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Abstract
The HIV-1 genome is highly heterogeneous. This variation affords the virus a wide range of
molecular properties, including the ability to infect cell types, such as macrophages and
lymphocytes, expressing different chemokine receptors on the cell surface. In particular, R5
HIV-1 viruses use CCR5 as a coreceptor for viral entry, X4 viruses use CXCR4, whereas some
viral strains, known as R5X4 or D-tropic, have the ability to utilize both coreceptors. X4 and
R5X4 viruses are associated with rapid disease progression to AIDS. R5X4 viruses differ in that
they have yet to be characterized by the examination of the genetic sequence of HIV-1 alone. In
this study, a series of experiments was performed to evaluate different strategies of feature
selection and neural network optimization. We demonstrate the use of artificial neural networks
trained via evolutionary computation to predict viral coreceptor usage. The results indicate the
identification of R5X4 viruses with a predictive accuracy of 75.5 percent.

Index Terms
Computational intelligence; evolutionary computation; artificial neural networks; HIV; AIDS;
phenotype prediction; tropism; dual-tropic viruses

1 Introduction
A major challenge in the study of rapidly evolving viruses is the development of tools that
can manage the unparalleled amount and complexity of genetic data. Such data contain large
numbers of variables for thousands of nucleotide and/or amino acid sequences, each with
their own properties and host immunological and clinical information. In addition, these data
may not be independent, rather they may share an evolutionary history which should be
included in scientific analysis and understanding. Accurate data mining of this information,
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usually based on analytic or heuristic methods, has the potential to improve medical
therapies or result in the development of new theories on viral evolution.

There are many avenues for data mining. Simple statistical approaches commonly assume
linearity in relating these parameters to predictions of viral phenotype. This works well
when the parameters of concern are truly linear. However, features regarding biological
processes are rarely linearly separable. As a result, heuristic methods based on linear models
can potentially miss important relationships. Machine learning approaches that can handle
both linear and nonlinear relationships are required.

Artificial neural networks (ANNs) are typically used to map input features to output
decisions over a set of known examples in a database. For example, the input can be
statistical features about a DNA sequence region, with the output being a decision
concerning the likelihood of a particular nucleotide sequence residing in a coding or
noncoding region. When example patterns are available for training, multilayer perceptrons
(also sometimes described as feed-forward networks) are perhaps the most common ANN
architecture used in supervised learning applications. For a given ANN architecture (that is,
the type of network, the number of nodes in each layer, the connections between the nodes,
and so forth) and a training set of input patterns, the collection of variable weights
associated with all connections determines ANN response to each presented input pattern.
The error between the actual output of the ANN and the desired target output defines a
response surface over an N-dimensional hyperspace, where there are N parameters (for
example, weights) to be adapted.

There are numerous approaches for ANN optimization in light of the above description. For
example, back-propagation [1] implements a gradient search over the error response surface
for the set of weights that minimizes the sum of the squared error between the actual and
target values. Although this is a common approach in ANN optimization, it can only provide
guaranteed convergence to a locally optimal solution. Even if the network’s topology
provides sufficient complexity to completely solve the given pattern recognition task, the
backpropagation method may be incapable of discovering an appropriate set of weights to
accomplish the task.

A different approach for ANN optimization utilizes simulated evolution to discover useful
models [2], [3], [4]. Natural evolution provides inspiration for algorithms that mimic random
variation and selection as a means for discovering ingenious solutions to complex problems
that are characterized by temporal and stochastic processes. Evolving neural networks offers
not only a superior search for appropriate network parameters but can also be used to adjust
ANN topology simultaneously. By mutating both the structure of the ANN and its
associated parameters and coupling this variation with a process of model selection, a very
fast examination of the possible model space can be made for a truly robust design. When
simulated evolution has been used to train neural networks, the results have been superior to
other ANN optimization methods [5], [6]. These same approaches have even been used to
evolve models that meet or exceed human expert performance [7], [8].

1.1 HIV-1 Coreceptor Usage and Artificial Neural Networks in HIV Research
Models capable of examining statistics regarding viral sequences and translating these into
predictions of HIV-1 coreceptor usage have many relevant biomedical applications. For
example, infection of target cells by HIV-1 requires binding of the viral surface protein
gp120 to the cellular surface protein CD4 and chemokine receptors CCR5 or CXCR4 [9].
Coreceptor usage can determine a virus’ behavior both in vitro and in vivo. Viruses that
utilize the CCR5 coreceptor (R5 viruses) do not induce syncytia and primarily infect
macrophages, but can also infect lymphocytes. On the other hand, viruses that utilize the
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CXCR4 coreceptor (X4 viruses) induce syncytia in transformed CD4+ cells and have the
ability to infect lymphocytes and T-cells lines [10]. Additionally, there exists a subset of
viruses that can utilize both the CCR5 and CXCR4 coreceptors and infect macrophages, as
well as lymphocytes and T-cell lines; these viruses are usually identified as D-tropic (or
otherwise called R5X4). The emergence of R5X4 and/or X4 viral variants during the course
of the infection is associated with rapid progression to AIDS in about 50 percent of HIV-1
subtype B infected patients [11], in line with their accelerated replication rates in vitro [12],
[13], whereas R5 viruses are associated with early infection and infection of the central
nervous system [14]. Coreceptor usage also modulates viral access to various compartments
within the human body due to tissue-specific cellular characteristics. For example, HIV
infection in the brain is only associated with R5 viruses, whereas the thymus is mainly
populated by X4 (T-tropic) variants [15], [16]. The majority of HIV-positive individuals are
initially infected with R5 strains, suggesting that there may be a selective advantage of such
variants with respect to transmission [17]. However, the recent report of an individual
infected with a multidrug resistant, D-tropic, virus followed by rapid advancement to AIDS
and death is alarming [18] and underscores the necessity for models that can successfully
predict viral phenotype from genotype.

Neural networks have been applied recently to HIV coreceptor usage prediction with
success limited largely by the manner in which these methods have been employed [19],
[20], [21], [22], [23]. For example, Resch et al. [19] utilized neural networks to predict
HIV-1 coreceptor usage from envelope V3 loop sequences. Bayesian regulation
modification of backpropagation was used for neural network training with an empirically
determined threshold for prediction of X4 viral strains. As mentioned previously, the use of
backpropagation may be limiting the discovery of the most useful neural network models.
Loannidis et al. [20] utilized ANNs optimized via backpropagation for HIV lipodystrophy
prediction. Results were compared against logistic regression models using the same
information that was presented to the ANN. In this case, the ANNs demonstrated improved
performance over logistic regression models when using a receiver-operator characteristic
(ROC) curve area as a performance metric, but only slightly. Brumme et al. [22] utilized
neural networks, although the methods of neural network training were not well described.
Other studies have used neural networks to predict HIV resistance to drugs such as lopinavir
[21] and these are not reviewed herein as they are not directly related to prediction of
coreceptor usage.

1.2 Evolved Neural Networks for Coreceptor Usage Prediction
HIV-1 coreceptor usage is determined either experimentally in the laboratory or inferred by
examining the charged positions and overall charge of the V3 loop region in the envelope
protein [23]. Although prediction of CCR5 or CXCR4 coreceptor usage based on charge for
V3 loop residues may be > 80 percent accurate [24], [25], [26], [27], [28], it leaves room for
20 percent improvement in terms of predictive accuracy, with insufficient confidence in
what other factors are involved in natural coreceptor usage determination. More importantly,
a prediction algorithm able to identify R5X4 strains has not yet been described. ANNs
optimized by backpropagation have been employed to predict HIV coreceptor usage [19].
However, a mean reliability of predicting X4 sequences of 69 percent is considered
insufficient for use in a clinical setting despite the 80 percent sensitivity and 89 percent
specificity of the best neural network on the testing examples for the decision of R5 versus
X4. In this paper, we demonstrate the use of evolved neural networks to predict HIV-1
coreceptor usage, including R5X4 viral strains. As shown below, such a method not only
allows us to increase the prediction of R5 and X4 viruses to a mean predictive accuracy of
88.9 percent, but it is also able, for the first time, to predict R5X4 HIV-1 variants with 75.5
percent accuracy.
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2 Materials and Methods
2.1 Data Collection and Feature Generation

There were 149 sequence isolates for the HIV V3 loop representing three experimentally
determined viral tropisms (77 R5, 31 R5X4, and 41 X4 sequences) from a variety of HIV
subtypes identified from the Los Alamos National Laboratory HIV Sequence Database
(www.hiv.lanl.gov/content/hiv-db/main-page.html) and downloaded to a local computer.
The accession numbers for these sequences are provided in Table 1. Sampling bias was
minimized by ensuring that the sequences did not originate from similar sources or studies.
V3-loop sequence contained 35 amino acid positions. Alignments were performed by hand
to maximize homology between sequences [28]. Gaps in the alignment were treated as
positions where no information was available and were assigned a quantitative value of 0.
Amino acid positions 1, 3, 26, and 38 were removed from the alignment because they were
invariant and, thus, uninformative for the purpose of classification.

HIVbase software [29] was used to calculate nine statistics per position (for example, amino
acid type, Chou-Fasman helix index, Chou-Fasman sheet index, pKa value for free amino
acid carboxylate, pKa value for free amino acid amine, volume, polarizability index, charge,
and surface index; see Table 2), in addition to two V3-domain level features (isoelectric
point and V3-domain total charge) for a total of 317 features. Amino acids can be further
grouped into several classes based on overall features, as in Table 3. Given that positional
information is known to be important for coreceptor usage [23], we employed a direct
encoding method for these statistical features. The above features were chosen because of
their relevance and/or statistical correlation with HIV ability to use different coreceptors.
The data set was exported to a Microsoft Excel spreadsheet via the HIVbase query engine.

2.2 Preprocessing of Features
Initial screening of the data indicated that many of the statistical features were invariant
across the three coreceptor usage classes (due to invariant amino acid positions in the
alignment) and could be removed from further analysis as noninformative in discriminating
coreceptor usage. This reduced the total number of features from 317 to 248. Further
statistical analysis of the features demonstrated that the two domain-level features
(isoelectric point and domain charge) were only poorly correlated with coreceptor usage
when taken individually (see Figs. 1a and 1b; R2 values of 0.364 and 0.506, respectively).
Despite this, these domain-level features were still incorporated in model development. For
the experiments that follow, first the two domain-level features were used as input, followed
by a combination of these domain-level features with 28 charge features, followed by
affording the evolutionary process itself, determine the appropriate features to use over a
prespecified range from the entire set of 250 possible features. This latter method allows for
simultaneous weight and topology optimization of the neural network models.

2.3 Evolved Neural Networks
Evolved neural networks were used to map the input vectors to coreceptor usage predictions
using increasingly more complex feature sets. For additional information on evolved neural
networks, the reader is directed to [4], which provides a thorough review of the approach.
Unless specified otherwise, for the purpose of developing ANN models, fully connected,
feed-forward architectures were used with input, hidden, and output nodes. Leave-one-out
cross validation was used over all samples, with an initial step size of 0.1, tournament
selection with four opponents, and a population size of 50 parent and 50 offspring neural
networks. Evolutionary optimization was employed over a prespecified number of
generations. All hidden nodes used a sigmoid activation function. Fitness was measured by
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taking the mean squared error (MSE) of the prediction from the neural network for all
training examples, relative to the actual value for each sample, using the equation

(1)

where P is the predicted activity for the kth sample, O is the observed activity for the kth
sample, and N is the number of patterns in the training set. MSE was to be minimized over
evolutionary optimization.

For the purpose of investigating the utility of using only domain-level features for
coreceptor usage prediction, a simple ANN with two inputs, two hidden nodes, and one
output node was used for 5,000 generations of evolution. The choice of two hidden nodes
was arbitrary but felt to be sufficient in light of only two input nodes and for the purpose of
this preliminary investigation. For the purpose of combining these domain-level features
with charge features from the V3 loop to discriminate R5X4 sequences from either R5 or X4
sequences, a random selection of 30 inputs, two hidden nodes, and one output node was
used over 1,000 generations of evolution. R5X4 sequences were assigned a value of 0,
whereas both R5 and X4 sequences were assigned a target value of 1 over all samples (n =
149). Although it is possible that additional hidden nodes would increase the ability of the
ANN to discriminate tropism classes, we wished to determine a minimal nonlinear
representation capable of doing this task to determine how well such a parsimonious model
compared to prior results in the literature.

When using evolved neural networks it is possible to select a subset of features as input over
a range of possible features and make the selection of which inputs to use subject to
evolutionary variation simultaneously with weight optimization. This approach leads to
simultaneous feature reduction and optimal model development. To discriminate R5 and X4
sequences (n = 118), 30 features were allowed as possible input. A subsequent series of
seven experiments was conducted, forcing the number of inputs to the ANN to be 2, 5, 10,
15, 20, 25, or 30 features out of the space of possible features chosen at random. For each of
these experiments, the choice of precisely which features to use as input was itself subject to
evolutionary optimization concurrent with weight assignment optimization.

As a final test of the process, eight new sequences were added to the data and the data was
divided randomly into 127 training samples and 30 testing samples. The number of inputs
used by each neural network was subject to evolutionary variation in addition to the weight
of importance assigned to all connections. Given that the best results with leave-one-out
cross validation were when using 10 inputs, for this experiment, the number of inputs was
also set to a random choice of 10 features from the available 248 total (the domain-level
features were not included). The evolutionary process was allowed to continue for 1,000
generations and was repeated 30 times with random initial settings.

3 Results and Discussion
To our knowledge, prediction of R5X4 viral variants, separately from R5 or X4 strains,
remains entirely novel. We chose to break down the problem of coreceptor usage
classification into a two-step process of 1) classifying R5X4 sequences from sequences
previously classified as R5 or X4 followed by 2) classification of R5 sequences from X4
sequences. This two-tiered approach to classification provided a reasonable preliminary test
of evolved neural networks.
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Multiple linear regression using the domain-level features of isoelectric point and domain
charge combined yielded a correlation to coreceptor usage of R2 = 0.517, which was slightly
better than either of these domain-level features in isolation (Figs. 1a and 1b). As shown in
Fig. 1c, the predictions of the best resulting neural networks using these two inputs had
slightly improved correlation with coreceptor usage (R2 = 0.556) versus multiple linear
regression.

Table 4 presents the results when combining these two domain features with the charges for
28 amino acid positions in the V3 loop when discriminating R5X4 from R5 or X4 variants
and then selecting different combinations of features as input to the neural network from this
set of 30 features.

The coupling of domain-level features and amino acid position features results in a neural
network that can discriminate R5X4 sequences from R5 and X4 sequences. Fig. 2 presents
the results for the most parsimonious evolved ANN model, which utilized 10 inputs (Table
4). In this case, the neural network with 20 features has an ROC area of 0.761, whereas the
neural network with 10 features has a nearly equivalent ROC area of 0.760. Given that the
model with 20 features as input has twice the number of features with essentially an
identical ROC area, the model utilizing 10 features was considered parsimonious. The box
plot in Fig. 2a suggests that further separation may be possible with large population sizes or
additional generations of evolution. The mean output prediction for the 10-2-1 neural
network was 0.807 (Fig. 2a). Using this mean prediction as a decision threshold, a confusion
matrix can be generated (Table 5). These results suggest that R5X4 HIV-1 strains can be
predicted with 77.4 percent accuracy and R5 and X4 strains with 73.7 percent accuracy. The
mean predictive accuracy for these two categories is 75.5 percent. The neural network has a
slightly higher error in predicting R5X4 sequences as R5 and X4 phenotype versus
predicting R5 and X4 as R5X4 sequences.

From the best evolved neural network, it is possible to identify which of the 30 possible
features were used most often over the leave-one-out samples. Fig. 3 presents these data for
the first 50 leave-one-out cross validation models. Features 3 (charge for V3 loop amino
acid position 2), 14 (charge for V3 loop amino acid position 21), and 21 (charge for V3 loop
amino acid position 29) were used most often in the resulting models. Surprisingly, the two
domain-level features (features 1 and 2) were rarely used in the best resulting leave-one-out
models.

Table 6 presents the results when combining the two domain-level features with the charges
for 28 amino acid positions in the V3 loop when discriminating R5 from X4 sequences and
then selecting different subsets of features to be used as input to the neural network over the
range [2–30].

Fig. 4 presents the results for the most parsimonious evolved ANN model that utilized all 30
inputs (Table 6). The box plot in Fig. 4a suggests that the best evolved ANN models can
easily discriminate the held-out samples in leave-one-out cross validation. The mean output
prediction for the 30-2-1 neural network was 0.361 (Fig. 4a). Using this mean prediction as
a decision threshold, a confusion matrix can be generated (Table 7). These data suggest that
R5 strains can be predicted with 94.8 percent accuracy and X4 with 82.9 percent accuracy,
with a mean predictive accuracy of 88.9 percent. The neural network has a slightly higher
error in predicting X4 sequences as R5 versus predicting R5 sequences as X4.

Fig. 5a provides the average convergence over the number of generations over all 30 trials
when using a division of training and testing data rather than leave-one-out cross validation.
As anticipated, MSE (y-axis) is minimized over time. At every 50 generations, the best
evolved neural network was evaluated over the testing examples and an MSE was calculated
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(Fig. 5b). The MSE on the testing examples decreased over all 1,000 generations, indicating
that no overtraining had occurred. Over all 30 trials, the best evolved neural network (the
neural network resulting from trial number 22) had the lowest resulting MSE on the testing
examples (MSE = 0.0612). The convergence plots over the training and testing examples for
this single evolutionary optimization (Figs. 6a and 6b) demonstrate how rapidly useful
ANNs can be discovered.

When evaluating performance over all 127 examples in the training set, the best ANN from
trial 22 had a predictive accuracy of 75 percent, 40 percent, and 79.3 percent (Table 8a)
when predicting all three patterns of coreceptor usage, R5, R5X4, and X4, using decision
thresholds of R5 = x < 0.2108, R5X4 = 0.2108 < x < 0.5728, and X4 = x > 0.5728, where x
was the prediction made by the single output node of the ANN. When using these same
decision thresholds for the testing examples, this same best network had a predictive
accuracy of 79 percent, 50 percent, and 70 percent for all three classes (Table 8b). When
evaluating the number and type of errors made, it is interesting to note that, during training,
R5 sequences were never misclassified as X4 sequences, while some X4 sequences were
misclassified as R5. The difficulty in predicting R5X4 strains, a category that by definition
shares characteristics of both R5 and X4 sequences, may not only be inherent to this
problem but may also be the result of different numbers of training examples or insufficient
training length (given that no overtraining was yet observed) for each of the three classes in
the training data. Further research and development will help to resolve these issues,
including the use of neural networks with two output nodes that may discriminate these
three classes with better resolution.

The best evolved neural network from trial 22 utilized the following input features: Chou-
Fasman helix index for positions 17, 22, and 26, Chou-Fasman sheet index for position 7,
pKa value for free amino acid amine for positions 4, 5, and 8, polarizability index for
position 21, volume for position 34, and charge at position 28. The amino acid positions
related to these features are shown in Fig. 7.

4 Conclusion
Accurate assessment of coreceptor usage is critical for many aspects of HIV research,
including viral transmission, evolution, the study of reservoirs and other in vivo and in vitro
studies. Typically, coreceptor usage is determined in the laboratory or predicted by overall
charge of the V3 loop and/or the appearance of charged residues at certain positions. This
preliminary study has demonstrated that evolved ANNs can also be used to determine
coreceptor usage and, furthermore, can distinguish R5X4 viruses, which can use either
CCR5 or CXCR4 coreceptor, from pure R5 or X4 viral sequences.

In the second set of experiments, R5 and X4 sequences were identified with a probability of
correct classification of 0.906, which is comparable to or exceeds the performance of
previous methods used to identify HIV-1 coreceptor usage; however, R5X4 sequences were
discriminated from R5 and X4 sequences with a probability of correct classification of
0.755.

R5X4 HIV viruses are important to monitor within individuals and populations because of
their association to rapid disease progression [18], [31]. Although R5 viruses appear to be
more transmissible, infection with a dual tropic strain has been recently noted within a high-
risk individual [18]. It is unclear if the viral phenotype found in this patient was from the
transmission of such a virus or if it emerged rapidly. In either case, the possibility of such a
virus infecting a population should be of great concern.
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To date, the possibility of identifying R5X4 sequences without time consuming
experimental assays has been unattainable because these viruses share genotypic
characteristics with both R5 and X4 viral variants; overall charge analysis or positional
information is not as clear cut as when identifying R5 from X4 strains. The system
developed here is interesting because it used a collection of parameters in combination to
identify dual tropic variants. These combinations of features and their relative importance
would not be immediately apparent after examining databases of genetic sequence
information alone. Considering the impact that the R5X4 virus may have on clinical
progression, the ability to accurately identify these viruses within individuals or populations
could lead to more aggressive clinical treatments for individuals infected with or quickly
progressing with dual tropic strains. Furthermore, regions of the HIV genome outside of the
V3 domain influence viral coreceptor usage. As the genetic databases grow and more viral
sequences with experimentally determined coreceptor usage are generated, new tools, such
as evolved ANNs, will catalyze new insight as to how various properties of amino acid
sequences may influence HIV-1 ability to employ different coreceptors and infect specific
cells.
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Fig. 1.
Correlation of domain-level features (a) isoelectric point and (b) domain charge with
coreceptor usage (x-axis values for presentation purposes only: 0 = R5, 0.5 = R5X4, 1 =
X4). (c) Predictions from the best evolved neural networks developed with just these two
input features using leave-one-out cross validation over all samples.
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Fig. 2.
Results of leave-one-out cross validation on R5X4 versus R5 or X4 corecptor usage
prediction. (a) Ability of the best neural networks to discriminate between D-tropic samples
(0) and R5 or X4 samples (1). (b) ROC curve showing predictive performance on the held-
out samples. The best probability of detection (P(D)) of 0.80 is achieved with probability of
false alarm (P(FA)) of slightly > 0.2 (area under the ROC curve A(z) = 0.760).
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Fig. 3.
Input features used most often over the first 50 leave-one-out trials for the discrimination of
R5X4 from R5 and X4 strains.
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Fig. 4.
Results of leave-one-out cross validation on R5 versus X4 strains prediction. (a) Ability of
the best neural networks to discriminate between R5 samples (0) and non-X4 samples (1).
(b) The best probability of detection (P(D)) of 0.81 is achieved with a probability of false
alarm (P(FA)) of 0.05 (area under the ROC curve A(z) = 0.927).
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Fig. 5.
Evolutionary optimization of neural networks. (a) Reduction of average MSE over all 30
trials on the training examples. (b) Average performance of the best evolved neural
networks on the testing examples sampled every 50 generations during training. No
overtraining is observed.
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Fig. 6.
Evolutionary optimization of neural networks. (a) Reduction of average MSE over all 30
trials on the training examples. (b) Average performance of the best evolved neural
networks on the testing examples sampled every 50 generations during training. No
overtraining is observed.
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Fig. 7.
Consensus sequence from alignment of X5, X4, and R5X4 sequences. Invariable positions
1, 3, 26, and 38 were removed. Lowercase letters indicate that the final alignment contained
greater than 51 percent identity, whereas a question mark indicates less than 51 percent
identity. Highlighted positions indicate a column in the alignment containing informative
features for the best evolved neural network.
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TABLE 1

Accession Numbers for Sequences of Different Tropisms

R5X4 (D-tropic) R5 X4

AB014795 AF062012 U08716 AB014785

AF062029 L03698 U39259 AB014791

AF062031 AF231045 AF204137 AB014796

AF062033 AY669778 M38429 AB014810

AF107771 U08810 U27443 U48267

U08680 U51296 U79719 U08666

U08682 AF407161 U04909 AF069672

U08444 AB253421 U04918 AF355319

U08445 U08645 U04908 AF355336

AF355674 U08647 U08450 M14100

AF355647 U08795 AF112542 A04321

AF355630 AB253429 M63929 X01762

AF355690 AY288084 U66221 L31963

M91819 AF307753 AF491737 U08447

AF035532 AF411964 U08779 AF355660

AF035533 U08823 L22084 AF355748

AF259019 AF411965 U27413 AF355742

AF259025 U92051 AF005495 AF355706

AF259021 AF355318 U52953 AF180915

AF259041 AY010759 AF321523 AF180903

AF258970 AY010804 L22940 AF035534

AF258978 AY010852 U45485 AF259050

AF021607 U08670 AB023804 AF258981

AF204137 U08798 U08453 AF259003

AF112925 AY669715 AF307755 AF021618

M17451 U08710 AF307750 AF128989

K02007 U16217 AY043176 M17449

U39362 M26727 AY158534, AF075720

AF069140 AJ418532 AX455917 U48207

AF458235 AJ418479 AY043173 U72495

AF005494 AJ418495 AF307757 AY189526

AJ418514 U08803 AF034375

AJ418521 U88824 AF034376

U23487 U69657 U27408

U04900 AF355326 AF411966

AF022258 U88826 U27399

AF258957 U08368 U08822

AF021477 U27426 U08738

AJ006022 U08740
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R5X4 (D-tropic) R5 X4

U08193

AF355330
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TABLE 3

Amino Acid Membership Classes

Name Size Feature Membership classes Numeric Class Conversion

Exchange Group 6 Conservative substitution {HRK} {DENQ} {C} {STPAG} {MILV} {FYW} 1,2,3,4,5,6

Charge Polarity 4 Charge and Polarity {HRK} {DE} {CTSGNQY} {APMLIVFW} 1,2,3,4

Hydrophobicity 3 Hydrophobicity {DENQRK} {CSTPGHY} {AMILVFW} 1,2,3

Mass 3 Mass {GASPVTC} {NDQEHILKM} {RFWY} 1,2,3

Structural 3 Surface Exposure {DENQHRK} {CSTPAGWY} {MILVF} 1,2,3

2D Propensity 3 2D Propensity {AEQHKMLR} {CTIVFYW} {SGPDN} 1,2,3
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TABLE 4

Performance of Evolved Neural Networks for the Discrimination of D-Tropic Sequences from R5 and X4
Sequences Following Leave-One-Out Cross Validation in Terms of Area under the ROC Curve (A(z))

Number of Input Features Number of Hidden Nodes Number of Output Nodes ROC curve area (A(z))

2 2 1 0.689

5 2 1 0.731

10 2 1 0.760

15 2 1 0.713

20 2 1 0.761

25 2 1 0.665

30 2 1 0.707

A maximum of 30 possible input features was available (2 domain charge features and 28 amino acid features). Forcing neural networks to use
fewer than 30 inputs can still produce neural network models with reasonable A(z) values.
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TABLE 5

Performance of the Best Evolved Neural Network on the Discrimination of R5X4 HIV Sequences from R5
and X4 Sequences

R5X4Pred (R5 & X4)Pred

R5X4ACT 24/31 7/31

(R5 & X4)ACT 31/118 87/118
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TABLE 6

Performance of Evolved Neural Networks for the Discrimination of R5 and X4 Sequences Following Leave-
One-Out Cross Validation in Terms of Area under the ROC Curve (A(z))

Number of Input Features Number of Hidden Nodes Number of Output Nodes ROC curve area (A(z))

2 2 1 0.884

5 2 1 0.912

10 2 1 0.908

15 2 1 0.842

20 2 1 0.904

25 2 1 0.906

30 2 1 0.927

A maximum of 30 possible input features was available (2 domain charge features and 28 amino acid features). Forcing neural networks to use
fewer than 30 inputs can still produce neural network models with reasonable A(z) values.
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TABLE 7

Performance of the Best Evolved Neural Network on the Discrimination of R5 HIV Sequences from X4
Sequences

R5Pred X4Pred

R5ACT 73/77 4/77

X4ACT 7/41 34/41
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TABLE 8

(a) Predictive Accuracy on the 127 Training Examples by Coreceptor Usage. (b) Predictive Accuracy on the
30 Testing Examples by Coreceptor Usage

R5PRED R5X4PRED X4PRED

R5ACT 51/68 17/68 0/68

R5X4ACT 8/30 12/30 10/30

X4ACT 2/29 4/29 23/29

R5PRED R5X4PRED X4PRED

R5ACT 11/14 3/14 0/14

R5X4ACT 2/6 3/6 1/6

X4ACT 3/10 0/10 7/10

Actual (ACT) versus predicted (PRED) outcomes are provided for each coreceptor usage. On-diagonals are correct predictions. Off-diagonals are
incorrect predictions.
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