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1. INTRODUCTION
In diagnostic radiology receiver-operating-characteristic (ROC) curves are commonly used
to quantify the accuracy with which a reader (typically a radiologist) can discriminate
between images from nondiseased (or normal) and diseased (or abnormal) cases. Although
the ROC curve concisely describes the trade-offs between sensitivity and specficity,
typically accuracy is summarized by a summary index that is a function of the ROC curve.
Commonly used summary indices include the area under the ROC curve (AUC), the partial
area under the ROC curve (pAUC), sensitivity for a given specificity, and specificity for a
given sensitivity. See Zou et al [1] for a concise introduction to ROC analysis.

A common method for estimating the ROC curve is likelihood estimation under the
assumption of a latent binormal model [2–5]; alternatively, a generalized linear model
approach can also be used [6, 7] based on the binormal model assumption. Under the latent
binormal model assumption the ROC curve can be described by two parameters. Except for
the pAUC, analytic expressions have been routinely employed for expressing the indices
previously mentioned as a function of the binormal ROC curve parameters. Presently it is
generally believed that the pAUC, assuming a latent binormal model, cannot be expressed as
an analytic expression. For example, Pepe [8, p 84] states: “Unfortunately, a simple analytic
expression does not exist for the pAUC summary measure. It must be calculated using
numerical integration or a rational polynomial approximation.” Similarly, Zhou et al [9, p
128] state: “This partial area as it is known, is evaluated by numerical integration (McClish,
1989).” Although these methods can be programmed, having a simple expression for the
pAUC would be much more convenient.

It is generally not known that Pan and Metz [10] provided analytic expressions for the two
forms of pAUC. However, the expressions they provided were incorrect and they did not
provide proofs for their results. More importantly, it is generally not known that Thompson
and Zucchini [11] provided a correct analytic expression for one form of pAUC, as well as
the proof. In fact, we only became aware of this latter result during the final stage of
submitting this paper. The purpose of this paper is to bring to the attention of the reader the
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result provided by Thompson and Zucchini, extend their result to the second form of pAUC,
and illustrate use of both pAUC expressions with a real data set that compares the relative
performance of single spin-echo magnetic resonance imaging (SE MRI) to cinematic
presentation of MRI (CINE MRI) for the detection of thoracic aortic dissection. In addition,
we provide proofs for both results which are more accessible to radiology researchers and
clinicians than the proof given by Thomas and Zucchini.

2. MATERIALS AND METHODS
2.1. Two different pAUCs

Let FPF and TPF denote false and true positive fractions for a given classification threshold
such that an image with a test result equal or greater than the threshold is classified as
diseased, and otherwise nondiseased. That is, FPF is the probability that a test result for a
non-diseased subject exceeds the threshold and TPF is the probability that a test result for a
diseased subject exceeds the threshold. The ROC curve is a plot of TPF versus FPF for all
possible thresholds. FPF and TPF are the same as 1–specificity and sensitivity, respectively.

Two fundamentally different partial areas have been proposed [11–13]. One partial area
corresponds to the area under an ROC curve over an interval (FPF1 < FPF2), which we
denote by pAUCFPF (FPF1, FPF2). This pAUC is illustrated in Figures 1A and 1B. Often
this pAUC is normalized by dividing by FPF2 – FPF1, which allows it to be interpreted as
the average value of TPF over all values of FPF between FPF1 and FPF2. This partial area is
typically useful when a clinical task demands high specificity; for this situation FPF1 = 0,
FPF2 is small (e.g., .10 or .20), and thus it is pAUCFPF (0, FPF2) that we are interested in
computing. Because pAUCFPF (FPF1, FPF2) = pAUCFPF (0, FPF2) – pAUCFPF (0, FPF1) for
FPF1 < FPF2, it suffices to provide a a general formula only for pAUCFPF (0, FPF0). Walter
[14] has discussed using this pAUC with summary ROC curves.

The other pAUC corresponds to the area to the right of the ROC curve in the interval (TPF1
< TPF2), which we denote by pAUCTPF(TPF1, TPF2). This pAUC is illustrated in Figures
1C and 1D. Often this pAUC is normalized by dividing by TPF2 – TPF1, which allows it to
be interpreted as the average value of 1–FPF (i.e., specificity) over all values of TPF
between TPF1 and TPF2. This pAUC is typically useful when a clinical ask demands high
sensitivity: TPF1 is large, TPF2 = 1, and thus it is pAUCTPF (TPF1, 1) that we are interested
in computing. Because pAUCTPF(TPF1, TPF2) = pAUCTPF (TPF1, 1) –pAUCTPF (TPF2, 1)
for TPF1 < TPF2, it suffices to provide a a general formula only for pAUCTPF (TPF0, 1).

2.2. Analytic expressions for the pAUCs
In this section we present analytic expressions for the two forms of pAUC under the
assumption of a latent binormal model. These expressions are the primary contribution of
this paper. Corresponding proofs are presented in the Appendix.

2.2.1. Binormal model assumptions—Throughout we assume that the ROC curve is
based on a latent binormal model. The latent binormal model assumes that the latent
decision variable used to classify cases (or some unknown strictly increasing transformation
of it) arises from a pair of normal densities corresponding to the nondiseased and diseased
case populations, having generally different means and standard deviations. Because ROC
curves are invariant under strictly increasing transformations of the decision variable, we
can assume without loss of generality that the normal distribution for nondiseased cases has
zero mean and unit standard deviation, whereas that for diseased cases has mean μ and
standard deviation σ, where μ > 0 and σ > 0. Thus letting X and Y denote independent
decision variables having the same distributions as the decision variable distributions for
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nondiseased and diseased cases, respectively, we are assuming that X ~ N (0, 1) and Y ~ N
(μ, σ2).

2.2.2. Results for pAUCFPF (0, FPF0)—Let Φ (u) denote the standardized normal
distribution function; i.e., Φ(u) = Pr (U < u) where U has a normal distribution with zero
mean and unit variance. Let FBVN (z, u; ρ) denote the standardized bivariate normal
distribution function with correlation ρ; i.e., FBVN (z, u; ρ) = Pr(Z < z and U < u), where Z
and W jointly have a standardized bivariate normal distribution and ρ = corr(Z, U). This
function is available in many statistical software programs, such as SAS, Stata, SPSS, and
the freely available R program.

Assuming the binormal model described in Section 2.2.1, pAUCFPF (0, FPF0) is given by

(1)

In terms of the binormal parameters a = μ/σ and b = 1/σ, we can write Eq. 1 in the form

(2)

Equation 2 is also given by Thompson and Zucchini [11].

2.2.3. Results for pAUCTPF (TPF0, 1)—Assuming the binormal model described in
Section 2.2.1, pAUCTPF (TPF0, 1) is given by

(3)

In terms of the binormal parameters a = μ/σ and b = 1/σ, we can write Eq. (3) in the form

(4)

2.3. Estimation and inference for pAUC
Because pAUC is a function of the binormal ROC curve parameters, estimation of pAUC
involves estimating the parameters for an ROC curve under the assumption of a latent bi-
normal model and then using Eqs. 1–4 with the ROC curve parameters replaced by
estimates. A likelihood or generalized linear model approach can be used to estimate the
parameters, as mentioned in the Introduction. The variance of the pAUC estimate for one
test or for the difference of two tests can be estimated using a first-order Taylor series
approximation (the “delta method”) [12, 13, 15], or by resampling methods such as the
bootstrap and jackknife [16, 17]. For multireader studies, the methods proposed by
Dorfman, Berbaum, and Metz (DBM) [18] and by Obuchowski and Rockette (OR) [19] can
be used for variance estimation and inference. Confidence intervals, assuming approximate
normality for the pAUC estimates, can be based on the variance estimates in the usual way.
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2.4. Example data set
To illustrate use of pAUCs, we consider an example from Carolyn Van Dyke, MD, that we
have analyzed in previous papers. The study [20] compared the relative performance of
single spin-echo magnetic resonance imaging (SE MRI) to cinematic presentation of MRI
(CINE MRI) for the detection of thoracic aortic dissection. There were 45 patients with an
aortic dissection and 69 patients without a dissection imaged with both SE MRI and CINE
MRI. Five radiologists independently interpreted all of the images using a five-point ordinal
scale: 1 = definitely no aortic dissection, 2 = probably no aortic dissection, 3 = unsure about
aortic dissection, 4 = probably aortic dissection, and 5 = definitely aortic dissection. We
estimate the ROC curves using likelihood estimation based on a latent binormal model [2–
4]. From the binormal ROC curve parameters we estimate pAUCs corresponding to two
different FPF and two different TPF intervals and compute corresponding standard
deviations using the jackknife.

We also analyze the pAUC outcomes from the example data set using the multireader data
analysis method proposed by Dorfman et al (DBM) [18, 21] and updated as described by
Hillis et al [22]. This analysis tests if the means of the AUCs differ between the modalities.
It has been shown that the method proposed by Obuchowski and Rockette (OR) [19],
updated by the degrees of freedom estimate proposed by Hillis [23], yields results identical
to those of DBM when the jackknife is used to estimate the error covariances. Thus our
analysis results can be considered to have been produced by either method.

Data analyses were performed using SAS [24]. The binormal AUC was computed in SAS
using a dynamic link library (DLL), written in Fortran 90 by Don Dorfman and Kevin
Schartz, which was accessed from within the IML procedure in SAS; this DLL can be
downloaded from http://perception.radiology.uiowa.edu. The SAS program for
implementing this analysis [25], as well as a user-friendly stand-alone program [26] for
implementing it, can also be downloaded from http://perception.radiology.uiowa.edu.

3. RESULTS
The ROC curves computed for the example data set are presented in Figure 2. Table 1
presents the corresponding binormal parameter estimates for a and b and estimates and
standard errors for AUC, pAUCFPF for FPF intervals (0.0, 0.2) and (0.0, 0.1), and pAUCTPF
for TPF intervals (0.8, 1.0) and (0.9, 1.0). The pAUCs have been normalized by dividing by
the length of the defining interval; thus the pAUC values represent average sensitivity or
specificity over the corresponding defining FPF or TPF interval. Having an analytic
expression for the partial areas makes a table like Table 1 easy to construct, since the
pAUCs can be computed directly from a and b. However, we note that the standard errors
could not be directly computed from the ROC parameters, but rather they had to be
computed separately using the jackknife.

Table 2 presents the results of the DBM/OR analyses. For our discussion we assume alpha
= .05. AUC did not show a significance difference (p = 0.14). In contrast, pAUCFPF(0.0,
0.2) almost reached significance (p = .06) and tests based on pAUCFPF (0.0, 0.1) and
pAUCFPF (0.0, 0.05) were both significant (p = .0399 and 0.0278, respectively). These
results suggest that partial AUC provides a more powerful test than AUC for these data.
Sensitivity for a fixed specificity also resulted in more significant results than AUC. Results
for the horizontal-band pAUCs was similar to that of AUC for two intervals (p = .14 and .15
for TPF > .8 and .9, respectively), but somewhat less for the third interval, defined by TPF >
0.95.
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4. DISCUSSION
For the two types of pAUCs we derived analytic expressions under the assumption of a
latent binormal model. Previously it was believed that analytic expressions did not exist,
even though Thompson and Zucchini [11] had stated and proved Eq. 2, and thus numerical
methods have been used to solve for pAUC values. The formulas presented in this paper
greatly simplify computation of pAUCs.

We illustrated use of these expressions with a real data set where, using a multireader
analysis, we found that pAUCFPF gave more significant results than did AUC. This example
illustrates the ease with which pAUC measures can be computed using the expressions
provided in this paper. It also suggests that partial areas can be more powerful for comparing
modalities than AUCs under certain circumstances. While we recognize that it is generally
thought that AUC provides a more powerful test than a partial area [15, 27], this example
suggests that there may be situations where pAUCs will be more powerful and provides
motivation for a closer examination of the relationship between pAUC and AUC with
respect to power.

Although Thompson and Zucchini [11] provided a proof for Eq. 2, their proof requires a
solid understanding of calculus and familiarity with the bivariate normal density function. In
contrast, the proofs that we provide for the expressions for both pAUCs requires only basic
knowledge of statistics and algebra. Thus we believe that our proofs will be more accessible
to radiological researchers and clinicians.
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Appendix A. Appendix: Derivation of Eqs. 1–4 in Section 2.2.2
In this section we derive Eqs. 1–4 in Section 2.2.2. We assume an underlying binormal
distribution, as discussed in Section 2.2.1. In particular, we assume that X and Y denote
independent decision variables having the same distributions as the decision variable
distributions for nondiseased and diseased cases, respectively, with X ~ N (0, 1) and Y ~ N
(μ, σ2).
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Appendix A.1. Derivation of pAUCFPF (0, FPF0) results (Eqs. 1–2)
It has been shown [8, 28] that

(A.1)

where SX, defined by SX (x) = Pr (X > x), is the complement of the cumulative distribution
distribution function of X. This is a general result that holds even if the conditional

distributions are not normal. Noting that , where FPF0 = Pr(X > ξ0), it follows
from Eq. A.1 that

(A.2)

We will use Eq. (A.2) to derive pAUCFPF (0, FPF0) below in terms of the latent binormal
decision-variable distribution parameters.

From Eq. A.2 we have

(A.3)

where . It is easy to show that Z ~N (0, 1) and .
To show the correlation result, note X and that Y are independent and corr (Z, X) = cov (Z,
X) because both Z and X have unit standard deviation. Thus

. It follows that (Z, X) has a standardized bivariate normal distribution with correlation

. Thus

(A.4)

where FBVN (z, x; ρ) is the standardized bivariate normal distribution function with
correlation ρ as discussed in Section 2.2.2. Because FBVN (z, x; ρ) = 1 − FBVN (−z, −x; ρ), it
follows from Eq. A.4 that

Using the relationship −ξ0 = Φ−1(FPF0) we have
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(A.5)

In terms of the binormal parameters a = μ/σ and b = 1/σ, we can write Eq. A.5 in the form

(A.6)

Note that Eqs. A.5 and A.6 are identical to Eqs. 1 and 2.

Appendix A.2. Derivation of pAUCTPF (TPF0, 0) results (Eqs. 3–4) in Section
2.2.2

Our strategy for finding pAUCTPF (TPF0, 1) is to express pAUCTPF (TPF0, 1) in the form
pAUCFPF (0, FPF0) for an appropriate binormal distribution and FPF0 value. Consider part
A of Figure A1, which shows the ROC curve and the shaded region corresponding to
pAUCTPF (TPF0, 1), with TPF0 = .8. Define

Part B shows the ROC curve and shaded portion after transformation to the coordinate
system with FPF′ on the x-axis and TPF′ on the y-axis. We see that the resulting plot looks
like an ROC plot with FPF′ and TPF′ as false and true positive fractions; below we prove
this to be the case. Moreover, it is easy to show that area of the shaded region remains
constant under the transformation.

Let ξ denote a threshold value. Corresponding values for FPF′ and TPF′ are given by

Defining

we have

Furthermore, it follows that X′ ~ N (−μ, σ2) and Y ′ ~ N (0, 1). Thus the plot shown in
Figure 3 is the ROC curve corresponding to the binormal distribution defined by
nondiseased and diseased decision variables X′ and Y′. Noting that TPF= 1 is mapped to
FPF′ = 0 and TPF= TPF0 is mapped to FPF′ = 1 − TPF0 for TPF0 < 1, it follows that
pAUCTPF (TPF0, 1) for the binormal distribution with nondiseased and diseased
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distributions X and Y is equal to pAUCFPF (0, 1 − TPF0) for the binormal distribution for
nondiseased and diseased distributions X′ and Y ′.

In order to use Eqs. 1–2, we rescale X′ and Y ′ so that rescaled X′, denoted by X̃, has zero
mean and unit standard deviation:

Since the same transformation is applied to both X̃ and Ỹ, the ROC curve remains
unchanged. It follows that

and the standard binormal parameters for the (X̃, Ỹ) binormal distribution are

(A.7)

From Eq. 1 it follows that, for the binormal distribution defined by X̃ and Ỹ, pAUCFPF (1 −
TPF0, 0) is given by

(A.8)

Note that in Eq. A.5 that FPF0, μ, and σ were replaced by 1 − TPF0, μ/σ, and 1/σ,
respectively, to yield Eq. A.8. Equivalently, in terms of a and b it follows from Eqs. A.7 and
A.8 that

(A.9)

Note that Eqs. A.8 and A.9 are the same as Eqs. 3 and 4 in Section 2.2.2.
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Appendix B

Figure A1.
ROC curve and pAUCTPF (.8, 1) shaded area in ROC space (A) and after transformation (B)
to the coordinate system defined by FPF′ = 1 − TPF on the x-axis and TPF′ = 1 − FPF on
the y-axis. In the original ROC space (A) the nondiseased and diseased decision variables X
and Y define the ROC curve; in the transformed ROC space (B) the ROC curve is defined
by nondiseased and diseased decision variables X′ = −Y and Y ′ = −X, with the shaded area
equal to pAUCFPF (0, .2).
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Figure 1.
Partial areas under the ROC curve
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Figure 2.
Binormal ROC curves for Van Dyke et al [20] data by reader.
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Table 2

ROC summary measure estimates for Van Dyke et al [20] data assuming a latent binormal model. P -value is
for H0: the pAUC means are equal for cine and spin-echo MRI.

Type of estimator Specific estimator Estimates P-value

Cine Spin-echo

AUC AUC 0.911 0.952 0.1413

pAUCFPF pAUCFPF (0.0, 0.2) 0.790 0.880 0.0600

pAUCFPF (0.0, 0.1) 0.740 0.848 0.0399

pAUCFPF (0.0, 0.05) 0.691 0.817 0.0278

Sensitivity at fixed specificity Sens (spec = 0.80) 0.863 0.925 0.1265

Sens (spec = 0.90) 0.811 0.894 0.0778

Sens (spec = 0.95) 0.760 0.862 0.0491

pAUCTPF pAUCTPF (0.8, 1.0) 0.613 0.765 0.1426

pAUCTPF (0.9, 1.0) 0.427 0.599 0.1534

pAUCTPF (0.95, 1.0) 0.251 0.430 0.2277
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