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Abstract
Regulation of genetic functions based on targeting DNA or RNA sequences with complementary
oligonucleotides is especially attractive in the post-genome era. Oligonucleotides can be rationally
designed to bind their targets based on simple nucleic acid base pairing rules. However, the use of
natural DNA and RNA oligonucleotides as targeting probes can cause numerous off-target effects.
In addition, natural nucleic acids are prone to degradation in vivo by various nucleases. To address
these problems, nucleic acid mimics such as peptide nucleic acids (PNA) have been developed.
They are more stable, show less off-target effects, and, in general, have better binding affinity to
their targets. However, their high affinity to DNA can reduce their sequence-specificity. The
formation of alternative DNA secondary structures, such as the G-quadruplex, provides an extra
level of specificity as targets for PNA oligomers. PNA probes can target the loops of G-
quadruplex, invade the core by forming PNA-DNA guanine-tetrads, or bind to the open bases on
the complementary cytosine-rich strand. Not only could the development of such G-quadruplex-
specific probes allow regulation of gene expression, but it will also provide a means to clarify the
biological roles G-quadruplex structures may possess.
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Introduction
The human genome is enriched with sequences that can potentially form G-quadruplex
structures [1, 2]. Usually, such sequences consist of four runs of three or more guanines
separated by short linker sequences. The runs of guanines form the core of the quadruplex
stabilized by guanine tetrads while the linker sequences form loops of various conformations
[3]. Human telomeric repeats contain the greatest number of such sequences [4]. In addition,
numerous genes possess sequences capable of forming G-quadruplex structures in their
regulatory regions [5, 6]. Proto-oncogenes are highly enriched with such G-quadruplex-
forming sequences compared to tumor suppressor genes [7]. Furthermore, there is mounting
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evidence that G-quadruplex structures may play roles not only in telomere maintenance but
in regulation of gene expression as well [8]. Numerous small molecules with higher affinity
to G-quadruplex versus duplex DNA have been synthesized [9, 10]; some of these are potent
inhibitors of the telomere-extending enzyme, telomerase, which is overexpressed in cancer
cells, and are being extensively tested as anticancer drugs [11]. Targeting G-quadruplex
structures in the intrachromosomal regulatory regions is more challenging because of the
wide variety of G-quadruplex structures that can form in different genes based on their
unique sequences [8]. Even though molecules have been designed to specifically bind to the
G-quadruplex structures formed in particular genes, the task remains very challenging.

An alternative approach to targeting specific G-quadruplex structures is based on using short
oligonucleotides that bind to the complementary DNA bases that become accessible after G-
quadruplex formation. This approach is similar to antisense [12], antigene [13], and RNAi-
based [14] approaches, and is based on simple nucleic acids complementarity rules. While
developing antisense, antigene and RNAi-based therapies, it became clear that for this
approach to be effective, chemically modified analogs or nucleic acid mimics should be
used. One such class of molecules, peptide nucleic acids (PNAs), are nucleic acid mimics in
which the natural nucleobases are connected to an achiral, uncharged polyamide backbone
[15] (Figure 1). PNA oligomers form very stable duplexes with complementary nucleic
acids; they can even invade double-stranded DNA under certain conditions. For example,
when the DNA is negatively supercoiled, PNA and DNA will complex and form a P-loop
[15, 16] (Figure 2). In addition, guanine-rich PNA are able to form G-quadruplexes by
themselves or DNA-PNA hybrid G-quadruplex structures [17].

Based on these unique properties, several approaches to target G-quadruplexes with PNA
have been proposed. First, guanine-rich PNA can invade a DNA G-quadruplex and
simultaneously bind to the complementary cytosine-rich strand, thus facilitating G-
quadruplex formation [18, 19]. Second, short PNA oliomgers can be designed to bind to the
single-stranded DNA (ssDNA) in the exposed loops of G-quadruplex structures [20]. Third,
PNA can bind exclusively to the complementary cytosine-strand, thus facilitating G-
quadruplex extrusion in the G-rich strand without interfering with native DNA G-
quadruplex conformation [21] (Figure 3).

In this short review, we will describe all these approaches. We also will provide background
on PNA chemistry and design, and speculate on possible mechanisms of PNA-based
strategies to regulate gene expression by targeting a G-quadruplex.

PNA as DNA sequence-specific targeting drugs
There are many approaches to make gene-specific drugs, but a system that takes advantage
of nucleobase hydrogen bond recognition would be of general use for any gene target
(Figure 4). Nucleic acid derivatives are attractive drug candidates over natural nucleic acids.
PNAs are non-natural nucleic acids in which the natural nucleobases are preserved but
appended to an uncharged, achiral pseudo-peptide backbone in lieu of the natural sugar
phosphate backbone [22]. Because the PNA oligomers are uncharged, they tend to exhibit
tighter binding to natural nucleic acids due to the lack of poly anionic charge-charge
interactions [23]. Furthermore, PNA oligomers are resistant to degradation in vivo because
they are not recognized by nucleases or proteases, and their stability makes them attractive
candidates for antigene, antisense, or nucleic acid probes [24].

Chemical modification of PNA oligomers can abrogate some of its inherent shortcomings,
such as solubility, cell permeability, or bioavailability (Figure 5). The use of modified PNA
residues in PNA oligomers can also affect the binding affinity and selectivity to nucleic
acids through backbone rigidification and preorganization [25–27], increase solubility [28],
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provide a handle for further conjugation or ligand display [29] or increase cellular uptake
[30]. Recent work with diethylene glycol γ-substituted PNA residues afforded oligomers
that had both higher binding affinity to DNA and increased aqueous solubility [31].
However, the thermodynamic data indicated that preorganization might not be the reason for
the increased binding affinity in this example.

PNA oligomers targeting genomic DNA in a sequence specific manner has already seen
remarkable progress [32–36]. When cell-penetrating peptides are conjugated to an antigene
PNA oligomer, inhibition of gene expression has been demonstrated [37–39]. Using
pseudovirion delivery agents as another means of delivering PNA oligomers into cells has
similarly shown promise in suppressing gene expression associated with drug resistant
cancer cells [40]. Besides targeted gene inhibition, another application of PNA oligomers
involves promoting the repair and recovery of gene function [41, 42]. All of these
approaches utilize the nucleic acid sequence specificity rather than recognition of nucleic
acid secondary structure [43].

G-quadruplex and other alternative DNA structures
DNA forms a remarkable variety of secondary structures beyond the well-known B-form
double helix [44]. Examples include A-form DNA duplex [45], the left handed Z-DNA [46],
triplexes formed from binding the Hoogsteen face of purine bases in the major groove
(Figure 4) [47], cytosine-rich i-motif [48] and G-quadruplexes [49,50]. Many of these types
of nucleic acid structures depend on non-Watson-Crick hydrogen bonding such as wobble
base pairing or sheared-type base pairing [51]. However, the question whether many of these
alternative DNA structures play a biological role remains open to this day. Some alternative
structures were found under the conditions that are normally not present in cells, e.g., low
pH, extremely supercoiled DNA, crystallized DNA, etc. [52]. Some of these secondary
structures could not form readily under physiological conditions. Nevertheless, all of these
structures tend to be sequence specific and some are observed in situ and may play a direct
role in biological processes. For example, DNA triplexes utilizing Hoogsteen hydrogen bond
recognition have been linked to several disease states [53]. This type of secondary structure
only forms in stretches of polypurine/polypyrimidine tracks of DNA where another
pyrimidine rich strand can bind the Hoogsteen face of the polypurine strand (Figure 3). The
tips of vertebrate chromosomes, telomeres, contain multiple GGGTTA repeats of single
stranded DNA which can form G-quadruplexes and play an integral role in preventing
chromosomal deterioration or unwanted chromosomal fusion [54]. The sequences
potentially forming G-quadruplex DNA structures are highly abundant along the human
genome, especially in regulatory regions [55]. This observation might indirectly indicate the
possible epigenetic role of these DNA structures.

PNA oligomers also have the potential to form many secondary structures, either with itself
or in combination with natural nucleic acids. Nielsen and coworkers originally designed
PNA to bind to the major groove (i.e. the Hoogsteen hydrogen bonding mode) of DNA
duplexes [56]. It was only afterwards they discovered that PNA oligomers invade DNA
duplexes and form stable (PNA)2:DNA triplexes. Today, PNA:DNA triplexes are well-
known, and Bis-PNAs (PNA oligomers designed to bind polypurine DNA in both Watson-
Crick and Hoogsteen hydrogen bonding modes connected through a flexible linker) invade
even long tracks of duplex DNA to form very stable triplex structures [57–59] (Figure 2).
PNA oligomers also form stable quadruplexes in the presence of appropriate cations
(sodium, potassium, ammonium, etc.) [60]. Guanine-rich PNA oliogmers form stable
heterocomplexes with guanine-rich DNA oligomers [61]. The stability and selectivity of
PNA quadruplexes can be modified by using PNA derivatives. The use of γ-substituted
PNA can bias PNA oligomers towards binding in the guanine-quadruplex mode versus
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duplex binding [18]. Furthermore, the selective arrangement of trans-cyclopentane PNA
residues can increase the stability of PNA:DNA heterocomplexes while discouraging the
competing PNA quadruplex formation [62]. The range and diversity of secondary structures
that PNA forms or recognizes shows that trying to increase selectivity through targeting
non-duplex complexes could be a worthwhile strategy.

Modes of targeting DNA quadruplexes with PNAs
PNAs were designed to target G-rich, C-rich, and/or both DNA strands of a G-quadruplex.
Initially, PNA probes containing guanines were designed to invade homologous DNA G-
quadruplex-forming sequences and participate in the formation of heterogeneous DNA-PNA
guanine tetrads. This idea was first put forward by Armitage and co-workers who noticed
that guanine-rich PNA formed hetero-quadruplexes with homologous DNA oligomers [17,
61]. This approach is based on targeting the guanine-rich quadruplex-forming DNA strand
[17–19, 61, 63–66]. Instead of G-quadruplex invasion, guanine rich PNA probes can
alternatively bind to the complementary cytosine-rich DNA strand, thus providing additional
stabilization of the G-quadruplex-PNA complex. DNA sequences with four guanine runs
can also be targeted in this mode via formation of two consecutive quadruplexes each
consisting of two PNA- and two DNA-strands [19] (Figure 3, box, bottom). To increase the
efficiency and specificity of quadruplex invasion, Lusvarghi et al. utilized modified PNA
probes. They incorporated abasic sites as well as chiral modifications to the backbone of
PNA and showed an improvement in the selectivity of quadruplex versus duplex formation
[18]. Paul and coauthors [64] proposed another model of G-quadruplex targeting with
PNAs. They designed a guanine-rich PNA probe that combines with three guanine runs of a
human telomere sequence to form an intermolecular PNA-DNA G-quadruplex in a “3+1”
mode. The resulting complex mimics the biologically relevant pure DNA telomeric
quadruplex. However, the PNA probes described above could not invade duplex DNA even
if the latter contained the motif complementary to the PNA sequence. Therefore, further
efforts are required to increase the ability of PNA of invade duplex DNA to make these
types of strategies viable.

An alternative approach was used by Amato et al [20] to target DNA nucleobases in the
loops of G-quadruplex structure and exclude disruption of guanine tetrads within the
quadruplex. They screened a small library of short PNAs complementary to a part of
quadruplex-forming DNA sequence that does not contain guanines involved in G-
quadruplex formation. Depending on PNA length and ionic conditions, PNAs are able to
bind to the loops of the G-quadruplex and either stabilize or disrupt the quadruplex structure.
In their earlier studies, Amato et al. used short cytosine-rich PNA probes to show that they
could form novel G-quadruplex-PNA complexes in addition to the expected DNA-PNA
heteroduplexes, depending on ionic conditions [65, 66].

Our team proposed a different approach that is based on targeting only the cytosine-rich
strand complementary to the quadruplex-forming DNA strand [21, 67]. In this case, a PNA
probe invades a double helix and binds the cytosine-rich strand while allowing the guanine-
rich strand to form native G-quadruplex. We studied this mode of targeting using a double-
stranded DNA plasmid model containing a quadruplex-forming sequence from the human
BCL2 gene promoter. Our studies on PNA invasion of duplex DNA enabled us to examine
the role of quadruplex formation in PNA invasion. In addition to the plasmid with the
original BCL2 sequence, we also used a plasmid with a mutant sequence incapable of
quadruplex formation but which still retained the PNAbinding sequences. Chemical probing
revealed that PNA oligomers were able to invade and form a heteroduplex with the cytosine-
rich strand only in plasmid DNA with the original BCL2 sequence. We also tested the effect
of total PNA charge on the efficiency of the invasion. PNAs that are positively charged or
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zwitterionic (which contain both positive and negative charges but are charge neutral
overall), invade the naturally supercoiled plasmid, but negatively charged PNA does not
invade. Zwitterionic PNA also showed the highest specificity to the targeted sequence.
Moreover, if triplex-forming bis-PNAs targeting flanking sequences were used in
combination with central binding PNA (Figure 3) then invasion appeared even more
favorable. Overall, we demonstrated that the potential to form a G-quadruplex facilitated
PNA invasion. Our results provide strong evidence that PNA probes can be designed that are
not only sequence-specific, but also quadruplex-dependent.

The aforementioned results are consistent with PNA invasion and binding facilitated by non-
duplex secondary structures. Zhang et al. [68] demonstrated that formation of cruciform
structures in palindromic regions of DNA facilitated PNA invasion. Amiard et al. [69]
showed that multiple t-loops (lariat-like structures that form when 3′ telemeric overhang
DNA invades the double-stranded telomeric repeat array) increase the ability of single-
stranded DNA to invade plasmid DNA. Furthermore, invasion took place only in
supercoiled DNA, implying that targeting may occur only in actively transcribed genes. As
all these examples demonstrate, targeting double-stranded DNA with the potential to form
alternative secondary structures has the potential to affect transcription or replication.

Possible mechanisms to regulate gene expression with G-quadruplex-
specific PNA

Numerous genes possess guanine-rich sequences in promoter and other regulatory segments.
Although guanine-rich regions might directly interact with DNA binding proteins, it is likely
that formation of G-quadruplexes also directs interaction with proteins. In particular, the
high prevalence of guanine-rich sequences in regulatory regions suggests possible regulatory
roles for these quadruplex DNA structures. For example, the number of guanine-rich
sequences with G-quadruplex forming potential in the human genome is almost 2 orders of
magnitude higher than that in a random DNA sequence of the same length [1].

Multiple runs of guanines can be found in the promoter and enhancer regions of many
genes, and particularly in oncogenes [7]. Recent studies show that these guanine-rich
sequences could play a role in the regulation of gene transcription. Quadruplex formation
has been studied in PDGF-A [70,71], VEGF [71–73], c-myc [71, 74], KRAS [75], C-KIT
[76, 77], BCL2 [78, 79] hTERT [80], Rb [81], PDGFR-β genes [82]. This provides an
appealing opportunity for gene regulation by targeting guanine quadruplexes. While G-
quadruplex formation has been demonstrated in models of single-stranded DNA
oligonucleotides, several studies provide evidence of quadruplex formation in supercoiled
double-stranded DNA [83] [67].

Below, we describe examples of several studies where quadruplex formation was implicated
to affect gene expression. In this respect the G-quadruplex forming sequence located in the
promoter region of human C-MYC gene [74] was one of the first described and most
extensively studied. Hurley and co-workers proposed the following model of C-MYC
expression regulation. Dynamic stress (negative supercoiling) resulting from transcription
converts the duplex DNA to a G-quadruplex on the guanine-rich strand and an i-motif
(proposed secondary structure in cytosine-rich sequence) on the pyrimidine-rich strand. This
displaces activating transcription factors and silence gene expression. Specific proteins,
namely NM23-H2 and nucleolin, that recognize the G-quadruplex are able to fold or to
resolve its structure and hence regulate C-MYC expression [8, 84]. Authors found that
inhibition of NM23-H2 silences C-MYC and redistribution of nucleolin from the nucleolus
to the nucleoplasm negatively affects expression of this gene.
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In another example, quadruplex formation in plasmid DNA during transcription in vitro was
found using electron microscopy [85]. Authors developed a plasmid with guanine rich
inserts and observed a “G-loop”, i.e. DNA/RNA hybrid on the cytosine-rich strand and a G-
quadruplex on the complimentary strand during transcription. They concluded that the RNA/
DNA hybrid was critical for G-quadruplex stabilization in the post-transcriptional G-loops.

Another group of authors identified a characteristic potential G-quadruplex-forming
sequence element within the promoter of human thymidine kinase 1 (TK1). Their data
suggested that this sequence forms an intramolecular G-quadruplex with two G-tetrads. A
cell-based reporter assay revealed the role of this G-quadruplex motif in TK1 transcription.
Nucleotide substitutions designed to destabilize G-quadruplex structure formation resulted
in increased promoter activity, therefore, pointing on direct involvement of the G-
quadruplex structure in transcription regulation of TK1. [86].

Sanders et al. described the role of Pif1 proteins (implicated in the maintenance of genome
stability in yeast) in stabilizing DNA sequences that could otherwise form G-quadruplex
structures by acting as a G-quadruplex resolvase. They found that for the human Pif1 to
resolve a G-quadruplex, an extended (>10 nucleotide) 5′ ssDNA tail is required. The
authors suggest that human Pif1 could therefore have a role in processing G4 structures that
arise in the single-stranded nucleic acid intermediates formed during DNA replication and
transcription. [87].

Cogoi et al. described another example of G-quadruplex-protein interaction. They found that
the quadruplex-forming GA-element in the KRAS promoter responds to a Myc-associated
zinc finger and poly(ADP-ribose) polymerase 1 proteins. Through use of an
immunoprecipitation assay, they discovered that the Myc-associated zinc finger protein
specifically binds to the duplex and quadruplex conformations of the GA-element, whereas
poly(ADP-ribose) polymerase binds only to the G-quadruplex. Introduction of a point
mutation into the quadruplex-forming sequence showed down-regulation of KRAS, while
addition of phthalocyanines (G-quadruplex stabilizing agents) up-regulated KRAS
expression [88].

The above examples along with a recent genome-wide study indicate that formation of G-
quadruplex in the regulatory gene sequences can play a dual role in gene expression; it can
cause up- or down-regulation of the gene expression [89]. In this respect, PNA probes can
provide a powerful instrument to target guanine-rich regulatory DNA sequences, stabilize or
destabilize G-quadruplexes, and ascertain the effect of G-quadruplex formation on the
expression of a particular gene. Based on existing experimental data, several modes of gene
transcription regulation through quadruplex targeting with PNA probes are possible. In one
mode, PNA probes are designed to interfere with G-quadruplex recognition by protein
factors. This can be achieved with PNA probes that invade G-quadruplex [17–19, 61, 63–
66], or that are complementary to the loops of G-quadruplex structure [20] (Figure 6A).
Alternatively, PNA oligomers complementary to the cytosine-rich strand can be used to
invade DNA duplex, bind the cytosine rich strand forming a DNA:PNA duplex and allow
the guanine-rich strand to form a native quadruplex structure [21, 67]. In these cases, PNA-
DNA interaction leads to stabilization of native G-quadruplex structures and promotes
binding of G-quadruplex specific protein factors. Once a quadruplex is stable, it can become
a target for quadruplex-binding proteins. In turn, these proteins can switch on or off gene
transcription, depending on that particular protein’s function (Figure 6B).
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Conclusion
Targeting G-quadruplex structures with PNA has been demonstrated only in vitro thus far,
and in many cases only models containing single-stranded guanine rich DNA are used. The
next step would be to demonstrate the efficiency and specificity of this approach in cell
culture models. To achieve this goal, both the affinity and specificity of PNA binding to
their targets must be improved, along with methods of delivery of PNA to cells and, to DNA
targets within the cell nuclei. Nevertheless, recent developments in the PNA field give us
optimism that in the near future, an anti-G-quadruplex PNA will be developed with good
biological activity.
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Figure 1.
PNA (blue) and DNA (red) backbones. Shown PNA-DNA hybrid.
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Figure 2.
Various modes of PNA (blue) binding to duplex DNA (red).
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Figure 3.
Proposed modes of PNA binding to DNA G-quadruplex formed in duplex DNA.
Quadruplex binding PNA (shown in dashed) replaces one or more DNA strands containing
quadruplex-core-forming runs of guanines.
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Figure 4.
(i). The hydrogen bonding formation of triplex form nucleic acids. The guanine:cytosine
form a pair on the Watson-Crick face of the guanine forming a duplex as third oligomer
containing a protonated cytosine binds the Hoogsteen face of guanine. The third strand
would be stationed in the major groove of normal nucleic acid duplex. (ii). The same type
base-pairing with complementary thymine residues across both Hoogsteen and Watson-
Crick faces of the adenine.
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Figure 5.
The composition of aminoethyl glycine PNA (aegPNA) and some of the common
derivatives based on maintaining the basic form of the PNA backbone while augmenting it
with ring structures or side chains.
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Figure 6.
Possible effects of PNA binding to a quadruplex-forming sequence on G-quadruplex
recognition by a protein factor and gene transcription. A. PNA bind G-quadruplex-forming
sequence interfering with a protein factor (green) recognition of the quadruplex; gene
regulation by the protein factor is disrupted. B. PNA bind cytosine-rich strand
complementary to G-quadruplex-forming sequence, thus, helping quadruplex formation. A
protein factor recognizes the quadruplex, binds to it and accomplishes its transcription
regulation functions.
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