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Abstract
Estrogens exert a wide variety of actions on reproductive and non-reproductive functions. These
effects are mediated by slow and long lasting genomic as well as rapid and transient non-genomic
mechanisms. Besides the host of studies demonstrating the role of genomic actions at the
physiological and behavioral level, mounting evidence highlights the functional significance of
non-genomic effects. However, the source of the rapid changes in estrogen availability that are
necessary to sustain their fast actions is rarely questioned. For example, the rise of plasma
estrogens at pro-estrus that represents one of the fastest documented changes in plasma estrogen
concentration appears too slow to explain these actions. Alternatively, estrogen can be synthesized
in the brain by the enzyme aromatase providing a source of locally high concentrations of the
steroid. Furthermore, recent studies demonstrate that brain aromatase can be rapidly modulated by
afferent inputs, including glutamatergic afferents. A role for rapid changes in estrogen production
in the central nervous system is supported by experiments showing that acute aromatase inhibition
affects nociception as well as male sexual behavior and that preoptic aromatase activity is rapidly
(within min) modulated following mating. Such mechanisms thus fulfill the gap existing between
the fast actions of estrogen and their mode of production and open new avenues for the
understanding of estrogenic effects on the brain.
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1. Introduction
Gonadal steroids produce a wide range of cellular effects that are largely, but not
exclusively, mediated through intracellular receptors. These steroid hormone receptors are
members of a large family of ligand-activated transcription factors that bind response
elements located on the DNA and regulate the transcription of genes encoding a wide
variety of proteins. These proteins include synthesis enzymes (such as tyrosine
hydroxylase), transporters, receptors, signal transduction proteins (phosphatases, kinases,
accessory proteins, etc) or degradation enzymes (such as monoamine oxidases), which
ultimately modify neurotransmission [152,163]. These effects are relatively slow and
develop with latencies ranging from one hour to several days. The role of genomic actions
of steroids in adults has been extensively documented based on studies of physiology and
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behavior. Steroids exert profound organizational effects on the developing brain and the
increase of secretion of sex steroid hormones at puberty and their maintenance throughout
the reproductive life are responsible for the activation and maintenance of secondary sex
characters and behaviors such as courtship, reproductive behavior, aggressive behaviors, etc
[34]. Seasonal fluctuations and/or variations across the estrus cycle of circulating levels of
estrogens positively correlate with variation in these reproductive responses [13,198,282]. A
variety of effects of estrogens and other steroids on responses unrelated to reproduction have
also been identified. For example, estrogens are known to influence cognitive functions,
pain mechanisms, fine motor skills, mood, temperature regulation and sleep [163,272].

In addition, a host of studies have also identified effects of steroids that are too rapid
(seconds to minutes) to be mediated through the activation of DNA transcription and protein
synthesis [132,163,176]. This is particularly the case for 17β-estradiol (E2) which can
rapidly (within a few seconds to several minutes, see below) activate a wide variety of
intracellular signaling pathways including modulations of intracellular calcium
concentrations [38,165] and protein phosphorylations [176,181,269,270,276]. These actions
seem to be initiated primarily at the cellular membrane and lead to modulations of electrical
activity [132,176] and neuronal activation [2,3,102,269,288] in various brain regions (for
review see [152,163].

Although there is no longer any doubt about the existence of non-genomic effects, many
uncertainties remain. One of the most debated questions is whether these effects are
mediated by interactions of estrogens with the “classical” nuclear estrogen receptors (ERs)
located in the cell nucleus or associated with the neuronal membrane and whether these
effects are elicited by physiologically relevant concentrations of estrogens. In addition, the
nature of the mechanism(s) able to modulate rapidly the bioavailability of estrogen (that is
necessary to explain the existence of these fast effects) has rarely been questioned or even
discussed, even though this represents a fundamental aspect of the rapid effects of steroids.
Furthermore, while there are a plethora of data characterizing rapid, presumably non-
genomic effects of estrogens based on cellular measures of action, there is still little
information concerning the significance of these effects at the organismal or behavioral level
of analysis. This review will try to address these last two questions. Firstly, we will examine
the potential sources of estrogen for the brain that are rapidly modulated and, secondly, we
will summarize what is known about functional significance of fast effects of estrogen for
physiology and behavior. In addition, the question of the physiological relevance of doses
that can activate the rapid effects of estrogens will also be discussed.

Physiological relevance of the fast cellular effects of steroids
Rather surprisingly, while the existence of non-genomic effects of steroids is not subject to
doubt anymore, our knowledge of their implications in the regulation of physiological and
behavioral processes remains quite limited. Perhaps the most progress has been made for the
C21 steroids corticosterone and progesterone. In the case of corticosterone, rapid effects
have been identified on various measures of sexual behavior [174] and stress [187] in
amphibians and on the production of vocalizations in batrachoidid fishes ([207,208],
Remage-Healey and Bass, 2006, cited in [206]). Furthermore, there is good evidence for a
highly specific membrane-binding site of corticosteroids [81,82,188]. Several lines of
evidence also indicate rapid, membrane-mediated effects of progesterone on sexual behavior
in the ventral tegmental area of Syrian hamsters [71,95,96,196] and this steroid or its
metabolites can clearly bind to membrane receptors such as the GABAA complex [156], the
NMDA receptor [123,124] or the membrane progestin receptor recently identified in one
piscine and several other vertebrate species [290,291]. One study reported rapid effects of
testosterone on striated penile muscles related to the expression of male sexual behavior
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[218]. Remage-Healey and colleagues also recently demonstrated that 11-keto-testosterone
(11kT, the main androgen in fishes) rapidly increases the duration of fictive vocalizations
stimulated by electrical stimuli in an in vitro preparation ([208], Remage-Healey and Bass,
2006, cited in [206]). Finally, Clifton and Andrew (1981, [61]) also suggested the existence
of rapid effects of testosterone on aggressive behavior in chicks presented with foreign
objects. However, these effects appeared 4 hours after the injection of testosterone in
animals that received an injection the previous day, so it cannot be ruled out that this effect
results from the activation of genomic mechanisms.

A few rapid effects of estrogens have also been reported based on behavioral and/or
physiological measurements. In rats, there is evidence that estrogens potentiate, via non-
genomic mechanisms, their genomic action on lordosis behavior. For example, Kow and
Pfaff (2004, [138]) showed that a pulse of E2 as short as 15 min given in the hypothalamic
ventromedial nucleus (VMN) potentiates the effects of a second pulse of 1h in inducing high
receptivity in ovariectomized female rats. A similar effect is obtained if purified E2
conjugated with bovine serum albumin (a large protein that prevents estrogens from crossing
the plasma membrane) is used to replace E2 in the short pulse suggesting that its effect is
mediated through a non-genomic mechanism. This conclusion is further supported by the
fact that the effect of the short E2 pulse can be mimicked by the activation of protein kinase
A or C as previously demonstrated in vitro [266]. These data thus suggest that non-genomic
and genomic actions of estrogens interact to activate lordosis in a synergistic manner.

Behaviors such as tonic immobility, dorsal immobility and amphetamine-elicited rotational
behavior are differentially expressed across the estrus cycle [35,36,167,244,264,265]. The
striatum has been implicated in the control of these behaviors and accordingly estrogens
implanted in the striatum affect their expression within 4 hours both in males and females
[264,265]. Given the absence of nuclear estrogen receptors in the striatum, these effects are
thought to be mediated by non-genomic mechanisms. This is consistent with the observation
that E2 modulates apomorphine-induced postural deviation and amphetamine-induced
rotational behavior with short latencies in the order of one hour in ovariectomized females
[33,126]. In addition, estrogens rapidly affect intracellular calcium concentrations in striatal
neurons in vitro through a membrane-initiated non-genomic mechanism [165]. Thus,
estrogen in the striatum appears to potentiate, acutely and probably non-genomically,
dopaminergic activity that would in turn enhance sensorimotor processing. This cellular
effect may be part of the mechanism controlling paced mating behavior in female rats [285].
Other rapid effects of steroids on measures of cell function have been described in the
hypothalamus. For example, a single injection of E2 to ovariectomized females results in
CREB phosphorylation within 15 min in the medial preoptic nucleus, the medial septum and
the VMN of mice [3] and within 15–30 min the preoptic area, the bed nucleus of the stria
terminalis and the anteroventral periventricular nucleus in rats [102,288]. A physiological
role for these cellular effects at the level of the organismal has not been reported yet, but
they are likely involved in the hormonal feedback on neural systems that regulate
gonadotropin secretion.

Non-genomic effects of estrogens are not limited to females. Unlike females, males of
course do not exhibit a cyclical “rapid” rise of circulating concentrations of estrogens.
However, they can display substantial concentrations of estrogens originating either directly
from the testis or produced locally in the brain by aromatization of testosterone (Table 1;
[13,106,118]). Although the existence of rapid variations in the availability of estrogen in
the brain is rarely discussed (see below), fast effects of estrogens on male behaviors have
been reported. For instance, Cross and Roselli (1999; [69]) showed that a subcutaneous
injection of E2, but not testosterone, stimulates the expression of male sexual behavior in
castrated rats within 35 min. In Japanese quail, an intraperitoneal injection of a bolus of 17β-
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estradiol facilitates the expression of male sexual behavior. This effect occurs within 15 min
and vanishes after 30 min. In order to prime the mechanisms involved in sexual behavior,
the animals used in this experiment were castrated males that were chronically treated with a
sub-threshold dose of testosterone that is unable by itself to elicit sexual activity in most
birds. The rapid behavioral activation observed in this experiment [64] thus potentially
illustrates in males the synergistic interaction between rapid and slower genomic actions of
estradiol as also demonstrated by recent work on female rats (see work of Kow and Pfaff
and Vasudevan et al. described above; [138,266]). In plain midshipman fish, an
intramuscular injection of E2 increases within 5 min the duration of fictive vocalizations
stimulated by electrical stimuli in an in vitro preparation [208]. This effect persists for 15 to
30 min. Interestingly, 17α-estradiol or testosterone do not produce similar effects. Hayden-
Hixson and colleagues also showed that a microinjection of E2 in the anterior hypothalamus
stimulates agonistic behavior (flank marking) within 15 min in male hamsters [110].

Several generalizations can be derived from these observations. Firstly, these behavioral
effects occur with latencies ranging from 5 min to 1 hour, most effects being observed
around 15–30 min. This is considerably shorter than the several days commonly required for
genomic activation of behavioral responses (see below for further discussion of this issue).
This rapidity of action is all the more striking that most of these effects were observed
following systemic injections [33,64,69,208] so that the hormone had first to reach the target
tissue and accumulate above a certain threshold before it could activate a cellular response
and trigger the neuronal circuits involved in the expression of the behavior considered.
Alternatively, most of the intra-tissue applications were performed via insertion of hormone
in crystals [110,126,138]. It is thus likely that some time was required to dissolve hormone
from these implants and produce a behaviorally active concentration of E2. Together, these
data therefore suggest that the effects of E2 observed in these experiments would occur even
faster if the steroid could be delivered instantaneously to its targets in effective
concentrations. Secondly, some of these rapid behavioral effects appear to be transient as
compared to the long lasting genomic effects. Thirdly, the rapid actions of estrogens appear
to be somewhat region specific. Most of the studies available to date report fast effects of
peripheral injections. But there are some examples of an estrogen implant applied only for a
brief period in a specific brain area that activates the expression of complex behaviors in the
absence of steroid priming i.e. in the absence of activation of specific circuits involved in the
control of these behaviors [110,126,138,264,265]. Finally, fast effects of estrogen, and other
steroids, have been identified in various vertebrate species (for review, see [206]).
Therefore, these mechanisms of rapid action seem to be conserved across species.

Non-genomic effects on cell function
Fast effects of steroids were described for the first time in 1941 by Hans Selye, who
observed a rapid anesthetic and sedative effect of progesterone [234]. In the 60s and in the
beginning of the 70s, several studies suggested that estrogens modulate the electrical activity
of various neuronal populations [49,279,286]. The concept of fast and non-genomic action
of estrogen was first introduced in 1976 by Martin Kelly who demonstrated that E2 applied
by microiontophoresis modified within a few seconds neuronal activity recorded in vivo
from septal and preoptic cells [130]. It is now clear that these fast effects of estrogens are
diverse and involve several signaling pathways. However, the underlying mechanisms
remain largely unknown and even the definition of a non-genomic action, as opposed to a
genomic action, is not straightforward. As a matter of fact, these two modes of action are
often compared in term of latency of onset (fast – non-genomic versus slow – genomic), but,
although it is relatively easy to differentiate latencies of a few seconds from latencies of
several hours or days, it is hard to define the mode of action of effects observed at
intermediate latencies of about 30 min (some genomic effects are initiated within 30–45
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min). Furthermore, some non-genomic processes result in the activation of gene
transcription and have for this reason been qualified as “indirect” [163].

In order to provide simple (and probably simplistic) guidelines, it is generally considered
that non-genomic effects of steroids share one or several of the following criteria: (a) they
are too fast to be generated by de novo protein synthesis; (b) they may be reproduced in the
presence of inhibitors of RNA or protein synthesis; (c) they may be reproduced following
treatment with conjugated estrogen that is unable to pass the cell membrane (e.g. E2-BSA);
(d) they are observed in brain regions devoid of nuclear steroid receptors [152].

The non-genomic effects of estrogens seem to be initiated at the cell membrane. The
existence of membrane estrogen receptors was first proposed in 1977 by Pietras and Szego
[195]. Since then, an important controversy developed concerning the nature of this (these)
receptor(s) (for review see [45,143,177,232,259,273]). In brief, one hypothesis postulates
the existence of novel membrane receptors, such as GPR30 [89] and ER-X [260], that are
different from the classical nuclear receptors, while the alternative hypothesis supports the
involvement of the classical nuclear receptors, ERα and ERβ, that would be able to integrate
the cell membrane and activate various intracellular cascades. In addition to their action on a
specific membrane receptor whose nature remains to be elucidated, some steroids can act as
co-agonists or allosteric antagonists of neurotransmitters’s receptors. The best known
example is certainly the allosteric modulation of the GABAA receptors by neurosteroids
[156]. E2 can also behave as an allosteric co-agonist of α4β2 nicotinic receptors [190] or as
an allosteric antagonist of NMDA receptors [277] and serotonin receptors 5-HT3 [278].
Finally, the existence of a binding site for estrogens has also been identified on an ionic
voltage-dependent channel, the high conductance calcium-dependent potassium-channel
called maxi-K (hSlo, [263]).

Regardless of the nature of the membrane receptor involved, the action of estrogens initiated
at the cell membrane activates a variety of intracellular responses (Fig. 1), including the
modulation of intracellular calcium [44,55,122,165,175,209] and protein kinase C (PKC;
[266,276]). There is also evidence that membrane effects of estrogens can activate
intracellular signaling pathways involving cyclic AMP (cAMP; [103,170,254]), protein
kinase A (PKA; [104,141,266]), the “mitogen activated protein kinases” (or MAP kinases;
[39,122,153,205,260,269,276]), and the tyrosine kinases [39]. The activation of these
intracellular signaling pathways results primarily in phosphorylations/dephosphorylations
producing different kinds of physiological responses such as the decoupling of a receptor
from its effector system [141,171–173] or the modulation of the catalytic activity of an
enzyme [191]. Finally, as mentioned previously, the activation of these cascades of
intracellular events may result in a transcriptional activation caused, for example, by the
phosphorylation of CREB (cAMP response element [CRE]-binding protein) which then acts
at the level of the cAMP response element notably (CRE; [2,3,46,102,288]).

It is also the case that purely cytoplasmic effects, i.e., effects independent of the binding to a
membrane receptor, have also been identified. Among others, it has been shown that the
binding of estradiol to a cytoplasmic estrogen receptor, ERα or ERβ, allows an interaction
between the ER and the protein kinase Src resulting in the activation of the intracellular
cascade Src/Ras/ERK [168]. Moreover, the binding of E2 to the cytoplasmic ERα activates
the protein kinase Akt via a direct interaction of ER with the protein kinase PI3K
([112,238]; for more information see [80]).

As illustrated in Table 2, the latency at which non-genomic effects of estrogen are observed
varies from a few seconds to 30 minutes. Estrogen modulates electrical activity of neurons
within a few seconds in some experiments [165,190,277,278] but with relatively longer
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latencies of up to 3–5 minutes in other biological systems [103,104,137,141,202,284]. The
fastest of these effects appear to be associated with the allosteric modulations of ionotropic
receptors [190,277,278], but most effects on electrical activity result from a modulation of
ion channel activity through G protein linkage (for review see [132,176]). Estrogen-induced
changes in intracellular calcium concentrations have also been identified with latencies of a
few seconds [44,54,175,209] to several minutes [55,122]. Finally, the time-course of protein
phosphorylations and of changes in kinase activity following estradiol treatment ranges
between 5 and 30 min [39,122,153,168,260,269,276].

The broad spectrum of latencies associated with estrogen actions in vitro is fully consistent
with the fact that they encompass a wide variety of potential mechanisms. However,
independent of the nature of the effects described (potentiation/inhibition of
neurotransmitter effects, protein phosphorylations, modulation of intracellular calcium
levels, etc), it appears that most of these effects result from the activation of second
messengers systems. Mounting evidence also suggests that membrane estrogen receptors are
coupled to G proteins [89,131,176,211]. The broad range of latencies described is thus
probably explained by this diversity of mechanisms but also to a large extent by the number
of successive intracellular events required for the activation of the measured effects. In
addition, it should be noted that numerous studies did not report a time-response curve for
the described effects. Consequently, the reported latency may simply be the result of an
arbitrary choice of the experimenters when they designed their experiment. The latency of
some effects also depends on technical issues that limit the temporal resolution of the data
acquisition, so that the latency reported may actually be longer than the actual velocity of
the effect.

Together, the range of latencies of non-genomic effects of estrogen identified in vitro is in
agreement with the time-course of the fast effects of estrogens observed on measures of
physiology or behavior (5 min to 1 hour). If one extrapolates from the in vitro data, it is
reasonable to speculate that the fastest effects observed with the use of organismal-level
measurements (i.e. physiology or behavior) rely on modulations of ionotropic channel
function, while slower effects result from a modulation of intracellular events through G
protein activation that ultimately induce changes in ionic conductance, protein
phosphorylation, enzymatic activity, etc. These effects then potentially modify the firing rate
of neurons and neurotransmitter release that will finally lead to measurable effects on
physiology and behavior [133]. The slight delay in the onset of in vivo as compared to in
vitro effects is caused, in all probability, by the time needed for the steroid injected in
periphery to reach an effective concentration at its target site(s). Indeed, acute intravenous
injections of estradiol lead to a maximal estrogen concentration 5 min after the injection
[287]. Furthermore, an early report on fast actions of estrogen showed that it takes about 15–
16 min for significant changes in the firing rate of preoptic-hypothalamic neurons to be
observed following a single intravenous injection of estradiol in ovariectomized females.
Interestingly, this effect persisted for 20 to 30 min and then vanished [286].

In summary, it seems clear that the non-genomic effects of estrogens are quite diversified,
require or not the binding to a membrane receptor and involve a variety of intracellular
signaling pathways. These signaling cascades are probably not linear but act via parallel or
even divergent pathways [80]. Estrogens may thus activate intracellular cascades without
acting at the transcriptional level. These cascades could also amplify the genomic action of
the hormone as suggested by the work of Pfaff and colleagues [266] or influence cellular
function prior to the initiation of transcription.
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Where does estrogen come from?
Together, these observations raise the question of the mechanisms controlling the rapid
fluctuations of estrogen bioavailability that are presumably needed to sustain the fast actions
of the hormone. Intuitively, it can indeed be hypothesized that, for fast non genomic actions
of steroids to be biologically effective, the endogenous ligand’s availability must also
change quickly. That is not to say that slow changes of steroids levels would not activate
non-genomic effects. However, in this case, steroid action would result in a potential waste
of the temporal-resolution provided by fast membrane responses.

What is the mechanism mediating fast behavioral effects if the concentration of the ligand
(steroid) does not vary and does not vary quickly? Quite surprisingly, this aspect of brain E2
action has rarely been considered in the literature. Although fast effects of estrogens are not
limited to females, the acute effects of estrogen in the brain seem to be exclusively attributed
to the pre-ovulatory peak of estrogen produced cyclically in females. In fact, in most cases
there is little discussion of the origin of the hormone that exerts these proposed effects. How
then are these rapid effects triggered in males? From a physiological perspective, this
question is fundamental. If estrogens have the ability to quickly trigger specific and transient
cellular processes or specific behaviors, it is legitimate to postulate that their production and
clearance should also be finely and rapidly tuned in order to respond appropriately to
relevant stimuli. Likewise, if estrogens can activate a specific behavior through a local
action only, the mechanism controlling their production should additionally be region-
specific. This neuroanatomical specificity could be provided by the discrete distribution of
the receptors and/or their intracellular effectors but the origin of the hormone should be
envisaged as well.

As alluded to previously, estrogens can be synthesized directly in the brain by aromatization
of androgens such as testosterone. The involvement of this local source of estrogens in the
regulation of the fast effects of these steroids should thus be considered. Rapid changes in
local estrogen production could simultaneously provide answers to the problem of the
source of rapid changes in ligand and of its anatomical specificity. From a functional point
of view, it would also probably be useful to produce estrogens locally where they are needed
rather than flooding the entire organism with a compound that can have severe adverse
effects (e.g. promote tumor growth, alter structure or function of reproductive organs, induce
general toxicity, etc [5,27,94,99,134,154]) especially at the high doses that seem to be
required to activate non-genomic responses (See below). Is it therefore possible that
estrogens locally produced in the brain by aromatization of testosterone represent an
endogenous stimulus triggering all or part of the fast non-genomic effects reviewed above.
This organization would additionally provide anatomical specificity to the observed effects
while avoiding inappropriate if not toxic effects potentially resulting from the activation of
non-neural tissues.

The fast effects of estrogens: systemic or central origin of the steroid?
In both sexes, androgens such as testosterone or androstenedione can be converted into
estrogens by an enzymatic process, called aromatization, which is catalyzed by the enzyme
aromatase (or estrogen synthase). This enzyme is present primarily in the ovary (but also to
a lesser extent in the testes), the placenta, the bones and the brain [179,224,240]. Under
normal conditions, aromatase expression in the avian and mammalian central nervous
system is restricted to specific neuronal populations. These neuronal groups are mainly
located in the hypothalamic/preoptic (medial preoptic nucleus, ventromedial nucleus) and
limbic system (bed nucleus of stria terminalis, amygdala, hippocampus, septum, etc), but
more scattered populations of aromatase expressing neurons are also present in the cerebral
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cortex [24,160,215,216,252,271]. In zebra finches and canaries, aromatase is also detected
in high concentrations in parts of the nidopallium adjacent to the song control nucleus HVC
[14,166,222]. In contrast, in the brain of teleost fishes, aromatase is expressed in radial glia
[93]. In addition, in birds and mammals, aromatase is observed after in vivo brain injury in
the glial cells within the damaged brain areas indicating that astrocytes from most brain
areas have the potential for expressing aromatase and therefore produce E2 in response to
injury [10,192,193]. Because under normal physiological conditions circulating
concentrations of testosterone produced by the gonads are fairly high in males and even
females of many species (Table 1), estrogens may therefore be produced locally in the brain
by aromatization of this androgen which freely enters the central nervous system.
Furthermore, there is evidence that brain areas such as the rat hippocampus or the avian
telencephalon are capable of producing estrogen de novo from cholesterol [115,197].
Several studies also suggest that androgen precursors, such as DHEA
(dehydroepiandrosterone), and androgens are also produced de novo in the brain
[68,147,161,164,246]. These steroids could thus also act as a substrate for aromatase.

A prominent role for brain aromatase has been established for the control of male sexual
behavior in a variety of species [12,22,30,58–60,70,116,258,274,275]. Central aromatization
also plays a role in the control of aggressive behaviors [227–229,247,258], neuroprotection
[10], nociception [43,83–85], the development of sexual preferences [214] and synaptic
plasticity [197]. Most of these studies, however, concern relatively slow, presumably
genomic, effects of estrogens. Whether the more rapid, presumably non-genomic, effects of
estrogens on brain and behavior relate to a central or peripheral source of the steroid should
be considered independently.

Gonadal production of steroids
In both sexes, estrogens may be delivered to the brain via gonadal secretion or by local
production in specific regions of the central nervous system (see Fig. 2). As discussed
above, it is reasonable to hypothesize that estrogen availability has to be modulated rapidly
in order to take advantage of its fast non-genomic effects. One can thus ask whether gonadal
steroids vary rapidly enough to achieve this goal?

In females, the estrogen surge at pro-estrus is often implicitly considered as the source of
rapid changes in estrogen brain concentration. However, to our knowledge, no study has
documented increases in plasma E2 concentrations that would take place within a time frame
compatible with the latency of a few seconds or minutes observed for the activation of non-
genomic effects of E2. This does not mean that this ovarian source of estrogen cannot
activate non-genomic effects when estrogen reaches a threshold concentration. Rather we
would argue that this peripheral source of estrogen would not be able to trigger rapid on/off
switches of the response and would therefore constitute a poor use of the capacity of the
membrane non-genomic response mechanisms.

Available studies indicate that, in rats, the rise of estrogen plasma concentrations at pro-
estrus occurs over a period of several hours slowly rising during 24 hours to “rapidly” reach
a peak in about 12 hours [7,51,243,253]. Ovulation and receptivity occur about 24 hours
after this peak has been reached [162]. This time frame is in agreement with the activation
by estrogen of the transcription of hypothalamic progesterone receptors that appear to be
required for the activation of female sexual receptivity [158,162,196]. The pre-ovulation
secretion of estrogen appears even slower in primates including humans [117,280]. This rate
of increase does not seem compatible with the dynamics of non-genomic effects of estrogens
that occur with latencies of a few minutes to an hour (see above) although, this relatively
abrupt rise of circulating levels could activate preparatory effects such as those described by
Pfaff and colleagues [138,242,266,267].
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It is established that social stimuli influence endocrine function in males and females of a
variety of vertebrate species (see [13,108,136,180,185] for review). Most of these effects
take place over a relatively long period (>days) and are therefore likely to influence genomic
but not the more rapid non-genomic effects of steroids (fish: [145]; frog: [50]; birds:
[119,183,184]; rat: [201]; rhesus monkey: [212]).

In addition, rapid increases (in the minute range) of circulating hormone levels triggered by
environmental/social stimuli have also been reported. For instance, plasma testosterone
levels may be acutely altered in males by the presentation of a female and/or copulation
(mice: [32,150]; rat: [128,200]; Rabbit: [107,111,220]; Hamster : [129]; marmoset : [292];
macaques: [53]; Birds: [281]). The fastest effects reported occurred within 5–15 min (in rat:
[200]; in mouse: [32]; in rabbit: [220]). A release of pituitary hormones in response to some
of these stimuli has also been shown to precede the testosterone release
[62,92,111,125,128,129]. The nature of the stimulus eliciting these responses has been
questioned. Some studies based on repeated exposures to female odors or repeated mating
suggested that mating per se was necessary [255], while other experiments indicated that the
smell or sight of an estrus female or a pre-copulatory interaction with an estrus female were
sufficient to increase plasma hormone levels [32,62,151,200,220,292]. It has also been
suggested that these effects may be purely social, and not sexual, given that a similar
increase of hormone concentrations could be evoked by exposure to a non-receptive female
[97,125,129,150]. Interestingly, in male rats, LH and testosterone secretion can be
conditioned so that after learning they are rapidly induced by a neutral stimulus previously
associated with mating [100] or by the arena where males were previously mated [128].

Social stimuli related to aggression, stress or establishment of social rank have also been
shown to affect plasma androgen levels in various species. Again, most of these effects seem
to develop relatively slowly [185,223], but some occur in a rather rapid fashion. For
example, Harding and Follett reported that a short aggressive interaction (about 20 min)
between male blackbirds results in increased levels of LH and androgens measured
immediately after the encounter [109]. Likewise, Wingfield demonstrated an increase of
testosterone plasma concentrations in response to territorial intrusion in male song sparrows
within 120 min [281]. In male teleost fish, watching a fight between two males raises the
androgen levels (testosterone and 11-keto-testosterone, the main androgen in fishes) within
90 min [186]. In the toad fish, 11-keto-testosterone was elevated 20 min after an acoustic
playback challenge [207]. In the green anole lizard, plasma testosterone is increased by
470% after agonistic encounters in winners but not in losers [101]. Finally, in male guinea
pig, plasma testosterone was significantly decreased 20 min after an agonistic encounter.
This finding was interpreted as the expression of a relaxation phase after a physical strain
associated with the encounter [219].

The acute peripheral releases of testosterone that have been described in males occur within
a few minutes (from about 5 min to two hours depending on the experiment) following the
presentation of the eliciting stimuli and appear to be transient. The functional significance of
these rapid endocrine changes, particularly in the context of the control of social behavior,
remains however unclear. In the case of sexual encounters, the increased hormone levels
have been proposed to enhance sexual arousal [108]. However, the underlying mechanism
of the behavioral effects of such rapid hormonal changes has not been identified. It has been
shown that an injection of testosterone given to a sexually experienced and intact male rat
one hour before he was allowed to copulate with a female decreased the inter-intromission
interval and facilitated ejaculation [157]. Similarly, testosterone also affects penile reflexes
of rats in a rapid manner (within 6 to 30 min; [218]).
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The rapid behavioral effects of changes in plasma testosterone concentrations could
obviously be mediated by interactions of the androgen with its cognate receptor. However,
behavioral effects of increases in plasma testosterone levels could also be related to fast
effects of estrogens. Indeed, contrasting with the relatively limited number of examples of
fast actions of androgen reported at the cellular level (e.g. [37,149]), rapid cellular effects of
estrogens have been extensively documented. It is thus possible that a bolus of testosterone
secreted by the testes following a social encounter is rapidly aromatized in the brain and the
estrogen produced then contributes to the modulation of behavioral effects. Such a
mechanism would provide anatomical specificity to the behavioral response since only
aromatase-containing regions would react even though the entire body (and brain) would be
exposed to increased testosterone concentrations. Whether the magnitude and time-course of
these hormonal changes is compatible with the activation of non-genomic effects of
estrogens is however unknown and more research on this topic would definitely be
warranted.

Brain synthesized estrogens
Alternatively, as already discussed above, rapid changes in this brain aromatase activity
could generate equally rapid changes in brain estrogen concentrations that would trigger fast
behavioral responses independent of changes in plasma androgen concentrations. It has
traditionally been assumed that brain aromatase activity, as opposed to aromatase expressed
in ovaries or adipose tissue, is regulated by sex steroids which act as transcription factors
after binding to their cognate receptor to regulate the transcription of the enzyme. Treatment
of castrates with testosterone markedly increases aromatase activity in several brain regions
including the preoptic/hypothalamic area in birds and mammals [213,217,231]. Testosterone
similarly increases the concentration of the aromatase protein and the corresponding
messenger RNA supporting the idea that testosterone induced changes in brain aromatase
activity result of an increase in gene transcription [1,23]. As expected, these effects are
relatively slow and take many hours if not days to be expressed [25].

Besides this genomic and slow control of brain aromatase activity, recent experiments from
our group have demonstrated that aromatase activity is rapidly modulated by calcium-
dependent phosphorylations independently of changes in enzyme concentration. These
experiments were performed in quail, taking advantage of the high concentration of the
enzyme detected in the avian as compared to the mammalian brain [226,231,251]. They
showed that the enzymatic activity measured in preoptic/hypothalamic homogenates
submitted to phosphorylating conditions (i.e. in the presence of increased but physiological
concentrations of ATP, Mg2+ and Ca2+) is profoundly inhibited within 15 minutes [16]. This
inhibition is blocked by compounds chelating divalent ions such as EGTA and EDTA or by
kinases inhibitors such as inhibitors of protein kinase A (PKA) or C (PKC) indicating that it
is indeed caused by phosphorylation processes [16,18]. The identification of putative
phosphorylation sites for PKC on the predicted quail aromatase sequence and western-
blotting experiments on quail brain aromatase partially purified by immunoprecipitation
confirmed that phosphorylation sites located on the aromatase protein itself are affected by
the phosphorylating conditions that influence the enzymatic activity [18,19].

Similar effects were observed in preoptic/hypothalamic explants in which the cellular
integrity of the neurons and a large part of their connectivity were maintained [16]. In these
explants, aromatase activity is rapidly (within 5 min) and reversibly inhibited by conditions
that increase the intracellular Ca2+ concentration such as a K+-induced depolarization or the
exposure to thapsigargin, a drug that mobilizes intracellular pools of Ca2+ [16]. Due to
technical limitations, it was impossible to assess changes in aromatase activity after latencies
shorter than 5 min, but circumstantial evidence strongly supports the notion that the changes
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observed after 5 min take place much more rapidly at the cellular level (see [16,17] and
below for discussion).

Furthermore, application of glutamatergic agonists (AMPA, kainate and to a lesser extent
NMDA, the effect was actually not statistically significant in this latter case) in these
explants resulted in similar inhibitions. These AMPA/kainate effects are also reversible and
are blocked by specific antagonists [17]. The implication of DA in the control of aromatase
activity has also been suggested but the exact mechanism of this action remains unknown
[4].

Electrophysiological studies indicated that preoptic aromatase-containing cells are sensitive
to glutamate, dopamine and norepinephrine [63,66] and showed the existence in quail and
rat preoptic area of a tonic electrical activity that can be blocked by glutamate and GABA
antagonists [63,66,113]. A recent study also showed a modulation of estrogen synthesis
within 30 min in hippocampal slices of male rats incubated in the presence of Mg2+ and
NMDA. Interestingly, this effect resulted in a 2-fold increase in E2 concentration in the
preparation. The authors of this study hypothesized that this effect depends on NMDA-
induced Ca2+ influx and thereby depends on synaptic communication [114]. Why
application of NMDA tended to decrease estrogen formation in the quail preoptic/
hypothalamic explants and increase it in the rat hippocampus remains unclear at present.
This difference could relate to differences in the species used, brain area investigated or
specific experimental conditions (e.g., ionic, in particular Mg2+, concentration in the
medium). It must also be mentioned that, in addition to these rapid effects of NMDA
receptor activation on estrogen synthesis, estrogens regulate, presumably by genomic
mechanisms, the concentration of NMDA receptors in the songbird hippocampus [221]. This
suggests the existence of bi-directional interactions between NMDA receptors and estrogens
that normally utilize two different time frames when regulating biological events. How these
effects interact under intact physiological conditions remains to be investigated.

Finally, it should be noted that, in addition to its presence in cell bodies, aromatase has also
been identified throughout the length of neuronal dendrites and axons, including pre-
synaptic boutons, in a relatively large number of brain areas [87,91]. Aromatase activity is
also enriched in synaptosomes prepared from quail or rat brain [230,250] and dense
aromatase immunoreactivity is observed in presynaptic boutons at the surface of synaptic
vesicles [114,178,194]. Together, these data suggest that aromatase activity can be rapidly
(with latencies in the minute or possibly the second range) modulated at the pre-synaptic
level by afferent inputs potentially providing a mechanism able to quickly change the local
production of estrogens.

Rapid changes in estrogen availability are thus likely to occur at the synaptic level
suggesting that estrogen in the brain may play a role more similar to the role of
neurotransmitters or neuromodulators than previously thought. Given the lipophilic nature of
estrogen, the mechanism(s) of its release and retention may be questioned. However, the
definition of what should be considered a neurotransmitter has recently been extended to
unconventional transmitters such as nitric oxide, a gas that is not stored in cells and is not
released in an exocytotic manner [76,245]. More work will, of course, be necessary before
estrogen produced in the brain can be fully accepted as a neurotransmitter (see [20] for a
further discussion). Nevertheless, these rapid changes in local estrogen concentration appear
perfectly suited to mediate the rapid effects of this hormone. In addition, as pointed out
previously, the intervention of brain aromatase offers anatomical specificity to the
behavioral effects since estrogen is synthesized and will produce its effects only locally. Its
restricted localization, in particular at the level of pre-synaptic boutons, could also
contribute to speed up the rise of estrogen concentration since production takes place exactly
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where needed (pre-synaptic level) and does not require a transport/diffusion of the hormone
to distant target site. This implies however that the (unidentified) brain sites mediating rapid
behavioral effects of estrogens should overlap with the brain areas expressing aromatase. An
important remaining question is thus whether the estrogen release/synthesis sites are
localized in proximity to estrogen receptor systems that mediate fast behavioral effects and,
at the cellular level, whether these receptor systems are present in the pre/post-synaptic
membrane in close association with pre-synaptic aromatase.

What is a physiological contentration of estrogen?
The fact that estrogen production is very localized in the brain suggests that high
concentrations may be rapidly attained in specialized locations such as the synaptic clef in
specialized synapses. These local brain concentrations may thus exceed at discrete sites the
physiological concentrations of circulating estrogens. This could then explain why some
(most) of the rapid effects of estrogens that have been observed in vitro can only be
activated with what has been considered so far as supra-physiological concentrations.

In a recent article, Warner and Gustafsson (2006; [273]) argued that the E2 concentrations
used in some studies are higher than physiologically relevant concentrations, classifying
these concentrations as pharmacological and toxicological. Based on the maximal plasma
levels measured in cycling females (±100 pg/ml i.e. 0.4 nM in rodents; ±350 pg/ml i.e. 1.3
nM in primates including humans, see Table 1 for details), it can be accepted that
physiological concentrations of E2 range from the high picomolar (i.e. 100 pM; rat:
[7,51,243]) to low nanomolar concentrations (i.e. 1–2 nM; quail: [21,74]; Rhesus monkey:
[280]; Human: [117]; see Table 1 for details). While some rapid effects of E2 are elicited in
vitro at such concentrations [46,165,209,266], numerous studies reported effects that could
only be triggered by concentrations in the high nanomolar to micromolar range
([2,55,104,122,137,153,202,254,269,276–278,284]; see Table 2 for details). Obviously,
these effects cannot be triggered by the levels of estrogen circulating in the periphery, not
even by the pro-estrus surge of E2. However, are these effects necessarily of a
pharmacological nature? We do not believe that this is necessarily the case because although
these fast effects cannot be elicited by peripheral concentration of estrogen, they could be
activated by the potentially higher concentrations produced locally by aromatase activity.

This scenario would be in agreement with the concept that “estrogen synthesized in
extragonadal compartments acts predominantly at the local tissue level in a paracrine or
intracrine fashion” and consequently “the total amount of estrogen synthesized by these
extragonadal sites may be small, but the local tissue concentrations achieved are probably
high and exert biological influence locally” [239,241]. This model is supported by reports of
higher concentrations of estrogen in certain brain areas, such as the hypothalamus, preoptic
area and the hippocampus, than in the plasma [40,114]. It must also be noticed that these
measures of tissue concentrations are likely to be underestimations of the actual
concentrations present at discrete locations close to the site of synthesis and action. Even if
assays are performed in microdissected brain regions that express high level of aromatase,
heterogeneity still persists in these samples and the potentially high concentration of
estrogen present at specific sub-cellular sites (e.g. the synaptic cleft) is diluted in tissue
containing lower concentrations of the steroid.

This model will remain hypothetical until technology allows us to determine estrogen
concentrations at the sub-cellular level. The model is also currently associated with a major
caveat namely that, if high concentrations of estrogens are required to activate fast
physiological or behavioral responses, then (membrane?) estrogen receptor systems that are
selectively sensitive to these high concentrations should be present in the brain. In
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contradiction with this prediction, membrane estrogen receptors have been identified during
the last decade, but their affinity for estrogen is not fundamentally different from the affinity
of nuclear receptors (see Table 3). Indeed, independently of their cellular localization in the
nucleus or in the membrane, the so-called “classical” intra-cellular receptors (ERα and ERβ)
respond to concentrations of estradiol in the high picomolar range. In addition, novel
membrane receptors such as GPR30 and ER-X respond to concentrations in the low
nanomolar range. This discrepancy between the doses of estrogen needed to activate fast
effects and the affinity of the known estrogen membrane receptors cannot be explained at
this time. For these effects of estrogen to be considered as physiological in nature, either a
novel estrogen receptor with lower affinity should be identified or some physiological
mechanism (e.g. a specialized regulation of the coupling between the receptor and
associated G protein) should be uncovered to explain the requirement of such high dose of
steroid.

Nevertheless, based on these considerations, it is enlightening to reconsider the circulating
concentrations that are presumably reached following the acute systemic injections of
estrogens in behavioral studies that identified rapid effects of this steroid. These may be
considered as supra-physiological when compared to endogenous circulating levels in males
or even females. Indeed, assuming that distribution is immediate and the distribution volume
equals the entire body (1 liter /kg body weight), the average concentrations reached in these
experiments in the body fluids should range between 100 and 500 ng/ml which is about 2 to
3 orders of magnitude above the endogenous concentrations of estrogens in the plasma (after
an injection of 1–10µg/mouse [3] or an injection of 20µg/kg (in rat : [69]; in midshipman
fish : [208]), 100µg/kg (in rat : [69,102]), 500 µg/kg (in rat : [288]; in quail : [64]) or 1 mg/
kg (in midshipman fish : [208])). The goal in these experiments is however not to mimic
circulating levels of estrogens but to induce in a few discrete brain locations, concentrations
that are presumably produced by local aromatase activity. Although much higher than
concentrations observed in the plasma, these experimentally-induced concentrations may
thus appropriately mimic the natural situation in target areas.

In conclusion, the data summarized here suggest that estrogen concentrations that are higher
than physiological circulating levels may be reached locally in the brain through the
conversion of testosterone by the enzyme aromatase. This could explain why some of the
rapid effects of estrogens observed in vitro can only be activated with what is considered as
supra-physiological concentrations. The estrogen-sensitive system (receptor?) that mediates
these effects of higher concentrations is however unclear at present and its identification
should be a priority for future research

What terminates estrogen action in the brain?
Warner and Gustafsson also compared the effects of E2 and neurotransmitters and observed
that “the changes [induced by neurostransmitters] are not only rapid, they are also transient”
and “there are multiple mechanisms at the synapse to terminate neurotransmitter action and
rectify intracellular ion homeostasis”. They stated that the case of E2 is different because
“plasma levels do not change rapidly and transiently and no extremely rapid metabolic
pathways to terminate estrogen action at the cell surface have been described” [273]. Based
on the data reviewed above, we would like to argue that changes in brain estrogen
production can also be rapid. Furthermore, there are multiple mechanisms that could lead to
the rapid termination of E2 action based either on diffusion of the active hormone from its
production/action site (thus leading to concentrations that are below the threshold for action)
or on its degradation through various catabolic pathways.
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Available evidence indeed is consistent with the notion that plasma concentrations of E2 do
not vary rapidly enough to support the rapid non-genomic effects of this steroid but E2 can
be synthesized in the brain and the rate of this local conversion of testosterone appears to be
rapidly regulated. We have seen that aromatase activity can be rapidly modified within 5
min and probably even faster. Glutamatergic inputs seem able to rapidly turn on or off the
local synthesis of E2 depending on the brain region considered [17,114]. Therefore, such a
mechanism should provide a source of rapid and transient changes of estrogen production
and thus concentration - not in the plasma, but locally in the brain – that matches quite well
the time-frame of the rapid effects described for this hormone.

Moreover, inactivation mechanisms are present in the brain to terminate estrogenic signaling
when the synthesis of the steroid has been switched off. Estrogenic hormones are
catabolized to hormonally inactive (or less active) water-soluble metabolites that are
excreted in the urine and/or feces. The metabolic elimination of estrogens relies on oxidative
metabolism (largely hydroxylations by cytochromes P450 enzymes [289] and conjugations
by glucuronidation [31], sulfonation [248,249] and/or O-methylation [159]. While
hydroxylated products retain some estrogenic activity, conjugations appear to markedly
decrease hormonal action. The metabolism of estrogens mostly takes place in the liver, but
detectable levels of activity of metabolic enzymes are also expressed in other tissues
including the brain. High levels of 2- and 4-hydroxylases have, for example, been identified
in the brain, notably the preoptic-hypothalamic region [29,142,257,289]. The 2- and 4-
hydroxyestrogens (also called catecholestrogens) are biologically active compounds but they
are rapidly metabolized by the catecholamine-O-methyltransferases (COMT) into
methoxyestrogens that have a weaker hormonal activity [159]. COMT is widely distributed
in the brain [159] so that estrogens can be effectively transformed into less active
compounds. Significant glucuronidase and sulfotransferase activities have also been
identified in the brain [8,169,199]. As suggested by Song and Melner (2000), the
inactivation in target tissues by these enzymes could function as a molecular switch to
control local estrogen activity. In addition, aromatase itself appears to catalyze in the
placenta both the conversion of testosterone into E2 and the 2-hydroxylation of estrogens
into catecholestrogens. The switch between these two enzymatic activities (catalyzed by the
same protein) would dependent on the availability of the substrates and the local pH [189].
If this scenario turns out to be true in the brain, this mechanism would provide a very
effective way to rapidly control local concentrations of neuro-active estrogens. Together,
these data demonstrate that active pathways for estrogen synthesis and catabolism are thus
present in the brain and they may proceed at speeds compatible with the rapid induction and
termination of estrogenic signaling that is required to explain the fast and transient effects
produced by the steroid.

Fast effect of aromatase inhibition on physiology and behavior
Effects on appetitive and consummatory aspects of male sexual behavior

If rapid modulations of brain estrogen synthesis and catabolism are involved in the non-
genomic control by estrogens of physiological and behavioral processes, the blockade of
aromatase activity should rapidly lead to detectable changes in these responses.
Accordingly, in recent experiments conducted in quail, systemic injections of a large dose of
Vorozole™, a non-steroidal aromatase inhibitor, significantly reduced most aspects of male
copulatory behavior in sexually active males (gonadally intact males or castrates implanted
with 40 mm testosterone capsules). Maximal effects were observed after 30 or 45 minutes
[67]. The acute effect of aromatase inhibition was even more pronounced on the expression
of appetitive male sexual behavior. Appetitive sexual behavior was assessed by the
frequency of rhythmic cloacal sphincter movements (RCSM) and by the expression of the
learned social proximity response, two sexually motivated behavior that have been shown
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previously to be dependent on the aromatization of testosterone [15,26,79,233]. A
significant inhibition of RCSM was observed 30 or 45 min after the injection of Vorozole™
and was no longer significant after 60 min. The behavior returned to a normal rate on the
next day [67]. Androstatrienedione (ATD), another unrelated aromatase inhibitor with a very
different chemical structure, induced a similar rapid inhibition of RCSM [67]. These
behavioral inhibitions correlated with inhibitions of the aromatase activity measured in the
preoptic-hypothalamus area (see [67] for further details). The fact that similar effects of
aromatase inhibition were observed in gonadally intact males and in castrates chronically
treated with testosterone suggests that the behavioral effect resulted from a rapid modulation
of aromatase activity and thus local estrogen bioavailability rather than from a rapid change
in secretion of gonadal testosterone. Together, these pharmacological data thus support a
role for rapid modulations of estrogen synthesis in the regulation of both appetitive and
consummatory aspects of male sexual behavior.

Conversely, in other experiments, we mimicked the putative effects of a rapid activation of
brain aromatase activity by injecting a large dose of E2 to castrated male quail treated with a
sub-threshold dose of testosterone, unable by itself to activate a full copulatory behavior, in
order to prime the mechanisms involved in sexual behavior. As expected, a marked
induction of all aspects of male copulatory behavior was observed in these experiments 15
min following the estrogen injection and this effect was no longer present at 30 min post
injection [64].

We also investigated whether preoptic aromatase activity is rapidly modulated in vivo
during sexual activity. Gonadally intact males were allowed to see a female or copulate with
her for 1, 5 or 15 min and sacrificed immediately after the interaction. Control subjects were
simply handled and returned to their home cage for the duration of the test. The visual
access as well as sexual interactions with a female resulted in a 20% decrease of aromatase
activity within 1 min. The enzymatic inhibition reached a maximum after 5 min and was
back to normal after 15 min, [65]. As expected based on in vitro observations (see above),
these data thus demonstrate that aromatase activity can be modulated very rapidly (faster
than in the 5 min limit that could be tested in vitro) and that activity changes occur in vivo in
physiologically relevant situations. The fact that enzymatic activity dropped following
sexual interactions could however appear somewhat counterintuitive and an increase could
have a priori been expected (e.g. to prepare to additional interactions with the female). It
must however be pointed out that copulation in sexually experienced quail occurs with a
time-course very different from what is observed in rodents. Adult male quail immediately
engage in mating after the introduction of a female in their cage and usually achieve cloacal
contact and sperm transfer within a few seconds. A successful copulation is thus usually
achieved in less than one min. Sexual behavior occurs in bouts of activity of a few minutes
separated by periods during which the bird takes care of alternative needs, such as preening
its plumage, feeding, etc [121]. This drop of local estrogen synthesis thus coincides with and
possibly determines the transient period of refractoriness that follows sexual activity. It is
thus possible that the rapid changes of aromatase activity observed in this study do not
reflect what happens in the brain during the expression of sexual behavior (potentially a very
short-lived increase in enzyme activity) but are rather associated with its termination.

At the mechanistic level, recent data from Dominguez and colleagues indicate that glutamate
concentration progressively increases in the rat preoptic area in the course of mating to peak
at ejaculation [78]. If a similar release of glutamate takes place in the preoptic area of quail
during copulation, this change in neurotransmitter activity could then represent the cellular
mechanism controlling the decrease of aromatase activity that was observed in these
experiments.
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We cannot however exclude that the expression of the behavior is preceded in quail by an
extremely fast increase in estrogen production that cannot be detected at present due to
technical limitations. An in vivo "on line" measure of activity would be required since the
time needed to dissect and freeze the brain prevents analysis to latencies shorter than one
min. Both an increase and then a decrease of enzymatic activity would thus participate in the
control of the onset and the termination of bouts of sexual activity within a very short period
of time. Alternatively, aromatase in quail could be constantly active at (nearly) maximal
levels thus allowing the immediate initiation of sexual behavior at any time. The expression
of mating behavior would then turn off the enzyme for a short period of time resulting in a
transitory cessation of the behavior. This would still be in agreement with our
pharmacological data indicating that a bolus of estrogen is able to establish the local
estrogen concentration required to allow the initiation of the behavior, while Vorozole™
treatment obviously mimics the natural drop of aromatase activity following mating.

Effects on nociception
Estrogen has been shown to control nociception and analgesia in both sexes in human as
well as in animal models [90]. Estrogen actions on nociception and analgesia involve a
genomic modulation of the signaling of opioid and adrenergic systems in the peripheral and
the central the nervous system [9,77,146]. Moreover, recent studies suggest that estrogen
also controls nociception in a non-genomic manner. Indeed, 17β-estradiol, as well 17β-
estradiol conjugated with bovine serum albumin, inhibits ATP-induced intracellular calcium
concentration within 5 min in the dorsal root ganglia (DRG) that contains a subset of
nociceptive neurons [55]. This inhibition of ATP-induced Ca2+ flux by estradiol results from
the blockade a voltage dependent calcium channel. The inhibition is not observed in
ERαKO but persists in ERβKO mice indicating that this non-genomic modulation of DRG
signaling is mediated through ERα [56]. Since ATP has been implicated in sensory
transduction of noxious stimuli, these studies also provide a mechanism through which
estradiol may inhibit Ca2+ fluxes associated with ATP-induced nociception.

Aromatase is also expressed and enzymatically active in pain-sensitive neurons in the dorsal
horn of the spinal cord in quail [83]. Locally produced estrogens appear to modulate pain
responses to noxious stimuli. Indeed, the latency of withdrawal from a 54°C hot water bath
is markedly increased by castration in quail. By contrast, chronic testosterone treatment
decreases this latency and it has been shown that this effect depends on its aromatization
into estrogen [84]. Rapid effects on nociception of intrathecal injections of aromatase
inhibitors (vorozole™ and ATD) are also observed: the foot withdrawal latency from a hot
water bath is markedly increased 1 and 5 min after an intrathecal injection of the aromatase
inhibitor, ATD or Vorozole™, and this effects has disappeared 30 min after the injection.
These acute effects of a systemic injection of vorozole™ are inhibited by a concurrent
injection of E2 [85]. Similar effects were reported recently in rats [86]. Together these data
indicate that the rapid effects of locally produced estrogens on neuronal physiology and
behavior do not only concern the brain but also the spinal cord. Such effects can be
measured by behavioral responses in addition to the rapid electrophysiological effects
previously identified in single neurons.

Conclusions
Besides their well-known long lasting action, mounting evidence indicates that estrogens
also exert rapid effects on physiological and behavioral processes. These effects are
activated within a few minutes and have been described in both sexes. Rapid effects of
steroids, estrogens in particular, have been the subject of intense debates concerning namely
the question of the existence and nature of the receptors involved. However, the fundamental
issue of the source of rapid changes in estrogen concentrations required to sustain their fast
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effects has not received much attention. In a few rodent studies, it was assumed that the
source of estrogen was the pro-estrus rise preceding receptivity and ovulation in females.
Available data suggest that this relatively slow increase in plasma hormone is unable to take
advantage of the rapid temporal resolution of most recently identified non-genomic effects
of estrogens. In addition, fast effects of estrogens are also observed in males in which no
such variation in plasma concentrations of the hormone have been described. Instead, rapid
changes of testosterone levels elicited by social cues have been reported. The cerebral
aromatization of the androgen may thus be one source of rapid change of local estrogen
availability in males. In addition, rapid changes of aromatase activity resulting in fast
regulations of estrogen availability in the brain have been identified. Such variations in brain
aromatase activity provide a source of rapid and transient production of high concentrations
of estrogen that seems to perfectly match the requirements for numbers of non-genomic
effects. These findings thus open new avenues in the understanding of estrogen action on the
brain. Of course, numerous questions still have to be addressed. So far, rapid changes of
aromatase activity have been described in the preoptic/hypothalamic area and future studies
should continue to investigate the mechanisms underlying these rapid activity changes and
determine whether they take place in all brain regions where aromatase is present. Likewise,
although these effects may theoretically occur both in males and in females, they have been
studied in males exclusively to this date. Little attention has also been devoted to the
mechanism(s) that control estrogen catabolism in the brain. The characterization of these
rapid changes in brain estrogen production and catabolism and the analysis of their
physiological and behavioral consequences will certainly have a profound impact on the
planning future research programs and design of clinical interventions that involve actions
of estrogen in the brain.
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Figure 1. Schematic overview of some cellular pathways affected by estradiol
In order to simplify this drawing only selected intracellular events are presented. Upon
binding of their ligand (L), G-protein coupled receptors (GPCR, red receptor) such as
metabotropic glutamate receptors (mGluR), 5-HT receptors, GABAB receptors, µ opioids
receptors, α- and β-adrenergic receptors activate different intracellular signaling pathways
through their G protein (made of α and β subunits). The activation of the G protein can lead
to the activation of phospholipase C (PLC; not shown) that catalyzes the hydrolysis of
membrane-associated phosphatidyl-inositol 4,5-biphosphate (PIP2) into 1,4,5 triphosphate
(IP3) and diacylglycerol (DAG). IP3 induces calcium release from the intracellular stores
(reticulum endoplasmic). DAG activates protein kinase C (PKC). In turn, PKC can
stimulate, through phosphorylation (P), the activity of adenylate cyclase (AC) to produce
cAMP and activate protein kinase A (PKA). PKA can also phosphorylate various proteins
such as other receptors, ion channels (such as Type-L voltage-gated Ca2+ channels [L-
VGCC], G-protein-coupled, inwardly rectifying K+ channels [GIRK] or the small
conductance, Ca2+-dependent K+ channel [SK]) or cAMP-responsive binding protein
(CREB). Rapid non genomic signaling: 1/ Estradiol (E2, yellow star) can allosterically
modulate the activity of ionotropic receptors (such as acetylcholine, kainate or NMDA
receptors, orange receptors) or GPCR by directly interacting with this receptor. 2/ E2 can
also activate a membrane-bound estrogen receptors (mER, blue receptor; the term is used
here in a general way to cover both ERα and ERβ associated with the membrane and the
more recently identified estrogen membrane receptor [GPR30, ER-X, etc] specifically
named mER) that is coupled to a G protein. Thereby, E2 can modulate the activity of ionic
conductance through phosphorylation of ionotropic receptors or uncoupling (dashed arrows)
of GPCR from their ionic channels or intracellular effectors (not shown). It can also
mobilize intracellular Ca2+ through activation of PLC or uncoupling of a GPCR from PLC
(not shown). Delayed genomic signaling: E2 can bind to nuclear estrogen receptors (ER) that
form dimers and bind the estrogen-responsive element (ERE) on the DNA resulting in the
activation of the transcription of specific genes. In addition, rapid effects of E2 mediated
through mER resulting in the activation of protein kinases can lead to phosphorylation of
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CREB, which can alter gene transcription through its interaction with the cAMP responsive
element (CRE; indirect genomic effect).
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Figure 2. Potential sources of estrogens in males associated with genomic and non-genomic
effects on physiology and behavior
On the one hand, genomic effects are associated with a slow rise of testosterone
concentrations in the plasma. These changes are correlated with changes in testis function at
puberty and across seasons. This rise in plasma testosterone results in an increased
aromatase activity in the brain (through an activation of transcription of its gene). The
estrogens produced locally by the aromatization of testosterone influence the transcription of
various genes ultimately resulting in long lasting behavioral changes. On the other hand,
non-genomic effects are associated with rapid changes in estrogens bio-availability. Such
rapid changes in brain estrogen concentrations could result from variations of plasma
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testosterone that is subsequently aromatized locally into estrogen by brain aromatase as well
as from variations in neurotransmitters’ activity, such as glutamate or dopamine, that rapidly
regulate brain aromatase activity and the subsequent production of estrogen. These fast
changes in brain estrogen concentrations could in turn induce fast non-genomic actions in
specific cell populations that would ultimately result in fast behavioral effects. In both cases,
aromatase concentration remains constant and either the substrate of the enzyme
(testosterone) rapidly becomes more concentrated resulting in an increased product
formation or the substrate remains constant but the rate of conversion into estrogen (the
enzymatic efficiency) is rapidly increased.
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Table 1
Circulating levels of testosterone and estradiol in males and females of various species

In order to facilitate the comparison with receptors affinities, concentrations that were often expressed in ng/
ml or pg/ml have all been transformed in nM or pM using the following conversion ratios: 1 ng/ml = 3.47 nM
for testosterone (MW= 288.48) and 1 pg/ml = 3.67 pM (MW= 272.38) for estradiol.

Testosterone (nM) Estradiol (pM)

Species Male Female Male Female

Rat Baseline: Baseline: Baseline: Estrus to diestrus (Baseline):

1.0 – 19.0 nM
[98,100,105,128,210,261]

0.4 nM [105] <18.35 – 1101.0 pM [105,
261]

18.4 – 135.8 pM [7,51,105,
243]

Pro-estrus

After mating: 1.4 – 1.7 nM
[105]

Pro-estrus

5.8 – 33.9 nM [128, 200] 146.8 – 367 pM
[7,51,105,148,243, 253]

After social exposure:

4.2 – 10.4 nM [129]

Mouse Resting levels: Day 12 of
pregnancy:

Intact: Intact (Baseline):

6.9 – 41.6 nM [62, 144] 0.7 nM [155] 9.4 pM [94] 41.8 – 165.2 pM [57,134]

Dependent on strain and sexual
activity

Aromatase overexpression:

3.1 – 48.2 nM [32] 20.9 – 825.8 pM [94, 144]

After social interaction:

27.8 – 86.8 nM [150]

Rabbit Baseline: Estrus:

0.45 – 34.7 nM [111] 0.2 nM [203]

After social interaction: After coitus:

13.1 – 26.8 nM [107] 0.9 nM [203]

Quail Baseline: Baseline: Baseline: Morning/evening

1.6 – 12.2 nM [21,28,72, 75] 1.6 nM [21, 28] 183.5 – 367 pM [21] 917.5 – 1101.0 pM [21, 73]

Midday

367 pM [21, 73]

Ring dove 0.6 – 2.4 [88] <34.7 [88]

Zebra finch Intact: Intact: Breeding: Breeding

1.0 – 11.8 nM [6,120,268] 1.7 – 3.5 nM [120,
268]

319.3 pM [225] 370.7 pM [225]

CX: OVX: Non-breeding: Non-breeding

1.5 – 2.6 nM [6, 268] 1.4 nM [268] 337.6 pM [225] 715.7 pM [225]

Rhesus monkey Baseline: Baseline:

29.4 nM [212] 91.8 – 220.2 pM [182, 280]
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Testosterone (nM) Estradiol (pM)

Species Male Female Male Female

After prolonged housing with
female:

Pre-ovulatory peak:

52.6 nM [212] 734 – 1284.5 pM [135, 182,
280]

Human Young men Baseline: Baseline: Pre-ovulatory peak

19.1 – 26.0 [48] 0.4 – 172.8 nM
[52,127,283]

0.9 – 157.1 pM [41,42,52] 734 – 1570.8 pM [256, 283]

Old men After HYST or
BSO

Follicular phase:

8.7 – 17.4 nM [48, 262] 0.001 – 3.2 nM
[11,47,235–237]

146.8 – 215.1 pM [256, 283]

Luteal phase

440.4 pM [256]

Post-menopausal or after
HYST or BSO

0.3 – 447.7 pM
[11,41,42,47,235–237]

Abbreviations: CX, castrates; HYST, hysterectomy; OVX, ovariectomized; BSO, bilateral salpingo-oophorectomy; MW, molecular weight.

Brain Res. Author manuscript; available in PMC 2012 December 17.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Cornil et al. Page 39

Ta
bl

e 
2

Su
m

m
ar

y 
of

 la
te

nc
ie

s 
an

d 
ef

fe
ct

iv
e 

co
nc

en
tr

at
io

ns
 o

f 
es

tr
og

en
s 

th
at

 w
er

e 
sh

ow
n 

to
 a

ct
iv

at
e 

no
n-

ge
no

m
ic

 e
ff

ec
ts

 o
f 

es
tr

og
en

s 
in

 v
itr

o

T
yp

e 
of

 e
ff

ec
ts

Sp
ec

ie
s/

T
is

su
e

M
et

ho
ds

L
at

en
cy

[E
2]

R
ef

E
le

ct
ro

ph
ys

io
lo

gi
ca

l r
ec

or
di

ng
s

A
llo

A
C

h-
R

H
um

an
E

xp
re

ss
ed

 in
 X

en
op

us
 o

oc
yt

es
A

 f
ew

 s
ec

3 
– 

15
µM

[1
90

]

N
M

D
A

-R
R

at
 –

 H
ip

po
ca

m
pu

s
C

el
l c

ul
tu

re
A

 f
ew

 s
ec

E
C

50
 =

 7
µM

[2
77

]

5-
H

T
3R

H
um

an
 –

 E
m

br
yo

ni
c 

ki
dn

ey
5-

H
T

3R
–t

ra
ns

fe
ct

ed
 (

H
E

K
)2

93
 c

el
ls

A
 f

ew
 s

ec
30

0n
M

[2
78

]

Sy
na

pt
ic

R
at

 –
 H

ip
po

ca
m

pu
s

Sl
ic

es
<

 2
 m

in
10

nM
[2

84
]

Sy
na

pt
ic

R
at

 (
pu

ps
) 

– 
H

ip
po

ca
m

pu
s

Sl
ic

e 
cu

ltu
re

A
 f

ew
 m

in
1n

M
[3

9]

G
 p

ro
te

in

C
a2+

 c
ur

re
nt

s
R

at
 –

 N
eo

st
ri

at
um

Sl
ic

es
A

 f
ew

 s
ec

1 
– 

10
0p

M
[1

65
]

K
A

 c
ur

re
nt

s
R

at
 –

 H
ip

po
ca

m
pu

s
Sl

ic
es

3 
m

in
50

 –
 1

00
nM

[1
03

, 1
04

]

D
ep

ol
.

G
ui

ne
a 

pi
g 

– 
V

M
H

Sl
ic

es
3 

– 
5 

m
in

10
nM

[1
70

]

µ 
op

io
id

 –
R

R
at

 –
 A

rc
ua

te
 n

uc
le

us
Sl

ic
es

A
 f

ew
 m

in
20

nM
[1

41
]

G
A

B
A

B
R

C
57

B
L

/6
 m

ic
e 

– 
A

rc
ua

te
 n

uc
le

us
Sl

ic
es

5 
m

in
10

0n
M

[2
02

]

N
M

D
A

-R
H

is
t-

R
R

at
 –

 V
M

N
Sl

ic
es

10
 –

 1
5 

m
in

10
nM

[1
37

]

In
tr

ac
el

lu
la

r 
si

gn
al

in
g

[C
a2+

] i

L
-V

G
C

C
R

at
 –

 D
R

G
Pr

im
ar

y 
cu

ltu
re

 –
 N

eu
ro

ns
A

 f
ew

 m
in

10
0n

M
 –

 1
µM

[5
5]

M
ou

se
 –

 D
R

G
Pr

im
ar

y 
cu

ltu
re

 –
 N

eu
ro

ns
5 

m
in

IC
50

 =
 2

7n
M

[5
6]

PL
C

R
at

Pr
im

ar
y 

cu
ltu

re
 –

 A
st

ro
cy

te
s

10
 –

 3
0 

se
c

E
C

50
 =

 1
2.

7n
M

[5
4]

E
G

F/
in

tr
ac

el
l

ul
ar

 s
to

re
s

H
um

an
 –

 B
re

as
t c

an
ce

r
H

um
an

 –
 C

er
vi

ca
l c

ar
ci

no
m

a
M

C
F-

7 
ce

lls
H

eL
a 

ce
lls

5 
m

in
10

nM
[1

22
]

PL
C

C
hi

ck
en

, R
at

 a
nd

 P
ig

 –
 O

va
ry

Is
ol

at
ed

 g
ra

nu
lo

sa
 c

el
ls

A
 f

ew
 s

ec
10

0n
M

[1
75

]

PI
3K

M
on

ke
y 

– 
K

id
ne

y 
fi

br
ob

la
st

G
PR

30
-G

FP
–t

ra
ns

fe
ct

ed
 C

O
S7

 c
el

ls
E

R
α

-G
FP

–t
ra

ns
fe

ct
ed

 C
O

S7
 c

el
ls

E
R
β-

G
FP

–t
ra

ns
fe

ct
ed

 C
O

S7
 c

el
ls

<
 2

 s
ec

<
 2

 s
ec

<
 2

 s
ec

E
C

50
 =

 0
.3

nM
1n

M
1n

M

[4
4]

PL
C

E
G

F
M

on
ke

y 
– 

K
id

ne
y 

fi
br

ob
la

st
G

PR
30

-G
FP

–t
ra

ns
fe

ct
ed

 C
O

S7
 c

el
ls

E
R
α

-G
FP

–t
ra

ns
fe

ct
ed

 C
O

S7
 c

el
ls

1 
se

c
1 

se
c

E
C

50
 =

 0
.5

nM
1n

M
[2

09
]

IP
3

C
hi

ne
se

 –
 H

am
st

er
 o

va
ry

E
R
α

-t
ra

ns
fe

ct
ed

-C
H

O
-K

1 
ce

lls
E

R
β-

tr
an

sf
ec

te
d-

C
H

O
-K

1 
ce

lls
15

 s
ec

15
 s

ec
10

nM
10

nM
[2

05
]

M
A

P-
K

 s
ig

na
lin

g

P-
E

R
K

H
um

an
 –

 B
re

as
t c

an
ce

r
H

um
an

 –
 C

er
vi

ca
l c

ar
ci

no
m

a
M

C
F-

7 
ce

lls
H

eL
a 

ce
lls

5 
m

in
10

nM
[1

22
]

P-
E

R
K

H
um

an
 –

 N
eu

ro
bl

as
to

m
a

SK
 –

 N
 –

 S
H

 c
el

ls
5 

– 
15

 m
in

10
nM

[2
76

]

P-
E

R
K

M
ou

se
 –

 W
T

 &
 E

R
α

K
O

 -
 N

eo
co

rt
ex

O
rg

an
ot

yp
ic

 e
xp

la
nt

 c
ul

tu
re

s
30

 m
in

10
nM

[2
60

]

Brain Res. Author manuscript; available in PMC 2012 December 17.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Cornil et al. Page 40

T
yp

e 
of

 e
ff

ec
ts

Sp
ec

ie
s/

T
is

su
e

M
et

ho
ds

L
at

en
cy

[E
2]

R
ef

P-
E

R
K

C
hi

ne
se

 –
 H

am
st

er
 o

va
ry

E
R
α

-t
ra

ns
fe

ct
ed

-C
H

O
-K

1 
ce

lls
E

R
β-

tr
an

sf
ec

te
d-

C
H

O
-K

1 
ce

lls
10

 m
in

10
 m

in
10

nM
10

nM
[2

05
]

P-
E

R
K

R
at

 –
 F

ib
ro

bl
as

t
E

R
α

-t
ra

ns
fe

ct
ed

-R
at

-2
 f

ib
ro

bl
as

ts
E

R
β-

tr
an

sf
ec

te
d-

R
at

-2
 f

ib
ro

bl
as

ts
10

 –
 1

5 
m

in
10

 –
 1

5 
m

in
0.

3 
– 

10
nM

0.
3n

M
[2

70
]

P-
E

R
K

M
ur

in
e 

– 
H

ip
po

ca
m

pu
s

E
R
α

-t
ra

ns
fe

ct
ed

-H
T

-2
2 

ce
lls

E
R
β-

tr
an

sf
ec

te
d-

 H
T

-2
2 

ce
lls

10
 m

in
10

 m
in

10
nM

10
nM

[2
69

]

P-
E

R
K

H
um

an
 -

 P
ro

st
at

e 
ca

nc
er

L
N

C
aP

-F
G

C
 c

el
ls

5 
m

in
10

nM
[1

68
]

P-
C

R
E

B
M

ur
in

e 
– 

H
ip

po
ca

m
pu

s
E

R
α

-t
ra

ns
fe

ct
ed

-H
T

-2
2 

ce
lls

E
R
β-

tr
an

sf
ec

te
d-

 H
T

-2
2 

ce
lls

10
 m

in
20

 m
in

10
nM

10
nM

[2
69

]

cF
os

H
um

an
 –

 N
eu

ro
bl

as
to

m
a

SK
 –

 N
 –

 S
H

 c
el

ls
3h

10
nM

[2
76

]

P-
C

R
E

B
(m

G
lu

R
)

R
at

 –
 H

ip
po

ca
m

pu
s

C
el

l c
ul

tu
re

 –
 P

yr
am

id
al

 n
eu

ro
n

τ 
=

 2
9 

se
c

E
C

50
 =

 5
.5

pM
[4

6]

cA
M

P
C

hi
ne

se
 –

 H
am

st
er

 o
va

ry
E

R
α

-t
ra

ns
fe

ct
ed

-C
H

O
-K

1 
ce

lls
E

R
β-

tr
an

sf
ec

te
d-

C
H

O
-K

1 
ce

lls
20

 m
in

20
 m

in
10

nM
10

nM
[2

05
]

cA
M

P
H

um
an

 –
 B

re
as

t c
an

ce
r

H
um

an
 –

 E
m

br
yo

ni
c 

ki
dn

ey
G

PR
30

–t
ra

ns
fe

ct
ed

 S
K

B
R

3 
ce

lls
G

PR
30

–t
ra

ns
fe

ct
ed

 (
H

E
K

)2
93

 c
el

ls
20

 m
in

10
nM

[2
54

]

eN
O

S
H

um
an

 –
 V

as
cu

la
r 

en
do

th
el

iu
m

C
el

l c
ul

tu
re

10
 –

 1
5 

m
in

E
C

50
 =

 0
.1

nM
[2

38
]

G
 p

ro
te

in
 c

ou
pl

in
g

G
T

Pγ
S-

B
in

di
ng

5-
H

T
1 A

 R
5-

H
T

1 B
 R

C
B

1-
R

G
A

B
A

B
 R

R
at

 –
 O

V
X

H
ip

po
ca

m
pu

s,
 C

or
te

x,
 A

m
yg

da
la

H
yp

ot
ha

la
m

us
C

or
te

x,
 H

ip
po

ca
m

pu
s

C
er

eb
el

lu
m

2 
ho

ur
s

30
µg

10
µg

10
 –

 3
0µ

g
10

µg

[1
71

]

5-
H

T
1 A

 R
R

at
 –

 H
ip

po
ca

m
pu

s
E

xp
la

nt
 c

ul
tu

re
60

 m
in

50
nM

[1
72

]

5-
H

T
1 A

 R
R

at
 –

 H
ip

po
ca

m
pu

s
R

at
 –

 F
ro

nt
al

 c
or

te
x

E
xp

la
nt

 c
ul

tu
re

E
xp

la
nt

 c
ul

tu
re

15
 m

in
15

 m
in

50
nM

50
nM

[1
73

]

G
s

H
um

an
 -

 E
m

br
yo

ni
c 

ki
dn

ey
G

PR
30

–t
ra

ns
fe

ct
ed

 (
H

E
K

)2
93

 c
el

ls
20

 m
in

10
0n

M
[2

54
]

G
s &

 G
i

C
hi

ne
se

 –
 H

am
st

er
 o

va
ry

E
R
α

-t
ra

ns
fe

ct
ed

-C
H

O
-K

1 
ce

lls
E

R
β-

tr
an

sf
ec

te
d-

C
H

O
-K

1 
ce

lls
5 

m
in

5 
m

in
10

nM
10

nM
[2

05
]

A
bb

re
vi

at
io

ns
 : 

5-
H

T
3R

, 5
-H

T
(s

er
ot

on
in

) 3
 r

ec
ep

to
r 

; A
llo

, a
llo

st
er

ic
 m

od
ul

at
io

ns
 ; 

A
C

h-
R

, a
ce

ty
lc

ho
lin

e 
re

ce
pt

or
s 

; [
C

a2
+

] i
, i

nt
ra

ce
llu

la
r 

ca
lc

iu
m

 c
on

ce
nt

ra
tio

n 
; c

A
M

P,
 c

yc
lic

 A
de

no
si

ne
 5

’-

m
on

op
ho

sp
ha

te
 ; 

C
B

1-
R

, c
an

na
bi

no
id

 r
ec

ep
to

r 
1 

; D
R

G
, d

or
sa

l r
oo

t g
an

gl
ia

 ; 
E

G
F,

 E
pi

de
rm

al
 G

ro
w

th
 F

ac
to

r 
; E

R
α

, e
st

ro
ge

n 
re

ce
pt

or
 α

; E
R
β,

 e
st

ro
ge

n 
re

ce
pt

or
 β

; G
FP

 , 
gr

ee
n 

fl
uo

re
sc

en
t p

ro
te

in
 ;

G
PR

30
, G

 P
ro

te
in

 R
ec

ep
to

r 
30

 ; 
H

is
t, 

hi
st

am
in

e 
; I

P 3
, i

no
si

to
l-

1,
4,

5,
-t

ri
ph

os
ph

at
e 

; K
A

, K
ai

na
te

 ; 
L

-V
G

C
C

, L
-t

yp
e 

vo
lta

ge
-g

at
ed

 c
al

ci
um

 c
ha

nn
el

 ; 
N

M
D

A
-R

, N
M

D
A

 r
ec

ep
to

r 
; M

A
PK

, M
ito

ge
n-

ac
tiv

at
ed

pr
ot

ei
n 

ki
na

se
 ; 

P-
C

R
E

B
, p

ho
sp

ho
ry

la
tio

n 
of

 c
A

M
P 

re
sp

on
se

 e
le

m
en

t-
bi

nd
in

g 
Pr

ot
ei

n(
C

R
E

B
) 

; P
-E

R
K

, p
ho

sp
ho

ry
la

tio
n 

of
 e

xt
ra

ce
llu

la
r-

re
gu

la
te

d 
ki

na
se

s 
(E

R
K

-1
/E

R
K

-2
) 

; P
I3

K
, P

ho
sp

ha
tid

yl
in

os
ito

l
tr

ip
ho

sp
ha

te
 k

in
as

e 
; P

L
C

, p
ho

sp
ho

lip
as

e 
C

 ; 
V

M
H

, v
en

tr
om

ed
ia

l h
yp

ot
ha

la
m

ic
 n

uc
le

us
 ; 

V
M

N
, h

yp
ot

ha
la

m
ic

 v
en

tr
om

ed
ia

l n
uc

le
us

.

Brain Res. Author manuscript; available in PMC 2012 December 17.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Cornil et al. Page 41

Table 3
Affinity (Kd) of identified estrogen receptors as a function of their cellular localization
and the system in which they have been measured

Note that GPR30 was identified in the plasma membrane in the studies of Thomas and colleagues [254] but in
the endoplasmic reticulum membrane in the studies of Revankar, Bologa, Prossnitz and colleagues [44,209].
Thomas et al. (2005) found Bmax values of 114 pM and 100 pM for SKBR3 cells and HEK-293 cells
transfected with GPR30 [254].

Nuclear Membrane

Kd Origin Kd Origin

ERα 0.1 nM in vitro synthesized human ERα [139] 0.30 nM ERα-GFP–transfected COS7 cells [44]

0.283 nM ERα–transfected CHO cells [205] 0.287 nM CHO cells [205]

ERβ 0.6 nM Clone 29, rat prostate cDNA library [140] 0.38 nM ERβ-GFP–transfected COS7 cells [44]

0.6 nM In vitro synthesized human ERβ [139] 1.17 nM CHO cells [205]

1.23 nM ERβ–transfected CHO cells [205]

ER-X 1.6 nM

GPR30 5.7 nM GPR30-GFP–transfected COS7 cells [44]

6.6 nM GPR30-GFP–transfected COS7 cells [209]

2.7 nM ERα-/ERβ-/GPR30+-transfected SKBR3 cells [254]

3.3 nM ERα-/ERβ-/GPR30+-transfected (HEK)293 cells [254]

E2-BSA Membrane fraction:

4.5 nM Hypothalamus [204]

8.7 nM Olfactory bulbs [204]

30.2 nM Cerebellum [204]

Abbreviations: ERα, estrogen receptor α ; ERβ, estrogen receptor β ; GFP , green fluorescent protein ; GPR30, G Protein Receptor 30 ; (HEK)293
cells, Human Embryonic Kidney cells; CHO cells; Chinese Hamster Ovary cells; COS7 cells, Monkey Kidney fibroblast; SKBR3 cells, Human
Breast Cancer cells.
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