Skip to main content
. 2012 Nov 2;12(11):14730–14773. doi: 10.3390/s121114730

Table 3.

WBAN MAC protocols.

Protocol Protocol Summary
MedMac Allows nodes with ultra low data rates to save power by sleeping through beacons normally received to synchronize with the network. Achieved energy savings of up to 87% over 802.15.6 for the selected scenarios.
BodyMAC Gives flexible bandwidth allocation to improve energy efficiency by reducing packet collisions, lowering transmission times, idle listening and control packet overhead. Efficient sleep mode used to reduce idle listening duration for low duty cycles. Demonstrates superior performance compared to 802.15.4.
BSN-MAC Designed to exploit feedback information from nodes to deliver increased energy efficiency. Control algorithm enables the BSN coordinator to adjust parameters in the 802.15.4 superframe structure to avoid idle listening and achieve both energy efficiency and low latency on energy critical nodes.
DQ-MAC Grants immediate access for light traffic loads (behaving as a random access mechanism) and moves to a reservation system for high traffic loads, eliminating collisions for all data transmissions. Delivers energy saving improvements over BSN-MAC and 802.15.4.
H-MAC Exploits heartbeat rhythm to perform time synchronization for TDMA. nodes use heart rate waveform peaks for node synchronization. Nodes can achieve synchronization without having to turn on their radio. Energy cost for time synchronization can be avoided, thereby increasing the lifetime of the network. Limitation of single point of failure.
CA-MAC Adopts different transmission strategies, depending on variation of patient activity, vital life signs or environment status. Protocol incorporates a hybrid mechanism for channel access using TDMA and contention-based model to reduce energy consumption and latency. Demonstrated packet loss rate of 50% lower than comparable MACs with reasonable tradeoff between reliability and efficiency.
Power Efficient MAC On-demand wakeup radio mechanism. Additional receiver attached to the sensor node operates independently from main node radio to reduce idle listening and reduce power consumption. Model incorporates periodic and emergency traffic scenarios. Offers improvements in terms of power efficiency and delay in single hop scenarios compared to B-MAC, X-MAC, WiseMAC and ZigBee (802.15.4).
TaMAC Adapted to cater for normal, emergency and on-demand traffic types. Main radio deals with normal traffic and second is used for emergency/on-demand traffic. Results showed performance improvements over 802.15.4, WiseMAC and S-MAC.
TDMA directional MAC Differentiates between normal and urgent traffic using two BAN coordinators.Urgent packets are directed to a secondary BAN coordinator when the node doesn't have its own guaranteed time slot.