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Obesity is a major worldwide health problem. The treatment options are severely limited. The development of novel anti-obesity drugs
is fraught with efficacy and safety issues. Consequently, several investigational anti-obesity drugs have failed to gain marketing
approval in recent years. Anorectic gut hormones offer a potentially safe and viable option for the treatment of obesity. The prospective
utility of gut hormones has improved drastically in recent years with the development of longer acting analogues. Additionally, specific
combinations of gut hormones have been demonstrated to have additive anorectic effects. This article reviews the current stage of
anti-obesity drugs in development, focusing on gut hormone-based therapies.

Introduction

Obesity is a leading cause of preventable mortality world-
wide. Current strategies for obesity management include
lifestyle changes,pharmacological intervention and bariat-
ric surgery. Bariatric surgical procedures most successfully
achieve sustained weight loss. However, due to the expen-
sive and highly invasive nature of these procedures, they
are generally only available to the morbidly obese. In
England, approximately 2% of the population is morbidly
obese (BMI > 40 kg m-2) but a further 60% is considered to
be overweight or obese (BMI 25–40 kg m-2) [1]. For the
majority of the overweight population the only options are
therefore pharmacological and/or lifestyle interventions.
However, long term compliance with such interventions is
low and the efficacy of currently available drugs is limited,
leading to relatively low successful treatment rates [2].

Pharmacotherapy for obesity is limited by efficacy and
safety issues. Orlistat, a gastric and pancreatic lipase inhibi-
tor, is the only prescription medicine for obesity currently
licensed in the UK. The European Medicines Agency
(EMEA) and the Food and Drugs Administration (FDA) cur-
rently recommend that for a new anti-obesity drug to be
approved it should result in a statistically significant
placebo adjusted weight loss of greater than 5% at the end
of a 12 month period. Less than 30% of patients on Orlistat

achieve this magnitude of weight loss [3]. More effective
pharmacotherapy is therefore urgently needed. Analysis
of certain drugs in development have demonstrated
improved efficacy. The SEQUEL study of Qnexa® (a combi-
nation of the anticonvulsant topiramate, a weak carbonic
anhydrase inhibitor, and the appetite suppressant phen-
termine, an amphetamine derivative) reports 79% of
treated patients achieving >5% weight loss [4]. However,
the development of novel drug treatments is also bur-
dened with safety concerns. A number of investigational
drugs that are in late phase clinical trials, including Qnexa®,
and also Contrave® and lorcaserin, have recently failed to
gain marketing approval because of such concerns [5–7].
The ability to predict efficacy and potential side effects and
the frequency with which such side effects occur are con-
sequently major hurdles to the development of novel anti-
obesity drugs.

Animal models have proven useful in the study of
obesity and the identification of novel anti-obesity drug
targets. Drug-induced weight loss in such models com-
monly reflects effects in humans. However, their ability to
predict potential side effects remains in question. Some of
the most common side effects associated with previous
and putative anti-obesity drugs are nausea, cardiovascular
events and psychological sequelae [8]. Unlike humans,
rodents lack an emetic response. Consequently, strategies
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such as behavioural studies, measuring pica, conditioned
taste aversion or conditioned gaping have to be used to
evaluate potential drug induced nausea in pre-clinical
studies in rodents [8, 9]. However, it is unclear how predic-
tive the results of these tests are of the effects in humans.
To help predict potential cardiovascular side effects in
the clinic, the application of radio-telemetry technology to
assess comprehensively changes in cardiovascular param-
eters,such as blood pressure,heart rate and electrical activ-
ity, during pre-clinical drug assessment can be utilized.
Psychological side effects are possibly the most difficult to
evaluate pre-clinically, although tests such as the forced
swim test can be employed to help evaluate potential
depression-like side effects (similar to those that resulted in
the recent market withdrawal of rimonabant) [10]. In addi-
tion, both cardiovascular and psychological side effects
tend to develop after chronic treatment and can therefore
be difficult to identify during pre-clinical testing.

The history of the obesity drug market suggests that
greater emphasis on investigating potential side effects is
required in the early pre-clinical stages of drug develop-
ment. Recent research has identified a number of poten-
tially safer targets. This article focuses on anti-obesity
drugs currently in development and, in particular, the
potential utility of gut hormones as anti-obesity agents.

Anti-obesity drugs currently in late
phase development

The extent of the obesity problem and the lack of licensed
pharmacotherapies have created a large potential market

for the development of new treatment options. Conse-
quently, there are currently a number of drugs for obesity
in late stage development (summarized in Table 1).
However approval for some of these agents has been
delayed due to safety concerns.

Qnexa®
Qnexa® is an investigational, once daily, oral, controlled
release combination therapy. It consists of topiramate, a
drug originally approved for migraine prophylaxis and
used as an anti-convulsant which demonstrated unex-
pected weight loss as a side effect [11], and phentermine,
an amphetamine derivative which has been available in
the US for more than 30 years as a short term treatment for
obesity. Developed by Vivus Inc, Qnexa® has undergone
multiple phase III trials demonstrating weight loss that
meets the criteria set forth by the FDA for a novel anti-
obesity drug [4]. The FDA stated associations with an
elevated heart rate and potential teratogenic effects [5], as
reasoning for non-approval of a New Drug Application
(NDA) for Qnexa® submitted in December 2009. In
October 2011, Vivus submitted a NDA for Qnexa® to the
FDA seeking approval for an initial indication for the treat-
ment of obesity, with a contraindication for women of
childbearing potential [12]. The FDA Endocrinologic and
Metabolic Drugs Advisory Committee have since recom-
mended Qnexa® be granted marketing approval by the
FDA for the treatment of obesity in adults [13].

Contrave®
Contrave® is a controlled release combination therapy of
bupropion, an inhibitor of dopamine and norepinephrine

Table 1
Anti-obesity drugs in late phase development

Drug Target Status

Qnexa® (topiramate and phentermine) Carbonic anhydrase inhibitor, Sympathomimetic agent FDA complete response letter received. Concerns over elevated heart
rate and teratogenic potential. NDA submitted in October 2011
seeking approval for reduced market population.

Vivus

Contrave® (bupropion and naltrexone) Dopamine and norepinephrine re-uptake inhibitor,
m-opioid antagonist

FDA complete response letter received. Concerns over long term
cardiovascular risk. Further trials in the pipelineOrexigen Therapeutics Inc

Lorcaserin 5-HT2C receptor agonist FDA complete response letter received. Concerns over efficacy and
safety: carcinogenicity and valvulopathy. Further trials on goingArena Pharmaceuticals

Liraglutide GLP-1 analogue Phase III clinical trials
Novo Nordisk

Cetilistat Pancreatic lipase inhibitor Phase III clinical trials
Norgine B.V.
Empatic® (zonisamide and bupropion) Anti-epileptic, dopamine and norepinephrine re-uptake

inhibitor
Phase II clinical trials

Orexigen Therapeutics Inc.

Pramlinitide/Metreleptin Amylin analogue and leptin analogue Phase II clinical trials
Amylin Pharmaceuticals
Velneperit NPY5R antagonist Phase II clinical trials
Shionogi & Co. Ltd

Tesofensine Triple monoamine re-uptake inhibitor: serotonin,
dopamine and norepinephrine

Phase II clinical trials
NeuroSearch A/S
Obinepitide PP and PYY3–36 analogues Phase II clinical trials
7TM Pharma
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re-uptake, and naltrexone, a m-opioid antagonist. Devel-
oped by Orexigen Therapeutics Inc, Contrave® has
completed a number of phase III trials successfully
demonstrating appropriate efficacy [14]. However its
approval has been prevented by cardiovascular safety con-
cerns [6]. In September 2011, Orexigen announced that
following a meeting with FDA’s Office of New Drugs, a
suitable cardiovascular outcomes trial that would address
these concerns is feasible and likely forthcoming [15]. A
Special Protocol Assessment (SPA) for the Contrave® out-
comes trial was agreed with the FDA in January 2012. Ini-
tiation of this outcomes trial is imminent [16].

Lorcaserin
Lorcaserin is a selective 5-HT2C receptor agonist developed
by Arena Pharmaceuticals. In September 2010, an FDA
advisory panel voted to recommend against granting
approval to market the drug based on concerns regarding
both efficacy and safety [7]. In phase III trials lorcaserin
demonstrated only a 3.1% placebo adjusted weight loss.
There are also concerns regarding unexplained pre-clinical
carcinogenicity signals and rates of valvulopathy in rats.
The carcinogenicity of lorcaserin has since been reviewed
by Arena and an increased incidence of malignant
tumours was only associated with doses greater than
those demonstrated to reduce significantly food intake
[17, 18]. Phase III trials are continuing. Another 5-HT2C

receptor agonist is also being developed by Proximagen
Group plc for the treatment of obesity and is currently in
phase II trials.

It seems likely that Qnexa®, Contrave® and lorcaserin
will eventually be approved, and thus that more efficacious
drugs are on the horizon. However, the development of
safe drugs remains the biggest hurdle in the anti-obesity
drug market.

The utility of gut hormones as
anti-obesity drugs

Anorectic gut hormones such as glucagon-like peptide-1
(GLP-1), peptide YY (PYY) and oxyntomodulin (OXM) are
released from intestinal L-cells in response to the ingestion
of nutrients and act on central appetite centres to control
eating [19]. In states of obesity, endogenous production of
gut hormones is insufficient to maintain energy homeosta-
sis and thus a suitable intervention is required. It is widely
acknowledged that obese patients do not respond suc-
cessfully to exogenous leptin therapy, and that this is likely
due to a saturable transport mechanism that is already at
capacity in many obese individuals [20–22]. However, the
obese do maintain their sensitivity to anorectic gut hor-
mones [23–26]. Unlike many past and present treatment
strategies, gut hormones are an important component of
the physiological systems regulating appetite and lack

severe adverse side effects, thus making them an attractive
target for the treatment of obesity.

Glucagon-like peptide-1
GLP-1 is a 30 amino acid peptide produced by post trans-
lational enzymatic cleavage of the pre-proglucagon gene
product, and is released from enteroendocrine L-cells in
response to nutrient ingestion. Its biological activities
include the stimulation of glucose-dependent insulin
secretion and the inhibition of glucagon secretion, gastric
emptying and food intake [27]. GLP-17–36 is the major circu-
lating bioactive form of GLP-1. GLP-1 treatment robustly
reduces acute food intake in animals and man [28–30].
However, like other pre-proglucagon gene products, GLP-1
has a short half-life in vivo due to enzymatic degradation
by dipeptidyl peptidase-IV (DPP-IV) [31, 32]. Exogenous
GLP-1 dosing is therefore not an ideal pharmacotherapy.

The incretin effects of GLP-1 have formed the basis of a
number of anti-diabetic drugs. Two long acting GLP-1
analogues, exenatide and liraglutide, are widely used for
the treatment of type II diabetes. In clinical trials both
induced similar weight loss.However liraglutide appears to
be better tolerated by patients and thus may be a more
viable treatment option for weight management [33].
Liraglutide, developed by Novo Nordisk, is an acylated
analogue of human GLP-1, with a considerably extended
half-life in vivo. It was approved for clinical use in Europe in
2009 and in the USA in 2010 as a treatment for type II
diabetes. Liraglutide is currently undergoing phase III
clinical trials as an anti-obesity therapy [34].

However, safety concerns have arisen from post mar-
keting surveillance of GLP-1 analogues which may impede
their development as anti-obesity therapies.These include
an apparent increased incidence of acute pancreatitis in
patients treated with exenatide or liraglutide compared
with other treatment strategies for type II diabetes [35, 36].
In contrast, rodent models provide no evidence of such
an effect [37, 38]. Furthermore, rodent studies have sug-
gested that liraglutide causes dose-dependent and treat-
ment duration-dependent thyroid C-cell hyperplasia and
tumours [39]. However, 2 year treatment with liraglutide in
humans has not resulted in any increase in clinical signs of
C-cell hyperplasia or tumours, as assessed by circulating
concentrations of calcitonin [40]. These studies suggest
potential inter-species differences, an obvious limitation of
the use of animal models in the development of pharma-
cotherapies for human obesity. An additional concern is
the development of treatment specific antibodies.Suitabil-
ity for lifetime use is an advantageous property of any
anti-obesity drug. Should treatment induce an immune
response, this would limit the drug’s long term efficacy and
safety profile. Liraglutide is associated with a reduced fre-
quency and lower levels of treatment-associated antibod-
ies compared with exenatide [41], which is predicted to
make it a safer and more efficacious option for develop-
ment as an anti-obesity drug.

Gut hormones as obesity treatments
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Oxyntomodulin
Oxyntomodulin (OXM), a 37-amino acid peptide secreted
from L-cells, is another pre-proglucagon product demon-
strated to reduce food intake in animal models and in
humans [24, 42–46]. In comparison with other exog-
enously administered gut hormone peptides, OXM is
thought to have a lower incidence of treatment-associated
nausea [45, 47]. No OXM specific receptor has been identi-
fied to date. OXM has weak affinity for the glucagon recep-
tor (GCGR) and also binds to the glucagon-like peptide-1
receptor (GLP-1R), though at a much lower affinity than
GLP-1. In mice, the anorectic effect of OXM is blocked by
the GLP-1R antagonist exendin9–39 and is absent in GLP-1R
knockout models but not in GCGR knockout models. The
anorectic effects of OXM are thus thought to be mediated
primarily through GLP-1R [44]. Despite its relatively weak
affinity for GLP-1R, OXM has a more potent anorectic effect
in acute food intake studies compared with GLP-1 at
similar doses [48] and is thus a strong target for obesity
therapeutics.

Oxyntomodulin has a short circulating half-life due to
breakdown by DPP-IV and/or neutral endopeptidases
(NEP), thus limiting the utility of the exogenous molecule
as an anti-obesity agent. The in vivo bioactivity of OXM is
increased by inhibitors of DPP-IV [49]. Furthermore, NH2-
terminal modification of proglucagon-derived peptides,
such as OXM and GLP-1, can reduce their susceptibility to
enzymatic degradation by DPP-IV and extend their efficacy
in vivo [49–51]. OXM bioactivity can also be prolonged by
the substitution of short amino acid sequences in the mid-
section and octapeptide junction regions that reduce its
susceptibility to NEP degradation. Moreover, acylation of
the OXM C-terminal may improve bioactivity by increasing
peptide binding to albumin, thereby impairing degrada-
tion and clearance [49]. It has been suggested that OXM
stimulates energy expenditure via the glucagon receptor
[46]. A study in diet-induced obese mice comparing the
effects of a long-acting protease resistant dual GLP-1R/
GCGR agonist and a selective GLP-1R agonist, with
matched potency and pharmacokinetics, demonstrated
that the dual agonist was the more effective anti-obesity
agent [52]. Utilizing the mechanisms by which OXM exerts
its effects on appetite and energy expenditure may thus be
a promising approach for the development of novel anti-
obesity drugs. Additionally, a long acting OXM analogue,
OAP-189 (formally TKS1225), is currently in phase I clinical
trials with Pfizer as a treatment for obesity [53].

Peptide tyrosine tyrosine
Peptide tyrosine tyrosine (PYY), a member of the PP-fold
family of peptides, is secreted from intestinal L-cells in
response to food ingestion. Two major forms are found in
the circulation, PYY1–36 and a truncated form, PYY3–36 [54],
produced by enzymatic cleavage of PYY1–36 by DPP-IV [55].
PYY1–36 has agonist activity at Y1, Y2 and Y5 receptors,
whereas PYY3–36 is a selective Y2 receptor agonist. There is

little evidence to suggest PYY1–36 has a role in energy intake
[56] but PYY3–36 is widely accepted as an anorexigenic
hormone that can reduce food intake in lean and obese
animals and in humans [23, 57–62].

The utility of exogenous PYY3–36 as a treatment for
obesity is limited by its rapid metabolism [63]. Further-
more, the supraphysiological doses likely required for peri-
odic administration of PYY3–36 to reduce food intake are
associated with nausea [64]. As with GLP-1 and OXM, long-
acting PYY3–36 analogues may be more useful than the
endogenous molecule. The mechanisms by which PYY3–36

is rapidly degraded are not fully characterized. However,
endopeptidases have been implicated in the degradation
of PYY1–36 [65], and thus similar mechanisms may be
involved in the degradation of PYY3–36. It is likely that met-
alloendopeptidases such as meprin b are involved in the
degradation of PYY3–36. Meprin b is proposed to cleave
PYY3–36 at the conserved sites, Glu10-Asp11, Asp11-Ala12 and
Ala12-Ser13. Co-administration of PYY3–36 and actinonin, an
inhibitor of meprin b, to mice prolongs its anorectic effects
[66]. Alternative strategies to prolong the anorectic actions
of PYY3–36 have been investigated, including the use of
polyethylene glycol (PEG)ylated conjugates and reversible
PEGylation [67–69]. The latter method involved coupling
PYY3–36 to a 40 kDa PEG group via a spontaneously cleav-
able linker which was gradually hydrolyzed, releasing
unmodified PYY3–36 into the circulation. This type of modi-
fication avoids the need for repeat administrations or sup-
raphysiological dosing and has been shown to induce a
similar reduction in food intake in mice to that seen when
PYY3–36 is continuously infused [69].

Pancreatic polypeptide
Pancreatic polypeptide (PP), another member of the
PP-fold family of peptides, is secreted postprandially from
pancreatic islet PP cells. It has a high affinity for the Y4

receptor, via which it is thought to reduce food intake [70].
Peripheral administration of PP in rodents and humans
reduces food intake [71–73]. However, PP also has a short
half-life in vivo, limiting its potential as a treatment for
obesity.

Longer acting PP analogues have been synthesized
and have shown therapeutic promise. Lipidation of human
PP (hPP) with palmitic acid increases its anorectic efficacy
in mice [74]. PP 1420 is a peptidase resistant analogue of
hPP, shown in phase I clinical trials to be well tolerated and
to have a longer circulating half-life compared with the
endogenous hormone [75].

Gut hormone combination
therapies

The maintenance of energy balance involves a number of
central and peripheral signals. Simultaneously targeting
more than one of these components may improve the
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efficacy of anti-obesity drugs and in doing so, may better
mimic the physiological control of appetite. Bariatric
surgery elevates a number of anorectic gut hormones
which are thought, in combination, to contribute to the
weight loss observed following this surgery. The effects of
administering various gut hormone combinations have
therefore been investigated.

PYY3–36 potently reduces appetite, but is strongly asso-
ciated with treatment-induced nausea. A combined infu-
sion of oxyntomodulin and PYY3–36, at doses not associated
with nausea, has an additive anorectic effect in humans
[76]. Although this method of administration is impractical
for an obesity treatment, it highlights that these hormones
work through different mechanisms that can be simulta-
neously exploited. Utilizing long acting gut hormone
analogues in combination might therefore provide the
prolonged action without the side effects required for a
successful anti-obesity agent.

PYY3–36 and PP given in combination showed no addi-
tive effect compared with either treatment alone when
administered intraperitoneally to mice or intravenously to
humans [77]. However, obinepitide (TM30338), from 7TM
Pharma, is a synthetic analogue of human PYY and PP that
has been reported to have improved anorectic effects. It
acts as a dual Y2 and Y4 receptor agonist and is designed to
be administered as a once or twice daily subcutaneous
injection. 7TM Pharma reported that obinepitide was safe
and well tolerated and resulted in prolonged reductions in
food intake compared with either hormone alone in phase
I/II clinical trials [78]. The utility of combined PYY and PP
treatment consequently requires further investigation.

Perhaps the most promising combination of gut hor-
mones is that of GLP-17–36 and PYY3–36. This combination
has been shown to have an additive anorectic effect in
both mice and humans [79]. The administration of GLP-
17–36 and PYY3–36 in combination at doses that do not
reduce food intake individually significantly reduces food
intake in genetically obese mice and in humans [79]. Most
interestingly, a GLP-17–36 and PYY3–36 oral combination
therapy utilizing sodium N-[8-(2-hydroxybenzoyl) amino]
caprylate (SNAC) delivery technology to mimic endog-
enous secretion of the peptides also has an additive
anorectic effect in humans [80].

Oral administration is considered the most convenient
and economical method of drug delivery and tends to
encourage a higher rate of compliance than other admin-
istration routes [81]. However, gut hormone peptides are
subject to rapid degradation in the digestive environment
of the upper gastrointestinal (GI) tract and are poorly
absorbed, severely limiting their oral bioactivity. SNAC
technology, mentioned above, is an emerging strategy for
the oral delivery of drugs. It is based on Emisphere’s
Eligen® Technology which facilitates the transport of com-
pounds with low oral bioavailability, such as gut hormones,
across biological membranes. SNAC is hydrophobic and
forms non-covalent bonds with peptides, increasing their

lipophilicity, and therefore improving their absorption
across the GI epithelium. Upon crossing the GI epithelium,
the drug should disassociate from the SNAC molecule,
leaving it free to pass directly into the circulation and exer-
cise its intended pharmacological action. Such a delivery
system could be utilized to provide a pharmacological
profile that closely resembles the physiological release
of gut hormones. Additionally, the SNAC carrier is readily
and safely eliminated by normal excretion pathways.
Emisphere’s Eligen® Technology has been successfully
employed in the development of oral forms of heparin
[82], insulin [83] and parathyroid hormone [84], and initial
results suggest it may have utility as a delivery agent for
gut hormones such as GLP-17–37 and PYY3–36 [85, 86]. The
development of anti-obesity drugs that can be delivered
orally and are as efficacious as injectables would be of
great clinical significance.

Targeting nutrient sensing
receptors

An emerging field of anti-obesity research is the study of
nutrient sensing receptors. Many nutrient sensing receptors
present in the GI tract have been localized to the L-cells of the
distal small intestine and colon. Stimulation of specific nutri-
ent receptors, such as the sweet taste receptor, in immortal-
ized and primary L-cell cultures has been shown to cause gut
hormone release [87, 88]. However, there is currently very
little in vivo data on these systems and thus the physiological
relevance of these effects are unclear. The use of receptor
knockout models will aid the investigation of the potential of
these receptors as anti-obesity targets. Theoretically, directly
targeting these nutrient sensing receptors to stimulate
endogenous gut hormone release might provide a relatively
physiological means of suppressing appetite and reducing
energy intake. Stimulating the L-cell directly requires the spe-
cific receptor agonist or agonists used to avoid absorption
and degradation in the upper GI tract. Several mechanisms
have been developed for colon-targeted drug delivery
including systems that are pH and time-dependent,pressure-
controlled and microbiota activated. While each of these
systems has limitations, the combination of two or more
systems may improve the accuracy of site specific drug tar-
geting [89]. The oral administration of nutrient sensing
receptor agonists which stimulate the endogenous release of
gut hormones may be an effective long term treatment for
obesity, minimizing administration site-specific side effects
and the potential risk of antibody development which can be
linked to exogenous gut hormone treatment [41, 90].

The future of anti-obesity drug
development

It is likely that Qnexa® and Contrave® will be approved for
the treatment of obesity in the foreseeable future.
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However, the development of safe drugs remains the
biggest hurdle in the anti-obesity drug market. With the
development of long acting gut hormone analogues and
the additive anorectic effects seen with specific gut
hormone combinations, the potential utility of gut hor-
mones as a treatment for obesity remains high.Finally, with
research into drug delivery mechanisms growing, it is pos-
sible that orally delivered gut hormone analogues repre-
sent the next generation of anti-obesity drugs.
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