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Abstract
The presence of recurring arrhythmic events (also known as cardiac dysrhythmia or irregular
heartbeats), as well as erroneous beat detection due to low signal quality, significantly affect
estimation of both time and frequency domain indices of heart rate variability (HRV). A reliable,
real-time classification and correction of ECG-derived heartbeats is a necessary prerequisite for an
accurate on-line monitoring of HRV and cardiovascular control. We have developed a novel point
process based method for real-time R-R interval error detection and correction. Given an R-wave
event, we assume that the length of the next R-R interval follows a physiologically motivated,
time-varying inverse Gaussian probability distribution. We then devise an instantaneous
automated detection and correction procedure for erroneous and arrhythmic beats by using the
information on the probability of occurrence of the observed beat provided by the model. We test
our algorithm over two datasets from the Physionet archive. The Fantasia normal rhythm database
is artificially corrupted with known erroneous beats to test both the detection and correction
procedure. The benchmark MIT-BIH Arrhythmia database is further considered to test the
detection procedure of real arrhythmic events and compare it with results from previously
published algorithms. Our automated algorithm represents an improvement over previous
procedures, with best specificity for detection of correct beats, as well as highest sensitivity to
missed and extra beats, artificially misplaced beats, and for real arrhythmic events. A near-optimal
heartbeat classification and correction, together with the ability to adapt to time-varying changes
of heartbeat dynamics in an on-line fashion, may provide a solid base for building a more reliable
real-time HRV monitoring device.

Index Terms
Point-processes; heart rate variability; arrhythmias; ectopic beats; erroneous R-R intervals

I. Introduction
Heart rate variability (HRV) techniques [1]–[3] provide a window into the many
physiological factors that modulate the normal heart rhythm. In particular, they have been
found useful for non-invasive autonomic tone assessment in a wide range of clinical and
non-clinical scenarios. In order to provide reliable results, these techniques require
uninterrupted series of normal R-R intervals. Peak detection errors – when the algorithm
misses a beat and/or detects one when there is none – and ectopic beats often determine
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abrupt changes in the R-R interval series that can lead to substantial deviations of the HRV
indices.

The increasing quality of electrocardiogram (ECG) recording systems together with better
R-peak detection algorithms has reduced the problem of noisy R-R series in controlled
clinical and research environment. Nevertheless, this issue is still of primary importance in
new applications of HRV studies, such as ambulatory monitoring in very unstructured
environments and extreme conditions, and when the ECG is acquired using single-channel
miniature devices, smartphones, or wearable technology.

The simple approach of discarding all sections contaminated by irregular R-R intervals
might pose some problems. For example, if the rate of occurrence of mis-detections or
ectopic events is not uniform but it is dependent on specific parts of the protocol (e.g., those
with frequent motion artifacts) or on the physiological state of the subject (e.g., states that
may result in abnormal morphology of the QRS or in higher incidence of ectopic events),
then the exclusion of these periods might skew the resulting HRV indices [4]–[6]. When the
goal of the research is to study HRV in extreme conditions (e.g., during rescue operations,
military missions, or hiking expeditions) removing all sections contaminated by R-peak
misdetections caused by motion artifacts is simply not an option.

A better approach is to attempt to correct the corrupted R-R series in order to obtain a new
artifact-free R-R series reflecting the underlying HRV dynamics. This new R-R series can
then be used for further processing using the HRV analysis techniques of choice. To date,
the detection and correction of irregular beats has been mainly achieved by direct human
expert evaluation and, more recently, by automatic techniques [4]–[16].

We have developed a novel point process based method for real-time R-R interval error
detection and correction. Given an R-wave event, we assume that the length of the next R-R
interval follows a time-varying history-dependent inverse Gaussian (IG) probability
distribution [17]. We then use this model for the detection and correction of erroneous and
arrhythmic beats. A preliminary version of the detection step of this novel approach has
been briefly sketched in our previous publication [18]. In Section II-C we present the
detection algorithm in detail and later in the paper we show its performance in comparison
with three established methods for the detection of erroneous (Section III-A) and ectopic
(Section III-C) beats. Whenever a beat is classified as erroneous, the correction step attempts
to fix it according to the point-process model. In Section II-D we present the correction
algorithm and in Section III-B we assess its performance in comparison with four reference
methods.

A software tool that implements the algorithm described in this manuscript can be tested
from our website [19]. It can be used as a preprocessing stage to detect and correct
erroneous and ectopic beats in R-R series before analysing it with the chosen HRV
technique [1]–[3], such as time-frequency analysis (LF/HF, …), standard time-domain
methods (SDNN, SDANN, RMSSD, …), and non-linear indices (DFA, SampEn, MSE, …).
Some methods, such as the Lomb spectrogram [20] do not require the correction step but
might still benefit from the accurate detection capabilities of our algorithm.

II. Algorithmic Framework
A. Physiologically-based probability model of heartbeat intervals

Each cardiac contraction is initiated by the synchronous depolarization of the heart’s
pacemaker cells beginning in the sinoatrial (SA) node of the right atrium and then
propagating through its specialized conduction system to the left atrium and to the two
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ventricles. Following every depolarization, the transmembrane potentials of these cells
return to their resting potentials and begin anew their spontaneous rise toward threshold
[21]. Deterministic models of this integrate (rise of transmembrane potential)-and-fire
(depolarization) mechanism, such as the integral pulse frequency modulation (IPFM) model,
are used regularly to simulate heart beats [22]–[24] and for the analysis of HRV [25].

An elementary, stochastic integrate-and-fire model is the Gaussian random walk model with
drift. We assume that the afferences to the SA node can be represented by random walk
excitatory inputs responsible for the basal cardiac rhythm (B), and random walk excitatory
(E) and inhibitory (I) inputs, reflecting the influence of the autonomic nervous system
through the sympathetic and para-sympathetic branches. In this case, the membrane voltage
equation is governed by:

where NB(t) ~ P (λB), NE(t) ~ P (λE) and NI(t) ~ P (λI) are independent Poisson processes
that govern the respective times of the basal, excitatory and inhibitory inputs, while αB, αE
and αI are the magnitude of steps up or down [26], [27]. Assuming V (0) = 0, m0 = αBλB,

m1 = αEλE − αIλI, and , and using the properties of Poisson processes,
the mean of V (t) is E [V (t)] = (m0 + m1) t [22], [23] and its variance Var[V (t)] = σ2t. A
diffusion approximation of dV (t) before hitting the threshold θ is given by the Wiener
process with drift:

where W(t) is a standard Wiener process (Brownian Motion). The probability density of the
first passage time for this process, i.e., the times between threshold crossings, is given by the
inverse Gaussian probability density [28], [29] defined as:

which can be written in the usual form after performing the change of variables μ = θ/(m0 +
m1) and λ = θ2/σ2. The inverse Gaussian probability density has been used to study both
neural processes [30] and heart beats [17], [31].

B. Point-process model of the heartbeat series

An ordered set  of consecutive heartbeat times (for example, but not limited to, R-
waves detected from an ECG) recorded in an observation interval (0, T] can be interpreted
as a realization of a point process [32], a type of stochastic process for which any one
realization consists of a set of isolated points. For t ∈ (0, T], the cádlág function N(t) =
max{k: uk ≤ t} is the associated counting process. Its differential, dN(t), denotes a
continuous-time indicator function, where dN(t) = 1, when there is an event (such as the
ventricular contraction) or dN(t) = 0, otherwise.

In this paper we assume a history dependent, time-varying, model of the the probability
distribution of the waiting time until the next R-wave according to a physiologically
motivated (see Section II-A) inverse Gaussian distribution. Specifically, given any beat
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event uk, the probability density function (PDF) of the length of the next R-R interval, τ −
uk, is

where the shape parameter, λ, and the mean of the distribution, μ, depend on a vector of
time-varying parameters θ(t) = {θ1(t), …, θP+1(t)} and a history vector Hk = {wk, wk−1, …,
wk−(P−1)} containing information about P previous R-R intervals wi = ui − ui−1. While λ is
simply λ (θ(t)) = θP+1 (t), the history-dependent mean is a regression of the past P R-R
intervals with time-varying weights:

(1)

A local maximum likelihood method [17] is used to estimate the unknown time-varying
parameter set θ(t). Given a local observation interval (t − W, t] of duration W, we consider
the subset of R-wave events within the interval, Um:n = {uk: m ≤ k ≤ n} with m = N(t − W)
+ 1 and n = N(t). At each time t, we find the parameter vector θ̃(t) that maximizes the local
log-likelihood, given the R-wave events recorded in the local observation interval:

(2)

where ω (τ) = e−ατ is an exponential weighting function for the local likelihood [17], [33].

C. Detection of erroneous heartbeats
After observing the (k+1)-th R-wave, at time uk+1, it is possible to assess whether this
observation is in agreement with the model resulting from the most recent parameter vector
θ̃(uk). For conciseness, in the following, let μ1 = μ(Hk, θ̃(uk)) denote the mean for the
distribution of the first R-R interval following uk, given the history and the model at time uk,
and let λ1 = λ(θ̃(uk)) denote the shape parameter, given the model at time uk.

Normal beat—A straightforward way to test the hypothesis that the beat at time uk+1 is in
agreement with the model is to evaluate the log probability density of observing the event
uk+1 given the previous event uk, the history Hk and the model θ̃(uk): p = log f (uk+1 − uk |
μ1, λ1). In [14], this probability p was compared with a fixed threshold and, if lower, a beat
was either inserted or deleted. While this approach works reasonably well, it has some
glitches. In fact, a very low value of p might indicate an erroneous R-wave detection, an
ectopic heartbeat, but also a sudden physiologic change in autonomic control. Ideally, we
would like to be able to detect and possibly correct the former two cases while preserving
the latter. For this reason, in this work, we take a different approach: instead of setting a
threshold for the score p, we compare its value with the values obtained from alternative
hypotheses, assuming that the event at time uk+1 is erroneous or arrhythmic. Below, we
analyze these cases in detail while in Fig. 1 we give a schematic representation.

1) Extra beat—One hypothesis that we consider is that the beat at time uk+1 is an extra
event that was erroneously placed between two consecutive heartbeats. This can happen, for
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example, when the detection algorithm mistakenly identifies a T wave as a ventricular
contraction. The score of this event is pe = log f (uk+2 − uk | μ1, λ1) where uk+2 is the time of
the event following uk+1. If pe > p + ηe, where ηe is a pre-defined threshold, the event at
time uk+1 is labelled as an extra (“e”) beat.

2) Missed beat—Another hypothesis is that between the events uk and uk+1 there was an
additional event that has been missed. This can happen, for example, when the detection
algorithm misses an R-wave because a superimposed artifact has drastically changed its
morphology. In this case, the time elapsed between uk and uk+1 should be compatible with
the prediction of the model for the sum of two R-R intervals given the history at time uk. We
assume that there are two stochastic events following uk, the first at time τ′ and the second
at time τ, of which only the latter was observed and mistakenly labeled as uk+1. According
to our model, the distribution of the first R-R interval, τ′ − uk, is simply f (τ′ − uk | μ1, λ1).
The distribution of the second R-R interval, τ − τ′, also depends on the first R-R interval. In
fact, the unknown term τ′ − uk enters the history vector H′(τ′ − uk) = {τ′ − uk, wk, wk−1,
…} and, through the regression in (1), affects the first moment of the next R-R interval, μ2 =
μ(H′(τ′ − uk), θ̃(uk)), that we write as μ2(τ′ − uk) to stress this dependency. The PDF of
the second R-R interval can be written as f(τ − τ′| μ2(τ′ − uk), λ2) where λ2 = λ1. The total
probability density function can be obtained marginalizing the unknown τ′ in the joint
probability density:

(3)

Rather than attempting to solve (3), here we make the simplifying assumption that the
resulting probability density function can be approximated by an IG distribution with mean
μ1+2 = μ1 + μ2(μ1) and shape parameter

(4)

whose mathematical derivation is shown in the Appendix. Using these results, we can now
evaluate the log probability density of observing a beat at uk+1 after a missed beat at an
unknown time τ′ ∈ (uk, uk+1): ps = log f (uk+1 − uk | μ1+2, λ1+2). If ps > p + ηs, where ηs is
a pre-defined threshold, we assume that there might be a missed (skipped, “s”) beat.

3) Misplaced beat—A further hypothesis is that the beat at time uk+1 is misplaced, i.e., a
beat at a different time in the interval (uk, uk+2) has been mistakenly assigned to time uk+1.
This can happen, for example, when an artifact deforms the QRS complex and makes the
detector misinterpret some random deflection for an R wave and miss the true R wave. For
simplifying purposes, we will consider in this category also some types of ectopic beats,
such as premature ventricular contractions that are followed by a complete compensatory
pause. Even if, strictly speaking, ectopic beats are not mis-detections, it is often desirable to
treat them this way. In fact, ectopic beats may significantly impair the results of many heart
rate analysis techniques (including most time-domain and spectral estimation methods)
while, on the other hand, acceptance of only ectopic-free, short-term recordings may
introduce significant selection bias [4]–[6]. For this reason, it is desirable to detect irregular
beats and, possibly, replace them with fictitious regular beats in order to carry on the desired
analysis. A beat uk+1 is likely to be a misplaced one whenever the corresponding R-R
interval does not fit the model while the sum of the two R-R intervals, uk+2− uk, does.
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Therefore, the score for the case of a misplaced beat is: pm = log f (uk+2 − uk | μ1+2, λ1+2),
and if pm > p + ηm, where ηm is a pre-defined threshold, we assume that there might be a
misplaced (“m”) beat.

4) Two misplaced beats—This hypothesis accounts for the case that two beats in a row,
uk+1 and uk+2, are misplaced. This can happen, for example, in some types of arrhythmias
where two shorter beats are followed by a long compensatory pause. This case is handled
similarly to the case of one misplaced beat. The beats uk+1 and uk+2 are likely to be
misplaced whenever the corresponding R-R intervals do not fit the model while the sum of
the three R-R intervals, uk+3 − uk, does. Making the approximation that uk+3 − uk follows an
IG distribution of parameters μ1+2+3 and λ1+2+3 (defined in the Appendix), the score for the
case of two misplaced beats is pt = log f (uk+3 − uk | μ1+2+3, λ1+2+3). If the condition for
“m” holds and, additionally, pt > pm + ηt, where ηt is a pre-defined threshold, we assume
that there might be two misplaced (“t”) beats. In other words, we require the first beat to be
detected as misplaced (because this case is a special case of “m”), and, additionally, that the
second beat is misplaced with respect to the prediction of the model for the first beat.

5) Resetting beat—The last hypothesis accounts for resetting ectopic beats, i.e., ectopic
beats not followed by a compensatory pause. As a result of the absence of the compensatory
pause, not only the R-R interval uk+1 − uk does not fit the model but neither do the sum of
the two R-R intervals, uk+2 − uk, or the sum of three, uk+3 − uk. As a matter of a fact, the R-
R interval after the ectopic beat, uk+2 − uk+1, is more likely to fit the model than any of
previous hypotheses. For this reason, defining pr = log f (uk+2 − uk+1 | μ1, λ1), the beat uk+1
is likely to be a resetting (“r”) ectopic beat if pr > max{p, pe, ps, pm, pt} + ηr, where ηr is a
pre-defined threshold.

Bootstrap detection—As the algorithm uses a sliding window of duration W to fit the
model (see end of Section II-B), no model is available before time W from the beginning of
the recording. A simpler bootstrap detection algorithm is used during this period to provide
some results even for beats uk ∈ (0, W ) and also to avoid training the algorithm on non-
normal R-R intervals. This bootstrap algorithm is based on outlier rejection where beats
whose distance from the median R-R is more than 7 times the median absolute deviation of
the R-R intervals are marked as erroneous.

D. Correction of erroneous heartbeats
After an outlying beat is detected, our algorithm attempts to correct it. The correction
strategy depends on the type of erroneous beat detected, as reported in detail below. Finally,
the attempted solution is accepted only if it is an improvement according to the
improvement check that we describe in the following section.

1) Extra beat—The case of an extra beat is simply addressed by removing the beat.

2) Missed beat—In case a missed beat is detected, a new beat is inserted between the
event uk and the event uk+1. The time of the inserted event τ′ is:

(5)

where μ1, λ1, μ2(τ′ − uk) and λ2 are defined as before. Inserting an event τ′ in (uk, uk+1)
splits this interval into two R-R intervals; therefore, equation (5) attempts to find the optimal
τ′ accounting for the probability distribution of the first interval given the P R-R intervals
preceding it (first factor of the product) but also for the probability distribution of the second
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R-R interval given its P previous R-R intervals (second factor), including τ′ − uk. This is an
improvement over the approach in [14] where the beat was inserted at the time maximizing
only the first of the two factors in (5).

3) Misplaced beat—The case of a misplaced beat is similar to the previous case. The
event at time uk+1 is moved at time τ′ given by:

(6)

Equations (5) and (6) are solved numerically using a Newton-Raphson algorythm.

4) Two misplaced beats—To correct the case of two misplaced beats and find the
optimal times of the two unknown beats we use a greedy algorithm. Each one of the beat
times is optimized in turn, using (6) for the first beat and a similar equation for the second
beat, while keeping the other fixed. This process is iterated until convergence.

5) Resetting ectopic beat—The case of a resetting beat cannot be corrected like the
other cases because it would require shifting all the following beats. Therefore our algorithm
defers the decision about the action to take to the user, who can choose the best strategy for
the type of HRV analysis that follows (for example omit the beat or suspend adaptive causal
estimation).

E. Improvement check
In the cases above, the correction step changes the series of events U = {uj} into an
alternative series Û = {ûj} by removing, inserting, or moving one or two events. For the case
of a resetting beat, “r”, we consider the virtual correction (that we do not take) of shifting
back by uk+1 − uk all the beats starting from uk+1.

Before the new series is accepted, we evaluate the probability of observing Q events
following uk for both series:

The corrected series is accepted only if P(Ûk−P:k+Q) > P(Uk−P:k+Q)+ η̂a, where a is one of
{e, s, m, t, r} depending on the action was taken to correct the beats. This ensures not only
that the correction fits the past values (through Hk) but also that it is a good regressor for the
future R-R intervals (through Ĥj, j > k). If the corrected series passes the test, then Û = {ûj}
replaces U = {uj}, a new updated parameter vector θ̃(uk+1) is estimated using (2), and the
detection procedure starts again for the next event, uk+2 (uk+3 in the case “t”).

F. Values of the parameters
Empirical sensitivity analysis conducted on in-house recordings showed that the model
provides robust results for parameters within meaningful ranges of values.

Without conducting an exhaustive research on the whole parameter space, we found that the
following settings provide excellent results in most conditions: P = 5, W = 60 s, α = 0.02
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s−1, ηe = 3, η̂e = 8, ηs = 0, η̂s = 4, ηm = 2, η̂m = 7, ηt = 8, η̂t = 28, ηr = 6, η̂r = 14, and Q = 3.
These values of the parameters were also used during the analysis described in the following
of this manuscript.

III. Validation and Performance Assessment
A. Detection on artificially-corrupted R-R series

We tested the performance of our detection algorithm on a set of real R-R timeseries with
artificially deleted, shifted, and inserted beats and compared our results with three well-
established approaches.

Methods—The first method that we implemented for comparison is the well-established
algorithm by Berntson et al. [9] which uses two criteria to assess whether a heartbeat is an
artifact: Maximum Expected Difference (MED) and Minimal Artifact Difference (MAD). In
order to allow the algorithm to adapt to non-stationary data, for each R-event uk, MED and
MAD were estimated using events in a 60 s sliding window preceding uk. The second
algorithm that we used is based on the important contribution by Mateo and Laguna [13].
For each R-event uk we evaluated equation (1) from the original work (where tk corresponds
to our uk) using a time-varying threshold Uk = 4.3 σk where σk is the standard deviation of
the wj values obtained for events in a 60 s sliding window preceding uk. Then we classified
the beat using the set of rules described in Section II.A of the referenced paper. Finally, we
implemented the more recent method proposed by Rand et al. [15]. We followed the
algorithm described in the original paper and used the values of parameters that they found
optimal.

For this comparison, we used a subset of the Fantasia database [34] from the Physionet
archive [35]. We selected all the records that, according to the annotation database,
contained no more than two non-“N” heartbeats.1 We tested all four algorithms on each
pristine record and recorded the number of “N” heartbeats correctly classified as such and
the number of beats which triggered a false alarm. Then we tested the four algorithms’
performance in the detection of the three main types of erroneous beats: extra, missed, and
misplaced beats. To test the detection of “e” (extra) beats, after inserting a beat before every
beat of index k = 100 n (n ∈ {1, 2, 3, …}) of each record, we recorded how many of these
beats were correctly identified as erroneous beats. Similarly, we measured the performance
in the detection of “s” (missed) beats by removing from the original record every beat of
index k = 100 n.

Finally, we assessed each algorithm’s efficacy in the detection of “m” (misplaced) beats, by
shifting each beat of index k = 100 n by a temporal displacement Δt. In order to account for
the fact that the detectability of misplaced beats depends on the heart rate variability of the
R-R series, we used a record-dependent displacement Δtr = q · RMSSDr where RMSSDr is
the RMSSD measure [1] for the record r (see Fig. 2). If we think of the RMSSDr of a normal
sinus series as the noise amplitude and Δtr as the amplitude of the signal we are trying to
detect, q2 represents a form of signal-to-noise ratio (SNR). For obvious reasons, we capped
Δtr at  where  is the average N-N interval of the record r. The test was repeated
for the values of q ∈ {2, 4, 8, 16}.

Results—Table I reports, for the normal series and for each artificially-corrupted series,
the number of beats tested (columns “Tot #”) and the percentage of these that were correctly

1The records used were: f1o01, f1o05, f1o10, f1y01, f1y03, f1y08, f2o04, f2y03, f2y06.
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detected (columns labelled “Corr”) by the four algorithms. For the “m” beats, the average

displacement  among all records is also reported.

As one further goal of our algorithm is to try to correct erroneous beats, it is important that
the algorithm is also able to classify the type of error (“e”, “s”, and “m”) and, as a result, the
type of action needed to attempt to fix it. All algorithms considered, except the one by
Berntson et al., provide this type of information. Table I reports, in the columns labelled
“CT”, the percentage of beats for which each algorithm correctly classified the type of error.

These results show that our method represents an improvement over the previous
algorithms. In fact it presents the best false detection rate (row “N”) with only 9 normal
beats out of 60017 reported as erroneous (which correspond to 99.985% correct
classification), while the second best method, by Berntson, triggered a false detection in 37
cases. Our method also shows perfect detection of missed (row “s”) and extra beats (row
“e”), and better detection of misplaced beats at all levels of SNR (rows “m” of Table I and
Fig. 3). In terms of sensitivity, only the method by Mateo and Laguna provides similar
results to our approach but at the cost of a much lower specificity.

We also performed a Monte Carlo analysis of performance by randomly sampling the test
beats with probability 1%, obtainining results very similar to those reported here. We
decided to report the results of the deterministic sampling of the test beats (every hundredth
beat), rather than those from random sampling, to support reproducibility of results and
allow other scientists to test and compare their algorithms on exactly the same recordings
and beats.

B. Correction on artificially-corrupted R-R series
In this section we report the results of evaluating the performance of the correction phase of
our algorithm and compare it with existing methods.

Methods—We wanted to find out how accurately our model is able to estimate the
unknown time of occurrence of a beat (either a missed or a misplaced beat). This was simply

evaluated by using (6) to estimate the beat location  of every beat of index k = 100 n
from each original record described in Section III-A and then measuring the difference,

, between the predicted time of the beat and the actual time of the original beat.

We compared our algorithm with four existing methods of estimating the position of a
missing beat. As first method we used the “nguess” function available from the WFDB

library of the PhysioToolkit [35] and called its estimate . The second method consisted in
splitting the interval around the missing beat in two identical R-R intervals by inserting a

beat at time  such that . Then we tested the family of δ̂N estimators
given by equation (45) of [36] and found, in agreement with their findings, that the first
order estimator (δ̂1) is the one giving best results. Therefore, as third method we used the δ̂1
estimator which returns a beat time  such that the new R-R interval repeats the previous

R-R interval, i.e., . Finally, the fourth method that we used for
comparison is a non-causal version of δ̂1 which is simply the average of the beat time
estimated using the previous R-R interval and that estimated using the next R-R interval,

i.e., .

Results—Table II reports a comparison between the different methods in terms of root-
mean-square (RMS) error between the estimated time and the original beat time. The first
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row shows the result of pooling all 602 beats from all subjects and then evaluating the
pooled RMS. The second row reports the result of finding the RMS error for each subject
separately and then averaging the results. Similarly, the last row shows the median value of
the RMS error for the individual subjects.

Our algorithm (first column) clearly outperforms all four reference methods in all measures
and provides accurate estimates with an RMS error of under 15 ms. This is also confirmed
by the probability density function of the difference between the estimated beat time ûk and
the actual time of the original beat uk (Fig. 4).

C. Detection on arrhythmia database
As mentioned before, the algorithm presented here can also be used to detect ectopic events
based on the R-R intervals alone, not for the purpose of classifying the different types of
arrhythmias but simply to try to replace them with fictitious normal beats and carry on with
the desired type of HRV analysis.

Methods—The performance of our algorithm in the detection of ectopic beats was
evaluated on the MIT-BIH Arrhythmia database [35], [37]. For this analysis we selected the
recordings having less than 10 non-normal beats in any 20-second window.2 The main
reason is that we are interested in R-R series that are mildly affected by erroneous or ectopic
events, and that can be recovered and further processed with HRV techniques. In a recording
with an excessive number of irregular beats, the information about the underlying sinus
rhythm cannot be reliably recovered and therefore the HRV indices cannot be assessed.

For each record of the MIT-BIH Arrhythmia Database considered, we ran the four
algorithms described in Section III-A. As some of the algorithms use a 60 s sliding window
to adaptively estimate their thresholds, we did not test the detection in the first minute of the
record. We also ignored types of ectopic beats that merely affect the morphology of the
contraction potential but not its timing because all the algorithm that we tested do not have
access to the raw ECG data but only to the series of R-R intervals.

Results—Table III reports the confusion matrices obtained for the four algorithms,
whereas Table IV shows their performance measures. Our method outperforms the previous
algorithms, especially in terms of a lower number of false detections, resulting in higher
specificity and positive predicted value. Figure 5 shows a few examples of real arrhythmic
events from this database and how our algorithm detects and corrects them.

IV. Discussion and Conclusions
We present a novel paradigm for detection and correction of ectopic and erroneous
heartbeats. At the core of the method is the ability of the underlying probabilistic model to
indicate with accurate precision the degree of probability of having a heartbeat at each
moment in time. This feature allows to create a tree-like decisional structure based on
quantitative comparisons between the observed events and the probability of having the
event at that time. More specifically, we test the alternative hypotheses that: a) a beat has
been correctly identified, b) a beat has been missed, c) the observed beat is spurious, d) one
or two beats need to be moved to a most probable time according to the probability
distribution, or e) a beat is a resetting ectopic beat. Since the model is defined in continuous
time and is updated recursively in an on-line fashion, the devised algorithm is able to

2The records used were: 100, 101, 103, 105, 108, 112, 113, 114, 115, 116, 117, 121, 122, 123, 215, 230.
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process the decisional tree in real-time using only short-time past information, and then
finalizing the correction within at maximum three beats in the future.

Our method, similarly to the IPFM-based method, is based on a physiologically motivated
model, with the further advantage that the point process framework allows for dynamically
updating the model by tracking the time-varying heartbeat variations, including an objective
goodness-of-fit framework which can validate the decisional outcome based on optimal
model selection. Importantly, the parameter vector is here computed only to estimate the
likelihood, but this is the same vector that defines the instantaneous time and frequency
domain point-process HRV as in [17], [38]–[40], thus providing a simultaneous assessment
of cardiovascular control that is unbiased by artifactual or arrhythmic events.

Our results provide evidence of the efficacy of the detection method in recognizing missing,
spurious, mis-detected, and irregular heartbeats with remarkable accuracy even in scenarios
that require discerning very small time resolution errors at millisecond scales. They further
point at our method as more accurate than three previously published detection methods and
four correction methods. In particular, our automated method achieves 99.985% specificity
for detection of correct beats, 100% sensitivity to missed and extra beats, 96.01% sensitivity
for beats artificially misplaced by 137 ms on average, and 98.73% positive prediction value
for real arrhythmic events. Our algorithm represents an improvement over previous
procedures: only one other method provides similar results but at the cost of a much lower
specificity. Our correction procedure provides accurate estimates of the replacement time of
an unobserved beat, with and error below 15 ms, outperforming other existing methods of
estimating the time of missing beats.

One important feature of the technique is that it works with predetermined decisional
thresholds that have been fixed once for all during our analyses, and have been demonstrated
to work on a wide range of experimental recordings, with high robustness to noise and
ability to cope with inter-subject variability. In particular, the algorithm can be used for
exclusive pre-processing purposes of any R-R interval series and consequent application of
any kind of HRV analysis. The routine is very fast, easy to run, and available online at no
cost for research purposes [19]. We hope dissemination will further corroborate the
robustness and efficacy of the proposed method in an even wider range of physiological and
clinical settings.
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Appendix
In this Appendix we find the probability distribution of τ − uk which is the sum of two
unknown intervals τ′ − uk and τ − τ′ distributed according to f(τ′ − uk | μ1, λ1) and f (τ − τ
′ | μ2(τ′ − uk), λ2). Rather than finding the exact solution given by (3), we approximate it as
an inverse Gaussian distribution of mean μ1+2 and shape parameter λ1+2, that we are about
to introduce. Let us define ŵk+1 = τ′ − uk = μ1 + ε1 and ŵk+2 = τ − τ′ = μ2(ŵk+1) + ε2
where ε1 and ε2 are both zero-mean noise terms. The variance of ε1 is the same as that of

ŵk+1, i.e., the variance of an inverse Gaussian distribution of parameters μ1 and .

The variance of ε2 is . We make the assumption that it can be approximated as

 and that ε1 and ε2 are uncorrelated. Using (1) we have ŵk+2 = μ2(μ1) + θ̃1(uk)
(ŵk+1 − μ1) + ε2. Therefore,

(7)

which leads to μ1+2 = E[τ − uk] = μ1 + μ2(μ1) and Var[τ − uk] = (1+ θ̃1(uk))2Var[ε1]+

Var[ε2]. This means . Using λ1 = λ2 and solving for
λ1+2, we obtain (4).

Following a similar reasoning, we obtain that the probability distribution of the sum of three
unknown intervals can be modelled as an IG distribution with parameters μ1+2+3 = μ1 +
μ2(μ1) + μ3(μ1, μ2) and
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Fig. 1.
Schematic representation of the different hypotheses that we make for the beats following
uk. The plot at the top shows the IG distribution of the time of occurrence of the first beat
after uk (black solid line), the second one (blue dashed line) and the third one (red dotted
line). All three probabilities are estimated at time uk and this explains why predictions that
are further in the future present a wider variance. In the lower part of the figure, sample
configurations of the beat times representing the different hypotheses (“N”, …, “r”) are
reported. The black full circles indicate the beats for which the PDF on the right presents a
high value; the crosses mark the beats that are going to be removed while the dashed circles
are beats that need to be inserted. For example in the “e” case the beat uk+2 has high
probability of being the first beat after uk (black bell) and for this reason the beat uk+1 will
be removed (red cross). In the “m” case, instead, uk+1 has low probability of being the first
beat after uk (black bell) while uk+2 has high probability of being the second beat after uk
(blue bell) and, therefore, the beat uk+1 is removed from its current position (red cross) and
shifted to its most likely position (green dashed circle).
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Fig. 2.
The figure shows examples from three subjects of the original R-R series (continuous line
with markers) with one artificially misplaced beat (dashed line) obtained as described in
Section III-A. The R-R series on the left has a very low beat-to-beat variability, the one in
the centre presents a marked respiratory sinus arrhythmia (RSA), while the series on the
right has an even higher variability but the RSA is less predictable. In all three cases, the
same value q = 2 was used to determine the record-dependent displacement Δtr = q ·
RMSSDr. This allowed us to average the algorithms performance across subjects on a task
of comparable difficulty. If we had moved the beats by a fixed displacement, e.g., 50 ms, the
detection would have been trivial for the R-R series on the left and very hard for the series
on the right.
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Fig. 3.
The left side of the plot (Corr) reports the percentage of the beats shifted by Δtr = q ·
RMSSDr (as detailed in Section III-A) that were correctly detected as erroneous. The right
side of the plot (CT) shows the percentage of the same beats that were correctly classified as
type “m” beats. For example, a shifted beat detected as extra beat would count as a hit for
“Corr” but as a fail for “CT”.
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Fig. 4.
Probability density function of the difference between the estimated beat time ûk and the
actual time of the original beat uk for our point-process algorithm (PP) and for the four
reference methods (N, H, S, S’). The PDF was estimated using kernel density estimation
with Gaussian kernels and a bandwidth of 5 ms.
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Fig. 5.
The figure shows examples of beats from the MIT-BIH Arrhythmia database and how they
were detected and corrected by our algorithm. The markers (little star, triangle, and square)
and the associated labels (“N”, “V”, “a”) correspond to the database annotations and they
mean, respectively: normal beat, premature ventricular contraction, and aberrated atrial
premature beat. The “m”, “t”, and “r” letters next to some beats are the output of our
detection algorithm (all other beats were detected as normal). The dashed blue line
corresponds to the input series of R-R intervals while the black line is the output series
produced by our correction algorithm (when the two coincide, only the black line is visible).
On the left, subplot A shows examples of “m” and “t” beats and the remarkable ability of
our algorithm to correct the R-R series and recover the underlying rhythmic structure. Two
ectopic beats were not detected by any of the algorithms because they do not cause a
sufficient deviation from the normal rhythm. Very likely they were labelled as ectopic based
on their morphology (unavailable to our algorithm). The letter “t” marks the case of two
ectopic beats in a row followed by a compensatory pause. This is a particularly challenging
case, as it requires predicting the time of occurrence of two beats at once. Subplot B shows a
rapid sequence of three ectopic beats and how they were detected and corrected by the
algorithm. Subplot C shows a resetting ectopic beat that our algorithm correctly detects as
such and flags for further correcting action. Finally, in subplot D, there is an example of a
sudden physiologic change in autonomic control that might trigger a false detection. In fact,
our previous algorithm presented in [14] as well as all three reference algorithm presented
here detect one or more of the beats around t = 1470 s as arrhythmic, while the new
algorithm presented here does not.
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TABLE IV

Performance measures of the four methods.

PP Rand2007 Mateo2003 Berntson1990

Accuracy 99.91% 99.52% 99.76% 99.86%

Sensitivity 94.19% 85.96% 84.99% 93.70%

Specificity 99.98% 99.70% 99.95% 99.94%

Pos.Pred.Val 98.73% 78.19% 95.64% 95.09%
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