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Purpose: The purpose of this work was to investigate the relationship between dynamically accumu-
lated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and
to quantify the dose uncertainty induced by tumor motion.
Methods: The authors established that regardless of treatment modality and delivery properties, the
dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The
bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established
for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove the
principle that for each phase, after multiple deliveries, the average number of deliveries for any given
time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate
the dose difference between the 4D and dynamic doses as a function of the number of deliveries
for deliveries of a “pulsed beam”; and (3) to investigate the dose difference between 4D dose and
dynamic doses as a function of delivery time for deliveries of a “continuous beam.” A Poisson model
was developed to estimate the mean dose error as a function of number of deliveries or delivered time
for both pulsed beam and continuous beam.
Results: The numerical simulations confirmed that the number of deliveries for each phase converges
to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also
suggested that the dose error is a strong function of the number of deliveries and/or total deliver time
and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model
agrees well with the simulation.
Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after mul-
tiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined
using quantities derived from 4D doses, and the mean dose difference between the dynamic dose
and 4D dose as a function of number of deliveries and/or total deliver time was also established.
© 2012 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4766434]
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I. INTRODUCTION

The interplay between the incident beam and tumor motion
could potentially introduce dosimetric error that cannot be
compensated for by increasing target margin,1–5 for IMRT,
VMAT and scanning beam proton, or heavy-ion radiotherapy.
In an ideal situation, to account for the interplay effect, the
dose should be calculated with the real-time beam fluence
rate and patient volume image and accumulated over time,
termed the dynamically accumulated dose (dynamic dose).6

However, since patient breathing pattern, patient anatomy,
and the beam properties could all vary during the patient
treatment, it is not possible to obtain the dynamic dose at the
time of treatment planning, and the planned dose that does
not account for the interplay effect could deviate from the
dynamic dose. Quantitative studies and measurements have
shown a 2%–3% systematic difference between the delivered
dose and the 3D dose generated on a static CT (3D static
dose, or static dose),3, 7, 8 up to more than 5% difference for
VMAT,3 and over 10% for scanning beam proton9 radio-
therapy, even with fractionated delivery. A previous study by

Bortfeld et al.10 concluded that for IMRT with tumor motion,
the expected dose value is a weighted average of the dose
distribution without motion. However, this work assumed
that the spatial dose distribution does not change with organ
movements, which may not be a good assumption for IMRT
in inhomogeneous tissue,11 and does not hold for proton
therapy. In addition, they also assumed that the distribution
of a particular voxel has a probability density function of
f (�x), which is only a function of location. This assumption
could lead to the possibility of systematic error, as shown
by Evans et al.12 Furthermore, since in practice there is no
practical way to determine f (�x) for an individual patient, the
“weighted average of the dose distribution without motion”
is often further approximated by the dose distribution without
motion or the 3D static dose.13 With the availability of
4D respiration-correlated computer tomography (CT) and
deformable registration, 4D accumulated dose (4D dose)
distribution calculation can be performed with the tumor mo-
tion being correlated with time (f (�x, t)) or phase (f (�x, n)).
Studies have shown that the 4D dose can differ significantly
from the 3D static dose, calculated on any single-phase or
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average CT, for both photon14, 15 and scanning beam
proton16, 17 radiotherapy. It has also been shown that 4D plan-
ning and optimization for IMRT could indeed improve tumor
coverage and/or reduce the dose to normal tissue, compared
with single-phase planning and optimization.14, 18, 19 How-
ever, the relationship between the 4D dose and the dynamic
dose was not fully investigated, and to date there were no
established technique to quantify the patient specific motion
induced dose uncertainty at the time of treatment planning.

The purpose of this work was to determine the relation-
ship between the dynamic dose and the 4D dose, and de-
velop a technique to predict the maximum and mean dose er-
ror induced by tumor motion for individual patients without
repeated dose calculation. Throughout this work, we assume
there was no residual motion within a 4DCT phase.

II. METHODS

II.A. Dynamic dose and 4D dose

Let Ep(t) denote the planned fluence rate of an incident
(photon or proton) beam at a given instant t and let Vs(�x) de-
note the static 3D patient volume image. The static dose to the
patient is a (complex) function of E and V and can be written
as

Ds(�x) =
∫ Td

0
M(Ep(t), Vs(�x))dt, (1)

where F = ∫ Td

0 E(t)dt is the total fluence of the beam and Td

is the time required to deliver the total fluence.
If the same planned Ep(t) is delivered to a moving tumor,

and if we can somehow acquire the fluence and patient vol-
ume data at any given time (V (�x, t)), the dynamically accu-
mulate dose to the patient can then be written as

D(�x) =
∫ Td+t0

t0

M(E(t), V (�x, t))dt, (2)

where E(t) = Ep(t − �t) represents the timing difference
between the actual delivery and the plan. In ideal case E(t)
= Ep(t − t0) where t0 represents instant when the deliver
starts. Note that dynamic dose to patient can be calculated
if and only if we know the fluence rate, the patient volume,
as well as the registration vectors, at any given t, which may
not be possible. The 4D accumulated dose, on the other hand,
was calculated based on the motion information collected at
the time of the simulation, and could be written as

D′(�x) = 1

N

N∑
n=1

∫ Td

0
M(Ep(t), V (�x, n))dt, (3)

where n is a phase of breathing cycle, V (�x, n) is the patient
volume at phase n, and N is the total number of phases. As
indicated by the equation, the planned fluence was applied to
each of the N phases, and the 4D dose was the averaged sum
of doses to individual phases.

Suppose the treatment plan was repeatedly delivered for K
times, by means of such as repainting, fractionated delivery,
etc., the dynamic dose over these deliveries, assuming perfect
deliveries where fluence rate at any given time t after the

treatment started are identical for all delivers (Ek(t + t0(k))
= Ep(t)), could then be written as

D(�x,K) =
K∑

k=1

∫ Td+t0(k)

t0(k)
M(Ek(t), V (�x, t))dt

=
K∑

k=1

∫ Td

0
M(Ep(t), V (�x, t + t0(k)))dt. (4)

For any given time instant t, the phase the patient is
in (n(t)) can be determined by n(t) = N mod (t,Tb)

Tb
, or

(n(t)−1)Tb

N
≤ t − rTb < n(t)Tb

N
, where Tb is the patient breathing

cycle and r ∈ N is an arbitrary integer. If each delivery were
binned according to different phases, assuming that all phases
have the same time length, with no residual motion within
a phase, and that the patient’s breathing is a perfect periodic
function, then the total time the patient is in for each phase n
during deliver k can be written as

Tn,k =
{

t | (n − 1)Tb

N
≤ t + t0(k)

− rTb <
nTb

N
, t ∈ [0, Td ], r ∈ N

}
(5)

and Eq. (4) can be rewritten as

D(�x,K) =
K∑

k=1

N∑
n=1

∫
Tn,k

M(Ep(t), V (�x, n))dt. (6)

For each and any fixed t ∈ [0, Td] and n ∈
{1. . . N}, assuming t0(k) are independent variables
uniformly distributed over [0,Tb), then the probability
P ( (n−1)Tb

N
≤ t + t0(k) − rTb < nTb

N
) = 1

N
. Therefore when K

→ ∞ for each t ∈ [0, Td] there would be K / N instances of
t falls in phase n, or

lim
K→∞

D(�x,K) =
N∑

n=1

K

N

∫
{t |t∈[0,Td ]}

M(Ep(t), V (�x, n))dt

= K

(
1

N

N∑
n=1

∫ Td

0
M(Ep(t), V (�x, n))dt

)

= K∗D′(�x). (7)

Thus we showed that under ideal conditions, namely all
deliveries were identical to the plan except the starting time,
which were uniformly distributed over N phases, all phases
had the same time length, with no residual motion within
a phase, and that the patient’s breathing being a perfect
periodic function, after multiple deliveries, the dynamic dose
converges to the 4D dose and not the 3D static dose. As
mentioned in Sec. I, discussion of the difference between
the 4D dose [Eq. (3)] and the 3D static dose [Eq. (1)] can be
found in several papers.14–18

If the repeated deliveries were not identical, instead of
delivering the planned Ep(t) at time t + t0(k), it was actually
delivered at time, for example, t + t0(k) + tk, i.e., Ek(t + t0(k)
+ tk) = Ep(t) where tk ∼ N(0,σ ) is a Gaussian distributed
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random variable, now

Tn,k =
{

t | (n − 1)Tb

N
≤ t + t0(k)

+ tk − rTb <
nTb

N
, t ∈ [0, Td ], r ∈ N

}
(8)

and it is still easy to show that Eq. (7) holds. In addition to
modeling the delivery timing of the beam fluence, Eq. (8)
also partially modeled the irregular breathing pattern of the
patient (starting phase n at time t + tk instead of t), with the
assumption that the breathing magnitude did not change, and
indicated that even with an irregular breathing pattern, the
relationship in Eq. (7) still holds.

II.B. Quantification of interplay effect

The interplay effect can be quantified as the dose differ-
ence between the dynamic dose and the 4D or 3D static dose.
In other words, 4D dose is an unbiased estimator of the dy-
namic dose as shown in Sec. II.A, and interplay effect is the
estimation error using the 4D or 3D static dose to estimate the
dynamic dose, without knowledge of the patient during treat-
ment. For a single delivery, the maximum dose with, or the
upper bound of, the dynamic dose for any given voxel can be
calculated as

Dmax(�x) =
∫ Td

0
max

j∈{1...N}
(M(Ep(t)V (�x, j ))dt. (9)

To calculate Dmax in step and shoot IMRT, for each voxel, the
dose on all N phases for each segment was calculated, and
Dmax was the summation of the maximum dose among the
phases for each segment. To calculate Dmax in spot scanning
proton RT, for each voxel, the dose on all N phases for each
spot was calculated, and Dmax was the summation of the max-
imum dose among the phases for each spot. To enable dose
summation, deformable registration was implied. The dose
difference between Dmax and the 4D dose D′, which also is
the upper bound of positive dose error (overshoot) using 4D
dose instead of dynamic dose, after any possible single deliv-
ery, is

�Dmax(�x) = Dmax(�x) − D′(�x). (10)

Likewise, Dmin and �Dmin can also be established. It can be
observed that �Dmax is different from comparing the accu-
mulated dose calculated on single phases with D′, since the
maximum (or minimum) dose could be made up by dose
delivered to different phases. Also note that �Dmax is not
a function of t0, and can be calculated during the 4D dose
calculation.

Because Dmax and Dmin are simply the upper and lower
bounds of the dose for a given fluence during a dynamic de-
livery, the maximum dose error using the 3D static dose to
approximate the dynamic dose could also be calculated, sim-
ilar to Eq. (10):

�Ds(�x) = Dmax(�x) − Ds(�x). (11)

The relationship between �D and the number of deliveries
will be investigated using simulation.

II.C. Simulations

We performed simple numerical simulations without pa-
tient dose calculation to show the convergence of the num-
ber of deliveries each phase received for a random time spot
during delivery, and to show the decreasing trend of dose dif-
ference between the 4D and dynamic doses with increasing
treatment time. The relationship between dose error, breath-
ing cycle, and the delivery time will also be investigated.
Comprehensive dosimetric studies have been performed and
reported for both scanning beam proton9, 20, 21 and photon3, 7

radiotherapy and will not be repeated in this study, but the re-
sults from these studies will be summarized and discussed in
Sec. IV.

II.C.1. Number of deliveries for each phase

The first set of simulations was designed to show that for
any given time t during the delivery, after K deliveries, there
would be K/N deliveries of Ep(t) at phase n. For this simu-
lation, Tb = 6 s, Td = 300 s, and K = 500 deliveries were
used. For the total number of phases, N = 3 was used without
losing generality for a better demonstration. The simulations
performed were as follows:

1. Perfect repeated deliveries with fixed t0 over all deliv-
eries. All deliveries were identical, and with the same
starting phase, a t ∈ [0, Td] was randomly selected and
fixed over all deliveries, where Ep(t) represents a cer-
tain fluence planned to be delivered; for each delivery
Ep(t) was delivered to a phase (n) at time t + t0 (Ek(t
+ t0) = Ep(t)), and the number of deliveries for each
phase was tallied.

2. Perfect repeated deliveries with random t0. All deliv-
eries were identical, and the starting phase for each
delivery was an independent uniformly distributed
random variable t0(k) ∼ U [0, Tb). A t ∈ [0, Td] was
randomly selected and fixed over all deliveries; for
each delivery Ep(t) was delivered to a phase (n) at time
t + t0, and the number of deliveries for each phase
was tallied.

3. Nonperfect repeated deliveries with random t0. Each
delivery was randomly deviate from the perfect deliv-
ery, i.e., Ek(t + t0(k) + tk) = Ep(t), where tk ∼ N(0,
σ ), σ was arbitrarily chosen to be 3 s, and t0(k)
∼ U [0, Tb). A t ∈ [0, Td] was randomly selected and
fixed over all deliveries; for each delivery Ep(t) was
delivered to a phase (n) at time t + t0(k) + tk, and
the number of deliveries of Ep(t) for each phase was
tallied.

II.C.2. Pulsed beam simulations

The second set of simulations was designed to investigate
a “pulsed beam,” where a given dose was delivered by pulses

Medical Physics, Vol. 39, No. 12, December 2012



7362 Li et al.: Dynamic dose and 4D dose 7362

of repeating beams. Suppose a fluence map was designed to
deliver a certain fluence F0, by adjusting the fluence rate E;
this fluence could be delivered using K pulses, where

D(�x) =
K∑

k=1

M(F, V (�x, tk)), (12)

F = F0/K, (13)

tk is the time when the kth pulse occurs, assuming each pulse
was delivered instantaneously (Td → 0). An example of the
scenario is a spot in the scanning proton beam, giving the
same total MU with a different number of repaints.13, 22

We use the 4D dose to estimate the dynamic dose:

D′(�x) = K

N

N∑
n=1

M(F, V (�x, n)). (14)

With Eq. (10), the maximum estimation error is

�Dmax(�x) = K max
j

(M(F, V (�x, j ))) − D′(�x). (15)

Next we investigated the mean estimation error using the 4D
dose to estimate the dynamic dose as a function of num-
ber of pulses. For this set of simulation, Tb = 6 s, N =
10, t0 ∼ U [0, Tb), and K = 1–300 deliveries were used. The
simulations performed were as follows: For each delivery,
the fluence E = F0/K was delivered at time tk to a phase
n. We assumed the delivery was a Poisson process, and the
interdelivery time �tk = tk−tk−1 was modeled as an expo-
nential distribution with mean of 1/λ. We simulated the in-
terval between deliveries using different 1/λ between 0 and
0.3 s, with increments of 0.01 s, where for 1/λ = 0 the de-
liveries were repeated K times at t0. These parameters re-
sulted in a mean total delivery time of 0–90 s. The number of
pulses that was delivered to each phase n (v(n)) was tallied,
and the deviation from the 4D value v′(n) = K/N [Eq. (14)]
was calculated as

∑N
n=1

∣∣v(n) − v′(n)
∣∣. For simplicity, here

we assume that all phase deviations from the 4D value would
lead to the maximum dose error. For example, if all K pulses
were delivered to a single phase, the dose error would be
�Dmax, regardless of which phase the pulses actually deliv-
ered to, and the deviation from the 4D value in this case is

N∑
n=1

∣∣v(n) − v′(n)
∣∣ =

∣∣∣∣K − K

N

∣∣∣∣ + (N − 1)

∣∣∣∣0 − K

N

∣∣∣∣
= 2K

N − 1

N
. (16)

The dose difference between the 4D dose and the dynamic
dose (�D) then can be written as a ratio to �Dmax as

�D/�Dmax =
N

N∑
n=1

∣∣v(n) − v′(n)
∣∣

2K(N − 1)
. (17)

The simulation was repeated 5000 times, and the mean dose
difference between the 4D dose and the dynamic dose as a
function of K was evaluated.

From the discussion in Sec. II.B, we can safely model the
number of deliveries to each phase n as a Poisson process with
mean ν = K/N. Note that the mean absolute deviation (MAD)
is defined as

MAD = 1

N

N∑
n=1

|xi − x| (18)

and comparing Eq. (17) with Eq. (18), Eq. (17) can be rewrit-
ten as

�D/�Dmax = N

2(N − 1)
v−1MADpoisson(v), (19)

where MADpoisson(v) is the MAD of a Poisson process with
mean v and can be calculated with23

MADpoisson(ν) = 2e−vv
v�+1


v�!
. (20)

The simulation results were compared with the calculation
with the Poisson model in Eq. (19).

We also investigated a special case of the pulsed beam,
where instead of modeling the interdelivery time �tk as an ex-
ponential distribution, a fixed interval of �t = 0.1 s was used
with all other parameters remaining the same. In this case,
each phase get the same number of deliveries every breathing
cycle (Tb, or Tb /�t deliveries), i.e., the 4D dose perfectly pre-
dict the dynamic dose, regardless of the starting phase (�D
= 0). Therefore the number of deliveries to each phase still
has a mean of K/N but is no longer a Poisson distribution.
However, we can still model the number of deliveries within
a breathing cycle as Poisson. Since the duration of each phase
is Tb / N, and during that time Tb

N
/�t consecutive pulses were

delivered to the same phase, these pulses could be combined
and viewed as one effective pulse, with magnitude of Tb

N�t
F .

The expected total effective number of combined pulses each
phase received after K deliveries therefore can be written as

veff = K

N

/(
Tb

N
/�t

)
= K�t

Tb

, (21)

or effectively, each phase got exactly one combined pulse
every breathing cycle (Tb). The expected effective number
of combined pulses received for each phase within the last
breathing cycle is the deviation from a full breathing cycle:

v′
eff = min

(
K�t(modTb)

Tb

, 1 − K�t(modTb)

Tb

)
, (22)

which can be modeled as a Poisson process for each
phase. Using the effective number of combined pulse in
Eqs. (21) and (22), the Poisson estimation of the dose error
can then be written as

�D/�Dmax = N

2(N − 1)
v−1

eff MADpoisson(v′
eff). (23)

Results of Eq. (23) were compared with the simulated mean
dose difference between the 4D dose and the dynamic dose.

II.C.3. Continuous beam simulations

The third set of simulations was designed to investigate a
“continuous beam,” where a continuous fluence was delivered
over a certain amount of time (Td). Again, suppose a fluence
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map was designed to deliver a certain fluence F0, by adjust-
ing the fluence rate E, which remains constant throughout the
delivery; this fluence could be delivered in an amount of time
Td, where

D(�x) =
K∑

k=1

∫ Td+t0(k)

t0(k)
M(E,V (�x, t))dt, (24)

E = F0/Td. (25)

Examples of the scenario are a 3D conformal field, or a seg-
ment in step-and-shoot IMRT, giving the same MU with a
different dose rate (MU/min).24

We use the 4D dose to estimate the dynamic dose:

D′(�x) = KTd

N

N∑
n=1

M(E,V (�x, n)). (26)

With Eq. (10), the maximum estimation error is

�Dmax(�x) = KTd max
j

(M(E,V (�x, j ))) − D′(�x). (27)

Next we investigated the dosimetric consequence of phase er-
ror. For this set of simulation, Tb = 6 s, Td = 0–60 s, N =
10, K1 = 1, K2 = 4, and K3 = 30 deliveries were used. The
simulations performed were as follows: the starting phase for
each delivery was an independent uniformly distributed ran-
dom variable t0(k) ∼ U [0, Tb). For each Td, after K1 (K2, K3)
deliveries, the total time in each phase n (T(n)) was tallied,
and the deviation from the 4D value T′(n) = KTd/N [Eq. (26)]
was calculated. The dose difference between the 4D dose and
the dynamic dose was calculated as a ratio to �Dmax:

�D/�Dmax =
N

N∑
n=1

|T (n) − T ′(n)|
2KTd (N − 1)

. (28)

For simplicity, here we assume that all phase deviations from
the 4D value would lead to the maximum dose error. The sim-
ulation was repeated 5000 times, and the mean dose differ-
ence between the 4D and dynamic doses as a function of K
and Td was evaluated.

Here, similar to the special case for the pulsed beam, the
effective number of deliveries for each phase could be calcu-
lated as

veff = KTd

Tb

v′
eff = min

(
KTd (modTb)

Tb

, 1 − KTd (modTb)

Tb

)
. (29)

The Poisson estimations of Eqs. (23) and (29) were compared
with the simulated mean dose difference between the 4D dose
and the dynamic dose of Eq. (28).

II.C.4. IMRT delivery time with irregular
breathing cycle

To demonstrate the effectiveness of the method established
above in a more clinical relevant setting, the delivery time
for small segments in IMRT, where 10–15 MU segments in

IMRT were observed to lead to large daily variations of the
order of 15%–35% by Seco et al.25 was investigated. A simple
solution to this problem is to increase the time of delivery
of the small segments, or in other words, decrease the dose
rate.24 However, since the patient breathing pattern could be
irregular and unknown at the time of planning, there was no
quantitative study on how the patient breathing change could
affect the dose error. For this simulation we use Eq. (28) and
the Poisson model [Eqs. (23) and (29)] to estimate the dose
error as a function of length of breathing cycle (Tb = 1–15
s), time of delivery (Td = 1, 6, 10, 30 s), which is effectively
changing the dose rate (MU/min) for a given segment with
fixed MU, and number of fractions (K = 1, 4, 30).

III. RESULTS

Figure 1 shows the results of one simulation of multiple
deliveries for a fixed time t. Figure 1(a) shows the result for
perfect repeated deliveries with fixed t0. In this scenario, for
the fixed t we select, E(t) was always delivered to phase 1. Fig-
ure 1(b) shows the result for perfect repeated deliveries with
random t0. In this scenario, the number of deliveries to each
phase converges to K/N (the black line). Figure 1(c) shows
the result for nonperfect repeated deliveries with random t0.
In this scenario, the number of deliveries to each phase also
converges to K/N.

Figure 2 shows the results of the simulations for the pulsed
beam. Figures 2(a) and 2(b) show the results for 1/λ = 0.3 s.
Figure 2(a) shows the time interval between two consecutive
deliveries, which follows the exponential distribution with
mean of 0.3 s. Figure 2(b) shows the mean of �D/�Dmax as
a function of the number of deliveries with 1/λ = 0.3 s, 30 s,
and calculation of Eq. (19) with ν = K/N. Figure 2(c) shows
the mean of �D/�Dmax as a function of K for different 1/λ.
For 1/λ = 0, or if the dose were delivered instantaneously, the
repeated delivery does not help to reduce the difference be-
tween the 4D dose and the dynamic dose, as the dose was
always delivered to only one phase. However, if the inter-
val between two pulses were increased, the estimation error
with the 4D dose would decrease as the number of deliver-
ies increased and would quickly converge to the curve shown
in Fig. 2(b), where the Poisson model predicts the dose er-
ror almost perfectly. Note the mean total delivery time is K/λ
and increased from 3 s with 1/λ = 0.01 s to 90 s with 1/λ
= 0.3 s, and 9000 s with 1/λ = 30 s. Figure 2(d) shows the
special case where instead of following an exponential dis-
tribution, �t was fixed at 0.1 s. In this case, in addition to
the general trend of decreasing error with increasing num-
ber of deliveries, the 4D dose perfectly predicts the dynamic
dose (�D = 0) when K = r*Tb/�t (total delivery time of
r*Tb), where r is an integer. The Poisson model overestimates
the dose error in this case as the numbers of deliveries for
different phases are correlated.

Figure 3 shows the results of the simulations for a continu-
ous beam. As shown in the figure, �D decreases with increas-
ing time of delivery. The one delivery curve (0–30 s) is identi-
cal to the curve shown in Fig. 2(d), suggesting that continuous
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FIG. 1. Number of deliveries of E(t) for each phase, as a function of number of deliveries. (a) Perfect repeated deliveries with fixed t0. (b) Perfect repeated
deliveries with random t0. (c) Nonperfect repeated deliveries with random t0.

beam could be viewed as a special case of pulsed beam. With
more deliveries, the �D was further decreased.

Figure 4 shows the dose error as a function of length of
breathing cycle. It can be observed that the dose error increase
with Tb when Tb > Td, and could be significantly reduced
with longer Td. For a segment with 10 MU, Td = 1 s with 600
MU/min and Td = 10 s with 60 MU/min. With the patient spe-
cific �Dmax, and other information including a generic range
of Tb, K, and the maximum allowed dose error, the result in
Fig. 4 suggests that it is feasible to calculate the necessary
time of delivery for each segment with the Poisson model.

IV. DISCUSSION

Although dynamic dose would be the representation of de-
livered dose to patient under ideal conditions, it is not avail-
able in most cases. On the other hand, with 4DCT and the
mature of deformable registration, the 4D dose calculation has
become feasible at planning stage. The purpose of our study
was to investigate the relationship between the 4D dose and
the dynamic dose, and we have shown that 4D dose is the
mean of the dynamic dose, regardless of treatment modality,
while the dynamic dose is bounded by Dmax and Dmin, which
are derived from the 4D dose. Previous dosimetric studies per-

formed for photon IMRT showed a small (2%–3%) systematic
difference between the dynamic dose and the 3D dose,3, 7, 8 up
to more than 5% for VMAT,3 and more than 10% for scanning
beam proton,9 even with fractionation. These differences are
consistent with the systematic difference between the 4D and
3D doses. Although 4D dose represents the mean of the dy-
namic dose, the delivery condition can and will deviate from
the planning condition and thus result in the dynamic dose
deviates from the 4D dose. To quantify the dose difference
between 4D dose and the dynamic dose, we also established
in this work the upper and lower bounds of the dynamic dose
by investigating the “worst case scenario” in the 4D dose. Dif-
ferent from previous works, the determination of the bounds
does not require repeated dose calculation, and therefore en-
ables patient specific quantification of the motion induced
dose uncertainty, which was not feasible with previous tech-
niques. With the establishment of Dmax and Dmin, we also able
to investigate the relationship between the number of deliver-
ies and/or delivery time with the dose error, for both pulsed
and continuous beams. For pulsed beam, without calculating
the patient dose, the result shown in Fig. 2(b) and Fig. 3 are
consistent with results for scanning proton repainting studies
(Figs. 4 and 5 in Seco et al.13) and IMRT studies (Fig. 4 in
Seco et al.25), respectively. These results confirm the validity
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FIG. 2. Mean dose error (�D) as a function of number of deliveries (k), for pulsed beam. (a) Time intervals between two deliveries (tk−tk−1), modeled as an
exponential distribution with 1/λ = 0.3 s. (b) Mean of (�D/�Dmax) for 1/λ = 0.3 (30) s with different number of deliveries. (c) Mean of (�D/�Dmax) for 1/λ
= 0–0.3 s with different number of deliveries. (d) (�D/�Dmax) for �t = 0.1 s, as a function of number of deliveries. (�D/�Dmax) as calculated with Poisson
model in Eqs. (19) and (23) were also shown in (b) and (d) with dash lines.

and generality of our study. For both pulsed and continuous
beams, the estimation error using the 4D dose, or the inter-
play effect, decreased quickly with increased treatment time
and/or number of deliveries. For continuous beam and pulsed

FIG. 3. Mean dose error (�D) as a function of time of delivery, for contin-
uous beam. Simulations with 1, 4, 30 deliveries (fractions) along with calcu-
lations with Poisson models were shown with dash lines.

beam with a constant interval between pulses, the error is also
a function of the breathing period.

The effective number of deliveries (v) for each phase was
modeled as Poisson processes, and as a result the estimation
error or interplay effect can be written as an analytical func-
tion of v [Eq. (19)] and easily calculated. The advantage of
using the Poisson model is the ability to predict the dose er-
ror without repeated calculation of dose to patient with mul-
tiple deliveries. For continuous beam, although it is easy to
analytically calculate �D of Eq. (28) for K = 1 (not shown
in this work), it is more natural to use a Poisson process to
estimate �D with multiple deliveries, with which continu-
ous beam can be viewed as a special case of pulsed beam.
As shown in Figs. 2 and 3, Poisson process nicely model the
random pulsed beam, and the fractionation of the continuous
beam. It also agrees reasonable well with the continuous beam
after considering the number of effective deliveries within
a breathing cycle. For step and shoot IMRT, we showed in
Fig. 4 that it is feasible to calculate the necessary deliver time
for each segment to achieve a maximum allowed dose error.
If this method, along with the 4D dose calculation and the
bounds, were integrated in the treatment planning system, the
motion induced dose uncertainty can then easily be quantified
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FIG. 4. Mean dose error (�D) as a function of length of breathing cycle (Tb), time of delivery (Td), and number of fractions: (a) 1 fraction, (b) 4 fractions, and
(c) 30 fractions. Poisson models for each scenario are also shown in dash lines. Legend in (c) valid for (a)–(c).

and minimized at the time of treatment planning for any pa-
tient with 4DCT studies. While the current work focused on
the physics aspect of our method, the clinical and implemen-
tation aspect of the method will be discussed in a follow-up
paper.

Although the magnitude of motion is not explicitly
included in our formulation, it is obvious that with no patient
motion, the dynamic (and 4D) dose will collapse to the
3D static dose. However, with a larger magnitude of tumor
motion, the dose difference between different phases would
increase, which may lead to increased difference between
dynamic (and 4D) and 3D static doses.4, 12 Gating,26 for ex-
ample, is one way to reduce the effective magnitude of tumor
motion. With the establishment of the maximum difference
between dynamic dose and 4D dose in Eq. (10), it is possible
not only to optimize the 4D dose to ensure coverage and
normal tissue sparing but also to minimize the �Dmax and
thus reduce the patient dose uncertainty due to the interplay
effect. Although the difference between the 4D and 3D doses
was fairly small (2%-3%) and regardless of the tumor motion
for most IMRT and VMAT treatments (and 3D static dose has
often been used to approximate the 4D dose and the dynamic
dose),7, 8, 10 4D optimization with minimizing �Dmax for
IMRT could still potentially further reduce the dose to normal
tissue and improve target coverage.18, 19 4D optimization
and dose calculation should be the preferred technique for
scanning beam proton because of the larger error with 3D

static dose calculation.4, 9, 13, 20, 21 However, the optimization
process is highly modality dependent and therefore is not
discussed in this paper.

We assume there were no residual motions within each
phase of the 4DCT and that the dose calculation of the 4D
dose was accurate within each phase. These assumptions are
patient dependant and heavily depend on the image quality
of the 4DCT. Therefore it is important to improve the image
quality and reduce artifacts in 4DCT (Refs. 27 and 28) to im-
prove the 4D dose calculation accuracy. Although we have
included breathing pattern change in our results, we assume
the planning 4DCT being a good representation of the patient
anatomy and breathing amplitude throughout the treatment,
which may not be true and repeated volumetric images may
still be necessary to detect anatomy changes. Biological ef-
fect of the dose average of 4D dose, which was done in frac-
tionated treatment, has not been considered, and may require
further investigation.

V. CONCLUSION

Dynamically accumulated dose will converge to the 4D ac-
cumulated dose after multiple deliveries, regardless of treat-
ment modality and delivery properties. Bounds of the dy-
namic dose were established with 4D dose calculation, and a
Poisson model was developed to quantify the motion induced
dose uncertainties as a function of time.
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