computation time, they sort the simplexes in
order of ascending spatial distance and calculate the minimum PSD to each simplex in turn
and terminate the search when the PSD increases with distance. They calculate a 3-
dimensional γ-index in 2 × 106 voxels within 2 minutes.

Chen et al 2009 [7] use a distance transform approach, a technique that derives from digital
image processing, to build a table of all possible γ-index values for the D(ρ⃗) dose
distribution. γ(ρ⃗0) is subsequently determined by performing a table lookup for each point
in the D0(ρ⃗0) distribution. Only the D(ρ⃗) dose distribution is used for the construction of the
table and, in this step, D(ρ⃗) is interpolated and “digitized”, i.e. the value for dose at each grid
point can be one of only M discrete values. Constructing the table is the most demanding
step, for example, the method requires 16 s to construct the table and 20 ms for the table
look-up for a 2-dimensional calculation with 400×400 grid points [7]. While no results have
been reported for a 3-dimensional computation, their method is feasible in 3-dimensions.
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We routinely use a 3-dimensional γ-index calculation for comparing one distribution from
treatment planning and the other from measurement or a stand alone dose calculation such
as Monte Carlo. The method from Bakai [1] is fast and suitable for our needs except that
there is no indication of the accuracy of the χ-index results. Our motivation for developing
numerical methods is to extend the fast and elegant method of Bakai to higher order to have
quantitative information on the accuracy.

In this work, γ(ρ⃗0) in Eq. 1 is reformulated as a set of coupled differential equations (Eq. 5),
the solution of which yields the γ index through Eq. 6. These equations can be solved to
arbitrary order, so the method is general and does not rely on linear interpolation of the dose
between voxels. Higher order methods can be applied to yield better accuracy and indicate
the uncertainty in the calculations. Multiple numerical methods are developed, to 0th, 1st and
2nd-order, in Sec. 2 and are compared in Sec. 4.6.

2. Methods
The numerical methods for solving the γ-index calculate: the derivatives of the D(ρ⃗) dose
distribution at grid points by central finite difference; function values and gradients between
grid points by interpolation; a coupled partial differential equation to nth order in the Taylor
series expansion giving ρ⃗ at minimum PSD; and, D(ρ⃗) at the solution point by either re-
using the Taylor series expansion or interpolation.

2.1. The PSD problem as a coupled differential equation
The calculations for γ (ρ⃗0) are simplified with a change in variables. For the voxel at ρ⃗0, we
define the unit-less spatial vector

(2)

and the unitless dose variable

(3)

The calculations are further simplified by building vectors in the abstract vector space with
1, 2 or 3 spatial coordinates followed by the dose coordinate in bold font. For example, all
points on the dose surface in this notation are described by u ≡ (r⃗, f(r⃗)).

Eq. 1 is recast as a differential equation and is solved with the use of numerical methods.
The dose distribution D(ρ⃗) must be continuous, i.e. vary smoothly with position. Dose
distributions with discontinuities may need TAE or other methods in the spatial region near
the discontinuity but remaining region(s) can be calculated using the differential method.

The minima and maxima in the PSD are at the values of r⃗ such that the normal, n, coincides
with u (Figure 1). The normal in 3-dimensions is

(4)

which has the same slope as u at the solution point. By equating the slopes of these two
vectors, the PSD problem can be expressed mathematically as finding the value for r⃗ that
solves the coupled differential equation
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(5)

Note that f and r are dimensionless, so this equation is not forbidden by analysis of the units.
The γ-index follows from

(6)

where u(r⃗, f(r ⃗)) is determined from interpolation or Taylor-series expansion at the solution
point. The differential equations (Eq. 5) are exact and the only assumption thus far is that
f(r⃗) is a continuous function. The differential equations can be solved by numerical methods
to yield r⃗ at the minimum PSD.

2.2. Finite difference method
Finite difference methods [8] are used to determine the derivatives of f(r⃗). Throughout this
work, we use central finite differences given by

(7)

(8)

where h is the grid pitch divided by δd0 and  represents the order of terms truncated
in this method. Since h is typically ≲ 1, we must rely on higher-order gradients of f(r⃗) to be
small to truncate this series. This approximation is most accurate, by Eqs. 2 and 3, when δd0
is small and/or δD0 is large. So, one should only apply the finite difference technique to
voxels where the ripples in the D(ρ⃗) dose distribution are much smaller than δD0 and/or the
pitch of the ripples are much larger than δd0.

2.3. Interpolation method
From previous sections, we have the dose distribution f(ρ⃗) and derivatives of the dose
distribution at grid points. In this section, the interpolated dose values are denoted by F(r⃗)
and interpolated derivatives by ∇F, , etc. The interpolation method must be chosen
carefully based on the dose distribution at hand. For example, linear interpolation is suitable
if the distribution is smooth and slowly varying such that 2nd-order derivatives can be
ignored.

For linear interpolation, F(r⃗) = f(r ⃗) at grid points, but the gradient of the interpolating
function, ∇F, is not continuous nor is it equal to ∇f at the grid points (figure 2). A different
method for determining gradients at intermediate grid locations is to apply linear
interpolation to the ∇f values which results in a continuous function equal to ∇f at the grid
points. For the latter method, however, the result is not equal to the gradient of the
interpolating function F(r⃗). The consequences for either case, ∇F or interpolation of ∇f, are
that iterative techniques will not be appropriate for linear interpolation (see section 2.4.2.iii).
For non-iterative techniques, we use interpolation of ∇f because of its accuracy.

Cubic spline interpolation fits a third-order polynomial to each point and has the advantages
that ∇F = ∇f at grid points, ∇F is a continuous function, and it is a higher-order method and
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is therefore more accurate than linear interpolation. For a voxel that is a unit cube, extending
from 0 to 1 in all dimensions (figure 3), the interpolating function has the form

(9)

There are 64 polynomial coefficients and, therefore, 64 constraints are used to fit the
polynomial. We use the tricubic spline interpolation method in Lekien and Marsden [9]
given by

(10)

where B−1 is a 64 × 64 matrix of constants and ᾱ and b̄ are 64-element vectors given by

(11)

Fortunately, many elements of the B−1 matrix are zero and the computation time can be
improved by writing the matrix equation as 64 separate equations, removing any terms with
multiplication by zero, and factorizing the remaining terms. Furthermore. the ᾱ coefficients
are calculated for all points only at the beginning of the problem and interpolation at various
(x, y, z) uses the same coefficients by Eq. 9.

For 2-dimensional cubic interpolation, the same formalism is used except that any
derivatives with respect to z are set to zero and any function value or derivative with c = l in
the matrix equation are set to c = 0. This method allows re-use of the code in 2-dimensions.
More information for both 2 and 3-dimensional cubic interpolation can be found in Ref [9].

Interpolated first-order derivatives are obtained by differentiating Eq. 9 and the ᾱ
coefficients need not be re-calculated. For example,

(12)

While all first-order derivatives of F(x, y, z) are constrained at grid points by the tricubic
interpolation method, not all of the second-order derivatives are constrained (see Eq. 11).
The derivatives that are not constrained are not continuous nor equal to the second-order

derivatives of f at the grid points. Interpolated second-order derivatives  are,

therefore, obtained from linear interpolation of , respectively.
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2.4. Taylor series
The minimum PSD problem expressed as a differential equation (Eq. 5) can be solved using
r⃗ = 0 as the first guess of the solution point. The Taylor series of f(r⃗) and ∇f(r⃗) in the
neighborhood of r⃗ = 0 are

(13)

(14)

Since |r⃗| ≲ 1 in the region of possible solutions with γ ≲ 1, we must again rely on the higher-
order derivatives of f(r ⃗) to be small to truncate this Taylor series. Those voxels where this
approximation fails can be automatically detected by calculating the contribution of higher-
order terms or by using iterative techniques and monitoring differences between successive
iterations. For this subset of voxels, one can either use TAE, iteration and/or higher-order
techniques to calculate γ.

2.4.1. Zeroth order solution—To zeroth order, f(r ⃗) = f(0) and ∇f(r⃗) = 0. These
approximations are inserted into Eq. 5 to yield x = y = z =0 as the point at minimum PSD.
Using Eq. 6 and converting f(r⃗) back to dose, we have

(15)

which is just the dose difference at ρ⃗ = ρ⃗0.

2.4.2. First order solution—To first order, Eqs. 5, 13 and 14 become

(16)

Since the factor in square brackets is just a scalar, the solution for r⃗ must lie along a line
parallel to ∇ f(0) and passing through the origin. We call this the first-order search path. The
use of a search path reduces the 3-dimensional PSD minimization problem to a 1-
dimensional problem. We parameterize the displacement of a point along the search path by
r⃗ = t∇f(0). After substituting this into Eq. 16 and canceling ∇f(0) from both sides of the
equation, the solution for t is

(17)

giving

(18)
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The spatial distance at minimum PSD is then simply |r ⃗|, but we still need the dose difference
function f(r ⃗) at this position to calculate γ(ρ⃗0) by Eq. 6. The dose difference, and hence γ-
index, can be determined by:

i. Interpolation of f(r⃗) – Linear or cubic spline interpolation can be used to obtain
f(r⃗) at the first-order solution for r ⃗, which gives γ(ρ⃗0) by Eq. 6.

ii. Taylor expansion of f(r⃗) – To first order, f(r ⃗) = f(0) + r⃗ · ∇ f(0) and the γ-index is

(19)

This is the same result obtained by Bakai et al [1] and it can be calculated almost as
fast as the 0th-order solution.

iii. Iterations – Successive first-order approximations can be applied by interpolating
f(r⃗) and ∇ f (r⃗) at the new solution point and solving equation 16 for an improved r⃗
solution. The r⃗ solution at the Nth iteration is given by

(20)

This method can only be used if ∇f is a continuous function and equal to the gradient of the
interpolating function for all r⃗ (see an example where this is not the case in figure 2). If it is
not, then the iterations can fail to converge. For this reason, we only use cubic spline
interpolation with the iteration method.

The dose distribution D(ρ⃗) within the δd0 neighborhood of ρ⃗ is almost always a monotonic
increasing or decreasing function and these iterations converge quickly. The situation
whereby the iterations converge on a local minima of the PSD rather than the global minima
can occur when D(ρ⃗) has discontinuities or has excessive noise. This scenario can be
mitigated by selecting the smoothest dose distribution as D(ρ⃗) when deciding which
distribution should be D(ρ⃗) and which should be D0(ρ⃗0) This choice is further discussed in
section 4.7.

2.4.3. Second order solution—To second order, Eq. 5 becomes

(21)

Solving Eq. 21 for r⃗ is computationally expensive because it requires solving a set of
coupled cubic equations. Similarly, the second-order search path

(22)

can be solved for r ⃗ (t), and while this is a linear problem that can be solved by matrix
inversion, the result for a 3-dimensional problem has t3 terms that when substituted into
equation 21 yields an intractable 7th-order polynomial equation of a single variable (a 2-
dimensional problem will be 5th-order). There are multiple possible solutions to Eq. 21
because there are local and global minima and local maxima in the PSD from a point to a
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quadratic surface. Only the solution corresponding to the global minimum should be
selected for the γ-index calculation.

We resort to a semi-second order method that is the solution to

(23)

where g⃗fo ≡ ∇ f (0) + (r⃗fo · ∇) ∇ f (0) and r⃗fo is the first-order solution for r⃗. The term

 could also be simplified using r ⃗ ≈ r⃗fo while maintaining order  but
the solution for r⃗ is more accurate without making this approximation. Equation 23 can be
solved with the substitution

(24)

and canceling g⃗fo from both sides of the equation. The result is the quadratic equation

(25)

that is to be solved for t. Graphically, we are finding the intersection of a line with a
parabola. When two solutions exist, one will be close to the 1st-order solution point and the
other will be at a different section of the parabola and we select the solution that reduces to
the 1st-order solution in the limit of small second-order derivatives. If no solution exists,
then this corresponds to the graphical situation that the normal vector is not intersecting the
parabola approximating f(r⃗) and we set t equal to the value at the mid-point of the parabola.
Mathematically, this is given by

(26)

where:

(27)

(28)

(29)

The dose difference, and hence γ-index, can be determined by:

i. Interpolation of f(r⃗) – We use the higher-order cubic spline interpolation method
to obtain f(r⃗) and hence obtain γ(ρ⃗0).

ii. Taylor expansion of f(r⃗) – Using equations 13, 24, and 27,
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(30)

and the γ-index follows from

(31)

2.5. Computing platform
The software is developed in the Matlab R2007b technical computing environment without
using compiled code (for optimum portability). The software is run on a Dell Precision
Workstation T7400-64 bit with dual Quad Core Intel Xeon 2.66 GHz processors although
calculation times are based on the use of a single core. All quoted computation times below
are for this implementation.

2.6. Test Cases
Results are generated for two test cases. The first (Fig. 4a) is a proton pencil beam scanning
(PBS) treatment of osteosarcoma of the pelvis. The D(ρ⃗) dose distribution is a 3-dimensional
dose grid from the Astroid treatment planning system [10] with 562 × 103 voxels and 3×3×3
mm3 grid pitch. The D0(ρ⃗0) dose distribution comes from measurements at three depths with
an I’mRT MatriXX detector‡, a 2-dimensional array of 1024 ionization chambers with pitch
7.62 × 7.62 mm2. The second test case (Fig. 4b) is an IMRT treatment of a spine tumor
located around the spinal cord in a cylindrical phantom. The D(ρ⃗) dose distribution comes
from the CMS treatment planning system§ and the D0(ρ⃗0) dose distribution comes from an
in-house developed Monte Carlo simulation [11]. Both IMRT dose distributions are
specified on a 3-dimensional grid with 1.78 × 106 voxels and 2 × 2 × 2.5 mm3 grid pitch.

3. Results
The preceding section describes a variety of methods for calculating γ(ρ⃗0), a matrix of γ
values specified on the same grid as the D0(ρ⃗0) dose distribution. Tab. 1 enumerates the
methods with labels A through I.

We define Pγ≤1 as the fraction of γ values less than or equal to 1 within a region of interest,
the quantitative pass/fail criteria for comparing two dose distributions. Usually Pγ≤1 >90%
is required to pass.

Calculation times for TAE methods, Methods A and B, are based on a brute-force approach
whereby Pγ≤1 is determined using an interpolated grid of pitch δd0. Pγ≤1 is re-calculated on
a grid with half the pitch for points with γ > 1 and repeated until Pγ≤1 converges within
0.1%. These calculation times are not optimized and the purpose is to give the value of the
γ-index for these methods. The calculation times could be improved through techniques
such as those described in Wendling et al 2007 [5], but the calculation time for any search-
type method is sensitive to the interpolation method, agreement between the two dose
distributions, and the pitch of the grid used in the search.

The calculation time for each numerical method includes interpolation and the calculation of
the ᾱ coefficients, which is generally the largest contribution to the total calculation time.
All numerical methods except Method G (1st-order Tricubic Spline and Iterations) calculate

‡IBA Dosimetry
§Elekta AB(publ)
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the matrix of γ-index values on the entire ρ⃗0 grid, regardless of the region of interest.
Method G performs an initial 1st-order calculation on the entire ρ⃗0 grid and then 1st-order
iterations on points only within the region of interest that have not converged within 0.2%
relative to the most recently iterated γ(ρ⃗0). Iterations stop when more than 99% of points
converge. The computation time of methods C through I could be improved by computing
only within the region of interest. At our facility, however, we wish to qualitatively examine
all regions of the γ-index map in addition to the value of Pγ≤1 as part of the quality
assurance program, so the γ-index software has been developed for that purpose.

Throughout this section, we use ρ⃗ = (X, Y, Z), with upper-case X, Y, and Z and units of
[mm] to denote physical coordinates. Unit-less spatial coordinates defined by Eq. 2 are in
lower-case letters.

For the first test case, the 3-dimensional and 2-dimensional γ-index comparisons are given
in Tabs. 2 and 3, respectively. For the second test case, the 3-dimensional γ-index
comparison is given in Tab. 4. In the second test case, a line of grid points parallel to the X
direction at Y = −31.8 mm and Z = 10 mm has particularly large second-order derivatives
and results at these points are given in Fig. 5.

4. Discussion
4.1. First-order method with f(r⃗) from the Taylor expansion

Equation 19 was first constructed by Bakai et al [1] and they proposed a new comparison
index that has both positive and negative values, given by

(32)

The χ-index has similar behavior to the γ-index; in regions where D(ρ⃗0) is flat, χ is equal to
the dose difference and in regions where the dose distribution is not flat, |χ| is reduced
because the gradient of the dose distribution is in the denominator.

For the IMRT and proton PBS examples in Sec.3, we find that |χ| ≃ γ except where second
derivatives and γ are large. Regions that have small second derivatives or have small γ (and
hence small r) allow us to accurately truncate the Taylor series after the 1st-order terms in
Eqs. 13 and 14. The results for “γE − γ,A” in Fig. 5d show that |χ| is generally accurate
within ±0.2 in individual voxels, although the accuracy can be between ±0.2 to 0.4 in the
aforementioned regions. The accuracy of summing the number of voxels with γ ≤ 1 is much
better than the accuracy of individual voxels because the uncertainties in this method are
centered around zero. We, therefore, arrive at a similar result to Bakai in our examples, that
the method gives Pγ≤1 with ~ 1% accuracy.

4.2. Signed γ-index
The χ evaluation factor, which can be positive and negative depending on the sign of D (ρ⃗0)
− D0(ρ⃗0), is useful because it indicates the locations where the dose distribution D(ρ⃗0) is
smaller or larger than D0(ρ⃗0). This makes it very simple to diagnose discrepancies due to
spatial shifts and/or output from a display of the χ-index matrix. One can always construct a
signed γ-index with the same usefulness from any of the methods in Sec. 2 by multiplying
γ(ρ⃗0) by the sign of D(ρ⃗0) − D0(ρ⃗0).
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4.3. γ-index of field combinations
Both IMRT and proton PBS use field combinations such that the cumulative dose is largely
uniform in the target region while the individual fields can be non-uniform. The individual
fields can have steeper dose gradients on average than the sum of the fields which reduces
the γ-index in individual voxels because the gradient of the dose is in the denominator in
Eq. 19. It is, therefore, generally more conservative to use the sum of the field combinations
in a γ-index comparison than the individual fields.

4.4. Two-dimensional dose distributions
The γ-index methods have been developed in this work for 3-dimensions. The 2-
dimensional γ-index is appropriate, however, whenever the dose distribution is
predominantly independent of the longitudinal coordinate. In these 2-dimensional beams,
the differential equation in Eq. 5 gives the trivial solution z =0 whenever  and one can,
therefore, apply either a 2 or 3-dimensional γ-index method and achieve mathematically
equal results.

4.5. Local dose and distance tolerances
While the distance and dose tolerances in Eqs. 2 and 3 are constant, one may use numerical
methods with a non-isotropic distance tolerance and spatially varying dose tolerance. The
methods in section 2.1 are unchanged with this modification but it must be kept in mind that
eq. 5 is derived for a single voxel at a fixed ρ0 grid point. Only the D(ρ⃗) dose distribution is
varying in the derivative of f(r ⃗), with D0(ρ⃗0) and δD0(ρ⃗0) held constant at the local value.
For example, for a spatially varying dose tolerance, the central finite difference in eq. 7
becomes

(33)

4.6. Comparison of numerical methods
The 1st-order iterative method with tricubic spline (Method G) is fast and accurate in all of
the examples and the iterations can be used to check for convergence. The calculation time
for the 3-dimensional γ-index is 34.7 s for 1.78×106 voxels for the IMRT case and the
accuracy of Pγ≤1 is better than 0.2% in our examples.

Significant time-savings can be made if the second derivatives of f(r⃗) are known to be small.
Method E (originally derived in Ref. [1]) is faster than Method G by about a factor of 10 and
the accuracy of Pγ≤1 with this method is ~1% in our examples.

The methods that use Taylor series to obtain f(r⃗) at the solution point (Methods E, F and I)
are faster than those of the same order that use interpolation (Methods D and H). The
advantage of the latter is that f(r⃗) corresponds to a real point on the D(ρ⃗) dose surface and
can be considered to always underestimate the true γ-index with magnitude depending on
how well the numerical methods find the solution to Eq. 5. The uncertainty in the former
method on γ(ρ⃗0) is positive or negative in individual voxels (depending on how well the
Taylor series approximates the tricubic or linear interpolation) and will mostly average to
zero when summing voxels to calculate Pγ≤1. Tab. 4 shows these effects: Method D
underestimates Pγ≤1 by 10.1% compared to Method A (the “gold standard”); Method H,
which is a 2nd-order method, finds a better solution point, but still underestimates Pγ≤1 by
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2.3%; and, Methods E, F and I, which use the Taylor series to obtain f(r⃗), are all accurate
within 1.1% with Method I, the 2nd-order method, being the most accurate.

By combining the 1st and 2nd-order methods, one can automatically determine the accuracy
of γ(ρ⃗0) voxel-by-voxel and perform iterations or TAE methods in selected voxels. The
advantage of this approach over an iteration-only approach will depend on the dose
distributions and the software implementation. In our implementation, the possible saving in
the calculation time is at most a factor of 1.6 for the proton PBS example and no saving at
all for the IMRT example compared to Method G.

4.7. Choice of evaluation and reference dose distributions
The γ-index compares two dose distributions which are called the evaluation and reference
dose distributions. The evaluation distribution, D(ρ⃗), is searched for the smallest PSD to
each point in the reference distribution, D0(ρ⃗0). As pointed out in Low 2010 [12] the gamma
index result is not the same if the evaluation and reference distributions are interchanged.
This is a result of the definition of γ in Eq. 1 where the minimization is performed over only
one dose distribution coordinate and the user must decide over which coordinates to perform
the search. Furthermore, another asymmetry occurs in the presence of noise artifacts. Noise
introduced to the evaluation distributions (Fig. 6a) is very different compared to noise
introduced to the reference distribution (Fig. 6b). Noise in the evaluation distribution
artificially improves the γ-index while noise in the reference distribution merely “smeares”
the matrix of γ values (i.e. some grid points will have smaller γ but they are compensated
by points with larger γ). A small amount of noise in the latter distribution will, therefore,
not cause a systematic error in Pγ≤1. Larger noise levels can affect the equilibrium between
grid points that transition from γ > 1 to γ < 1 and vice versa depending on the number of
initial grid points in each case, so a level of noise that is acceptable in the reference
distribution depends on the flatness of the histogram of γ values near γ = 1. Noise artifacts
are also discussed in Low 2010 [12].

We use the dose distribution from treatment planning (or the smoother of the two
distributions) as the evaluation distribution, D(ρ⃗) for the following reasons:

i. it does not have noise so this choice generally will not give false positive results;

ii. it is continuous (except in regions directly behind collimators), a requirement for
the numerical techniques;

iii. it is calculated in 3-dimensions so the search for minimum PSD can be performed
in 3-dimensions even when the reference dose is measured in only 1 or 2-
dimensions. Performing measurements on a 3-dimensional grid to obtain a
measured evaluation distribution would be cumbersome.

iv. it is typically smooth and specified on a grid with pitch ≳ 2 mm which is
approximately equal to the distance tolerance in the γ index. In this case, it is
unlikely to have local minima in the search for minimum PSD (see Sec. 4.8).

4.8. Local minima
The formation of local minima in the search for minimum PSD can distort the calculation of
the γ-index. Fig. 7 gives schematics of a nominal case and three cases where the numerical
methods can fail to find the global minimum. These limitations. however, are not unique to
the numerical methods. TAE methods that stop the search as soon as the PSD increases with
spatial distance (for example Ref. [5]) can also be distorted by local minima.
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Generally, the case in Fig. 7c is statistically improbable and has no effect clinically and the
cases outlined in Figs. 7b and d can be avoided if the evaluation distribution is smooth and
specified on a grid of pitch approximately the same size as the distance tolerance, δd0. In our
experience, the dose distribution from treatment planning systems often has these properties.
This scenario, where δd0 is similar to the grid pitch, does not normally have local minima in
the search for minimum PSD because the grid resolution is not small enough to create a
local minimum (Fig. 7a). We stress, however, that numerical techniques might locate local
minima in a few points where the second order or higher gradients are very large with the
number of points affected comparable to other γ-index techniques that have truncated search
algorithms.

5. Conclusions
We present an efficient method for calculating the 3-dimensional γ-index with tricubic
spline interpolation. A numerical framework was created to solve for the minimum PSD to
arbitrary order and we presented 0th, 1st, and semi 2nd-order solutions. Examples of dose
distributions from IMRT and proton PBS were used to test the numerical methods which
assume that the evaluated dose distribution is continuous. The IMRT case shows the
performance of these calculations in an extreme example where the dose distribution is
shaped by multi-leaf collimators.

Pγ≤1 determined using linear interpolation and tricubic spline interpolation are different by
~1%. Pγ≤1 using 1st-order numerical methods are also accurate within ~1% and are the best
choice if the dose distribution is known to have small second-order derivatives. The semi
2nd-order method is also accurate within ~1% and the difference between the 1st and 2nd-
order methods can be used to check for convergence. Voxels that do not converge can be
selected automatically and the calculation refined using iteration or TAE techniques.

Pγ≤1 in the 1st-order iteration method is accurate within 0.2% and, in the IMRT example, the
3-dimensional γ-index calculation in 1.78 × 106 voxels including tricubic spline
interpolation is performed in 34.7 s. The convergence of the calculations can be checked
automatically between iterations and, in our experience, this method is the best choice of the
numerical methods if the dose distributions may have large second-order derivatives.
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Figure 1.
An abstract vector space with 1 unitless spatial coordinate as the horizontal axis, the unitless
dose coordinate as the vertical axis and the origin at the location of the reference value for
which we wish to find the minimum magnitude of u (Eq. 6). The tangent and normal vectors
are t and n, respectively. These vectors are drawn for the value of x where the normal vector
passes through the origin and at this position γ = |u|. In three spatial dimensions r⃗ ≡ (x, y, z).
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Figure 2.
Methods for determining derivatives of f(x) between grid points for linear interpolation.
Top: An example of f(x) and the interpolation function F(x). Bottom: The derivative df/dx
provided by central finite difference of f(x). which only exists at the grid points. Also shown
are (a) dF/dx the derivative of the interpolation function F(x) and (b) the linear interpolation
of df/dx. Method (b) is more accurate at the grid points with respect to the central finite
difference.
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Figure 3.
The function values, fabc, at the corners of a unit cube that are used for interpolation at
arbitrary (x, y, z) within the cube. There are 8 function values corresponding to the corners
of the cube where, for example, f001 represents the function value at (x, y, z) = (0, 0, 1).
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Figure 4.
(a) Measured proton PBS dose distribution at 162 mm depth of polystyrene for the treatment
of osteosarcoma of the pelvis and (b) Simulated photon IMRT dose distributions at the plane
containing the isocenter for the treatment of a spine tumor located around the spinal cord.
The simulated photon distribution is corrected for an 18% normalization factor and then
shifted in X by 0.1 mm for the purposes of this work to force the γ-index software to
perform interpolation. The units of the contours in (a) and (b) are [GyRBE] and [Gy],
respectively.
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Figure 5.
(a) IMRT dose distributions along the X direction at Y = −31.8 mm and Z = 10 mm. (b)
Second derivatives of the dose difference function defined by Eq. 3 with respect to the unit-
less spatial coordinates, (c) γ (ρ⃗0) by methods defined in tab. 1. (d) Accuracy of the γ-index
methods with respect to γA · γB shows the magnitude of the error in individual voxels (~ ±
0.1) caused by linear interpolation alone. γE and γI are more accurate than γB except in
regions where the 2nd derivatives and γ are large. γG is the most accurate of the four
methods compared to γA.
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Figure 6.
An extreme example of the asymmetry in the gamma index calculation. (a) The evaluated
dose distribution “e” has almost 100% noise and (b) the reference dose distribution “r” has
almost 100% noise. The smallest PSD between the two curves, assuming the δd0 and δD0
gamma index parameters are unity, are indicated by the length of the arrows at two different
points on the curves.
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Figure 7.
(a) A nominal example of the reference dose grid (circles), evaluated dose grid (crosses),
and cubic interpolation of the evaluated dose (solid line). In this case, numerical methods
will determine γ correctly, represented by the length of the arrow, (b) An example where the
numerical methods could be distorted by a local minimum (γn) instead of the true γ. (c) A
maximum in the evaluated dose that exactly coincides with a reference dose grid position
will fail to give the true γ at that grid point, (d) Discontinuities can lead to a failure due to
negative dose from the cubic interpolation and local minima.
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Table 1

Enumeration of γ-index calculation methods from Sections 1 and 2.

Label Method Type Interp. method for Taylor series Calculation of f(r⃗) at PSD Reference

A TAE - Tricubic Low 1998 [2]

B TAE - Linear Low 1998 [2]

C 0th order - Linear Section 2.4.1

D 1st order Tricubic Tricubic Section 2.4.2.i

E 1st order Linear Taylor series Bakai 2003 [1]

F 1st order Tricubic Taylor series Bakai 2003 [1]

G 1st order Tricubic and Iterations Section 2.4.2.iii

H 2nd order Tricubic Tricubic Section 2.4.3.i

I 2nd order Tricubic Taylor series Section 2.4.3.ii
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Table 3

Results for the same conditions as Tab. 2 except that the comparison uses a 2-dimensional γ-index. Depth d3

is chosen for the comparison. These data show that the algorithms developed in 3-dimensions can be applied
in 2-dimensions.

Pγ≤1 [%] Accuracy [%] Calculation time [s]

A 95.86 - 0.18

B 95.46 0.4 0.11

C 63.31 34 0.0014

D 95.71 0.15 0.043

E 96.25 0.4 0.0039

F 96.30 0.5 0.033

G 95.91 0.05 0.048

H 95.91 0.05 0.049

I 95.91 0.05 0.057
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Table 4

Results for the 3-dimensional γ-index for the IMRT test case in Fig. 4b. The comparison uses δd0 = 3 mm,
δD0 = 3%, and region of interest denned by 30% of the maximum dose. IMRT uses collimators to shape the
dose distribution which tests the limits of the numerical techniques. In this case, even in the presence of
collimators, both the 1st-order Method F and 2nd-order Method I give Pγ≤1 with ~ 1% accuracy.

Pγ≤1 [%] Accuracy [%] Calculation time [s]

A 90.80 - 22000

B 89.88 1.0 2300

C 37.97 58 1.5

D 81.65 10.1 36.7

E 91.80 1.1 4.7

F 91.75 1.1 28.0

G 90.71 0.1 34.7

H 88.71 2.3 51.9

I 90.04 0.8 35.6
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