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Abstract
Most theories of categorization emphasize how continuous perceptual information is mapped to
categories. However, equally important is the informational assumptions of a model, the type of
information subserving this mapping. This is crucial in speech perception where the signal is
variable and context-dependent. This study assessed the informational assumptions of several
models of speech categorization, in particular, the number of cues that are the basis of
categorization and whether these cues represent the input veridically or have undergone
compensation. We collected a corpus of 2880 fricative productions (Jongman, Wayland & Wong,
2000) spanning many talker- and vowel-contexts and measured 24 cues for each. A subset was
also presented to listeners in an 8AFC phoneme categorization task. We then trained a common
classification model based on logistic regression to categorize the fricative from the cue values,
and manipulated the information in the training set to contrast 1) models based on a small number
of invariant cues; 2) models using all cues without compensation, and 3) models in which cues
underwent compensation for contextual factors. Compensation was modeled by Computing Cues
Relative to Expectations (C-CuRE), a new approach to compensation that preserves fine-grained
detail in the signal. Only the compensation model achieved a similar accuracy to listeners, and
showed the same effects of context. Thus, even simple categorization metrics can overcome the
variability in speech when sufficient information is available and compensation schemes like C-
CuRE are employed.

1. Categorization and Information
Work on perceptual categorization encompasses diverse domains like speech perception,
object identification, music perception and face recognition. These are unified by the insight
that categorization requires mapping from one or more continuous perceptual dimensions to
a set of meaningful categories, and it is often assumed that the principles governing this may
be common across domains (e.g., Goldstone & Kersten, 2003; though see Medin, Lynch &
Solomon, 2000).

The most important debates concern the memory representations used to distinguish
categories, contrasting accounts based on boundaries (e.g., Ashby & Perrin, 1988),
prototypes (e.g., Homa, 1984; Posner & Keele, 1968; Reed, 1972), and sets of exemplars
(Hintzman, 1986; Medin & Schafer, 1978; Nosofsky, 1986). Such representations are used
to map individual exemplars, described by continuous perceptual cues, onto discrete
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categories. But these are only part of the story. Equally important for any specific type of
categorization (e.g. speech categorization) is the nature of the perceptual cues.

There has been little work on this within research on categorization. What has been done
emphasizes the effect of categories on perceptual encoding. We know that participants’
categories can alter how individual cue-values along dimensions like hue are encoded
(Hansen, Olkkonen, Walter & Gegenfurtner, 2006; Goldstone, 1995). For example, a color
is perceived as more yellow in the context of a banana than a pear. Categories may also
warp distance within a dimension as in categorical perception (e.g. Liberman, Harris,
Hofffman & Griffith, 1957; Goldstone, Lippa & Shiffrin, 2001) though this has been
controversial (Massaro & Cohen, 1983; Schouten, Gerrits & Van Hessen, 2003; Roberson,
Hanley & Pak, 2009; Toscano, McMurray, Dennhardt & Luck, 2010). Finally, the
acquisition of categories can influence the primitives or dimensions used for categorization
(Schyns & Rodet, 1997; Oliva & Schyns, 1997).

While there has been some work examining how categories affect continuous perceptual
processing, there has been little work examining the other direction, whether the type of
information that serves as input to categorization matters. Crucially, does the nature of the
perceptual dimensions constrain or distinguish theories of categorization? In fact, some
approaches (e.g. Soto & Wasserman, 2010) argue that we can understand much about
categorization by abstracting away from the specific perceptual dimensions.

Nonetheless, we cannot ignore this altogether. Smits, Jongman and Sereno (2006), for
example, taught participants auditory categories along either resonance-frequency or
duration dimensions. The distribution of the exemplars was manipulated to contrast
boundary-based, prototype and statistical accounts. While boundaries fit well for frequency
categories, duration categories required a hybrid of boundary and statistical accounts. Thus,
the nature of the perceptual dimension may matter for distinguishing theoretical accounts of
categorization.

Beyond the matter of the cue being encoded, a second issue, and the focus of this study, is
whether and how perceptual cues are normalized during categorization. Perceptual cues are
affected by multiple factors, and it is widely, though not universally, accepted that that
perceptual systems compensate for these sources of variance. For example, in vision, to
correctly perceive hue, observers compensate for light-source (McCann, McKee & Taylor,
1976); in music, pitch is computed relative to a tonic note (relative pitch); and in speech,
temporal cues like duration may be calibrated to the speaking rate (Summerfield, 1981),
while pitch is computed relative to the talker’s pitch range (Honorof & Whalen, 2005).

Many theories of categorization do not address the relationship between compensation and
categorization. Compensation is often assumed to be a low-level autonomous process
occurring prior to and independently of categorization (though see Mitterer & de Ruiter,
2008). Moreover, in laboratory learning studies, it doesn’t matter whether perceptual cues
undergo compensation. Boundaries, prototypes and exemplars can be constructed with either
type of information, and most experiments control for factors that demand compensation
like lighting.

However, there are conditions under which such assumptions are unwarranted. First, if the
input dimensions were context-dependent and categorization was difficult, compensation
could make a difference in whether a particular model of categorization could classify the
stimuli with the same accuracy as humans. This is unlikely to matter in laboratory-learning
tasks where categorization is relatively unambiguous, but it may be crucial for real-life
category systems like speech in which tokens can not always be unambiguously identified.
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Here, a model’s accuracy may be as much a product of the information in the input as the
nature of the mappings.

Second, if compensation is a function of categorization we cannot assume autonomy. Color
constancy, for example, is stronger at hue values near category prototypes (Kulikowski &
Vaitkevicius, 1997). In speech, phonemes surrounding a target phoneme affect the same
cues, such that the interpretation of a cue for one phoneme may depend on the category
assigned to others (Pisoni & Sawusch, 1974; Whalen, 1989; Smits, 2001a,b; Cole,
Linebaugh, Munson & McMurray, 2010; though see Nearey, 1990). Such bidirectional
effects imply that categorization and compensation are not independent and models of
categorization must account for both, something that few models in any domain have
considered (though see Smits, 2001a,b).

Finally, and perhaps most importantly, some theories of categorization make explicit claims
about the nature of the information leading to categorization. In vision, Gibsonian
approaches (Gibson, 1966) and Geon theory (e.g. Biederman, 1995) posit invariant cues for
object recognition; while in speech perception, the theory of acoustic invariance (Stevens &
Blumstein, 1978; Blumstein & Stevens, 1980; Lahiri, Gewirth & Blumstein, 1984) and
quantal theory (Stevens, 2002; Stevens & Keyser, 2010) posit invariant cues for some
phonetic distinctions (cf., Sussman, Fruchter, Hilbert& Sirosh, 1998). Other approaches
such as the version of exemplar theory posited in speech explicitly claim that while there
may be no invariant perceptual cues, category representations can cope with this without
normalization (e.g. Pisoni, 1997). In such theories, normalization prior to categorization is
not necessary, and this raises the possibility that normalization does not occur at all as part
of the categorization process.

Any theory of categorization can be evaluated on two levels: the mechanisms which
partition the perceptual space, and the nature of the perceptual space. This latter construct
refers to the informational assumptions of a theory and is logically independent from the
categorization architecture. For example, one could build a prototype theory on either raw or
normalized inputs, and exemplars could be represented in either format. In Marr’s (1982)
levels of analysis, the informational assumptions of a theory can be seen as part of the first,
computational level of analysis, where the problem is defined in terms of input/output
relationships, while the mechanism of categorization may be best described at the
algorithmic level. However, when the aforementioned conditions are met, understanding the
informational assumptions of a theory may be crucial for evaluating it. Contrasting with
Marr, we argue that levels of analysis may constrain each other: one must properly
characterize a problem to distinguish solutions.

Speech perception presents a compelling domain in which to examine these issues, as all of
the above conditions are met. Thus, the purpose of this study is to evaluate the informational
assumptions of several approaches to speech categorization, and to ask what kind of
information is necessary to support listener-like categorization. This was done by collecting
a large dataset of measurements on a corpus of speech tokens, and manipulating the input to
a series of categorization models to determine what informational structure is necessary to
obtain listener-like performance. While our emphasis is on theories of speech perception,
consistent with a history of work relating speech categories to general principles of
categorization1, this may also uncover principles that are relevant to categorization more
broadly.

The remainder this introduction will discuss the classic problems in speech perception, and
the debate over normalization. We then present a new approach to compensation which
addresses concerns about whether fine-grained acoustic detail is preserved. Finally, we
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describe the speech categories we investigated, the eight fricatives of English. Section 2
presents the empirical work that is the basis of our modeling: a corpus of 2880 fricatives,
with measurements of 24 cues for each, and listeners’ categorization for a subset of them.
Sections 3 and 4 then present a series of investigations in which the input to a standard
categorization model is manipulated to determine which informational account best yields
listener-like performance.

1.1 The Information Necessary for Speech Perception
Speech perception is increasingly being described as a problem of mapping from continuous
acoustic cues to categories (e.g. Oden & Massaro, 1978; Nearey, 1997; Holt & Lotto, 2010).
We take a relatively theory-neutral approach to what a cue is, defining a cue as a specific
measurable property of the speech signal that can potentially be used to identify a useful
characteristic like the phoneme category or the talker. Our use of this term is not meant to
imply that a specific cue is actually used in speech perception, or that a given cue is the
fundamental property that is encoded during perception. Cues are merely a convenient way
to measure and describe the input.

A classic framing in speech perception is the problem of lack of invariant cues in the signal
for categorical distinctions like phonemes. Most speech cues are context-dependent and
there are few, if any, that invariantly signal a given phonetic category. There is debate on
how to solve this problem (e.g. Fowler, 1996; Ohala, 1996; Lindblom, 1996) and about the
availability of invariant cues (e.g. Blumstein & Stevens, 1980; Lahiri et al., 1984; Sussman
et al, 1998). But there is little question that this is a fundamental issue that theories of speech
perception must address. Thus, the information in the signal to support categorization is of
fundamental importance to theories of speech perception.

As a result of this, a common benchmark for theories of speech perception accuracy, the
ability to separate categories. This benchmark is applied to complete theories (e.g. Johnson,
1997; Nearey, 1990; Maddox, Molis & Diehl, 2002; Smits, 2001a; Hillenbrand & Houde,
2003), and even to phonetic analyses of particular phonemic distinctions (e.g., Stevens &
Blumstein, 1978; Blumstein & Stevens, 1980, 1981; Forrest, Weismer, Milenkovic &
Dougall, 1988; Jongman, Wayland & Wong, 2000; Werker et al, 2007). The difficulty
attaining this benchmark means that sometimes accuracy is all that is needed to validate a
theory. Thus, speech meets our first condition: categorization is difficult and the information
available to it matters.

Classic approaches to the lack of invariance problem posited normalization or compensation
processes for coping with specific sources of variability. In speech, normalization is
typically defined as a process that factors out systematic but phonologically non-distinctive
acoustic variability (e.g. systematic variability that does not distinguish phonemes) for the
purposes of identifying phonemes or words. Normalization is presumed to operate on the
perceptual encoding prior to categorization and classic normalization processes include rate

1There is a long history of empirical work showing striking commonalities between speech perception and other domains of
perceptual categorization. Most famously, categorical perception is seen in the perception of speech (Liberman, Harris, Hoffman &
Griffith, 1957), color (Bornstein & Korda, 1984), and faces (Beale & Keil, 1995) (to name a few); and the later refutations of
categorical perception (e.g. Schouten, Gerrits & Van Hessen, 2003; Toscano, McMurray, Dennhardt & Luck, 2010) have also been
observed in color (Roberson, Hanley & Pak, 2009; Roberson & Davidoff, 2000) and faces (Roberson & Davidoff, 2000). Prototype
effects are seen in both dot patterns (Posner & Keele, 1968) and speech categories (Miller & 1997) (among many other domains).
Effects of top-down expectations can be observed in color categorization (Mitterer & de Ruiter, 2008), and speech (Ganong, 1980),
though they may work differently in music (McMurray, Dennhardt & Struck-Marcel, 2008c). Finally, evidence for a graded
competition between categories can be seen in both speech (McMurray, Aslin, Tanenhaus, Spivey & Subik, 2008a) and color
perception (Huette & McMurray, 2009). Perhaps most importantly, many of the models of categorization in speech rely on similar
principles to categorization in non-speech, principles like exemplar encoding (Goldinger, 1998), or prototypes (Miller, 1997), and
many of the same models have been applied to both speech and non-speech problems (e.g. Oden & Massaro, 1978; Goldinger, 1998).
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(e.g., Summerfield, 1981) and talker (Nearey, 1978; see chapters in Johnson & Mullenix,
1997) normalization. Not all systematic variability is non-phonological, however: the
acoustic signal at any point in time is always affected by the preceding and subsequent
phonemes, due to a phenomenon known as coarticulation (e.g., Delattre, Liberman &
Cooper, 1955; Öhman, 1966; Fowler & Smith, 1986; Cole et al., 2010). As a result, the term
compensation has often been invoked as a more general term to describe both normalization
(e.g. compensating for speaking rate) and processes that cope with coarticulation (e.g. Mann
& Repp, 1981). While normalization generally describes processes at the level of perceptual
encoding, compensation can be accomplished either pre-categorically or as part of the
categorization process (e.g. Smits, 2001b). Due to this greater generality, we use the term
compensation throughout this paper.

A number of studies show that listeners compensate for coarticulation in various domains
(e.g. Mann & Repp, 1981; Pardo & Fowler, 1997; Fowler & Brown, 2000). Crucially, the
fact that portions of the signal are affected by multiple phonemes raises the possibility that
how listeners categorize one phoneme may affect how subsequent or preceding cues are
interpreted. For example, consonants can alter the formant frequencies listeners use to
categorize vowels (Öhman, 1966). Do listeners compensate for this variability, by
categorizing the consonant and then interpret the formant frequencies differently on the
basis of the consonant? Or, do they compensate for coarticulation by tracking low-level
contingencies between the cues for consonants and vowels or higher level contingencies
between phonemes? Studies on this offer conflicting results (Mermelstein, 1978; Whalen,
1989; Nearey, 1990; Smits, 2001a).

Clearer evidence for such bidirectional processes comes from work on talker identification.
Nygaard, Sommers and Pisoni (1994), for example, showed that learning to classify talkers
improves speech perception, and a number of studies suggest that visual cues about a
talker’s gender affect how auditory cues are interpreted (Strand, 1999; Johnson, Strand &
D’Imperio, 1999). Thus, interpretation of phonetic cues may be conditioned on judgments of
talker identity. As a whole, then, there is ample interest, and some evidence that
compensation and categorization are interactive, the second condition under which
informational factors are important for categorization.

Compensation is not a given however. Some forms of compensation may not fully occur
prior to lexical access. Talker voice, or indexical, properties of the signal (which do not
contrast individual phonemes and words) affects a word’s recognition (Creel, Aslin &
Tanenhaus, 2008; McLennan & Luce, 2005) and memory (Palmeri, Goldinger & Pisoni,
1993; Bradlow, Nygaard & Pisoni, 1999). Perhaps most tellingly, speakers’ productions
gradually reflect indexical detail in auditory stimuli they are shadowing (Goldinger, 1998),
suggesting that such detail is part of the representations that mediate perception and
production. Thus, compensation for talker voice is not complete—indexical factors are not
(completely) removed from the perceptual representations used for lexical access and may
even be stored with lexical representations (Pisoni, 1997). This challenges the necessity of
compensation as a precursor to categorization.

Thus, informational factors are essential to understanding speech categorization: the signal
is variable and context-dependent; compensation may be dependent on categorization, but
may also be incomplete. As a result, it is not surprising that some theories of speech
perception make claims about the information necessary to support categorization.

On one extreme, although many researchers have abandoned hope of finding invariant cues
(e.g. Ohala, 1996; Lindblom, 1996), for others, the search for invariance is ongoing. A
variety of cues have been examined, such as burst onset spectra (Blumstein & Stevens,

McMurray and Jongman Page 5

Psychol Rev. Author manuscript; available in PMC 2012 December 17.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



1981; Kewley-Port & Luce, 1984), or locus equations for place of articulation in stop
consonants, (Sussman et al, 1998; Sussman & Shore, 1996), and duration ratios for voicing
(e.g. Port & Dalby, 1982; Pind, 1995). Most importantly, Quantal Theory (Stevens, 2002;
Stevens & Keyser, 2010) posits that speech perception harnesses specific invariant cues for
some contrasts (particularly manner of articulation, e.g., the b/w distinction). Invariance
views, broadly construed, then, make the informational assumptions that 1) a small number
of cues should suffice for many types of categorization; and 2) compensation is not required
to harness them.

On the other extreme, exemplar approaches (e.g., Johnson, 1997; Goldinger, 1998;
Pierrehumbert, 2001, 2003; Hawkins, 2003) argue that invariant cues are neither necessary
nor available. If the signal is represented faithfully and listeners store many exemplars of
each word, context-dependencies can be overcome without compensation. Each exemplar in
memory is a holistic chunk containing both the contextually conditioned variance and the
context, and is matched in its entirety to incoming speech. Because of this, compensation is
not needed and may impede listeners by eliminating fine-grained detail that helps sort things
out (Pisoni, 1997). Broadly construed, then, exemplar approaches make the informational
assumptions that 1) input must be encoded in fine-grained detail with all available cues; and
2) compensation or normalization does not occur.

Finally, in the middle, lie a range of theoretical approaches that do not make strong
informational claims. For lack of a better term, we call these cue-integration approaches, and
they include the Fuzzy Logical Model, FLMP (Oden, 1978; Oden & Massaro, 1978), the
Normalized a Posteriori Probability model, NAPP (Nearey, 1990), the Hierarchical
Categorization of coarticulated phonemes, HICAT (Smits, 2001a,b), statistical learning
models (McMurray, Aslin & Toscano, 2009a; Toscano & McMurray, 2010), and
connectionist models like TRACE (Elman & McClelland, 1986). Most of these can be
characterized as prototype models, though they are also sensitive to the range of variation.
All assume that multiple (perhaps many) cues participate in categorization, and that these
cues must be represented more or less veridically. However, few make strong claims about
whether explicit compensation of some form occurs (although many implementations use
raw cue-values for convenience). In fact, given the high-dimensional input, normalization
may not be needed—categories may be separable with a high-dimensional boundary in raw
cue-space (e.g., Nearey, 1997) and these models have been in the forefront of debates as to
whether compensation for coarticulation is dependent on categorization (e.g., Nearey, 1990,
1992, 1997; Smits, 2001a,b). Thus it is an open question whether compensation is needed in
such models.

Across theories, two factors describe the range of informational assumptions. Invariance
accounts can be distinguished from exemplar and cue-integration accounts on the basis of
number of cues (and their invariance). The other factor is whether cues undergo
compensation or not. On this, exemplar and invariance accounts argue that cues do not
undergo explicit compensation, while cue-integration models appear more agnostic. Our
goal is to contrast these informational assumptions using a common categorization model.
However, this requires a formal approach to compensation, which is not currently available.
Thus, the next section describes several approaches to compensation and elaborates a new,
generalized approach which builds on their strengths to offer a more general and formally
well-specified approach based on Computing Cues Relative to Expectations (C-CuRE).

1.2 Normalization, Compensation and C-CuRE
Classic normalization schemes posit interactions between cues that allow the perceptual
system to remove the effects of confounding factors like speaker and rate. These are bottom-
up processes motivated by articulatory relationships and signal processing. Such accounts
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are most associated with work on vowel categorization (e.g., Rosner & Pickering, 1994;
Hillenbrand & Houde, 2003), though to some extent complex cue-combinations like locus
equations (Sussman et al., 1998) or CV ratios (Port & Dalby, 1982), also fall under this
framework. Such approaches offer concrete algorithms for processing the acoustic signal,
but they have not led to broader psychological principles for compensation.

Other approaches emphasize principles at the expense of computational specificity. Fowler’s
(1984; Fowler & Smith, 1986; Pardo & Fowler, 1997) gestural parsing posits that speech is
coded in terms of articulatory gestures, and that overlapping gestures are parsed into
underlying causes. So for example, when a partially nasalized vowel precedes a nasal stop,
the nasality gesture is assigned to the stop (a result of anticipatory coarticulation), since
English does not use nasalized vowels contrastively (as does French), and the vowel is
perceived as more oral (Fowler & Brown, 2000). As part of direct realist accounts, gestural
parsing only compensates for coarticulation—the initial gestural encoding overcomes
variation due to talker and rate.

Gow (2003) argues that parsing need not be gestural. His feature-cue parsing suggests that
similar results can be achieved by grouping principles operating over acoustic features. This
too has been primarily associated with coarticulation—variation in talker and/or rate is not
discussed. However, the principle captured by both accounts is that by grouping overlapping
acoustic cues or gestures, the underlying properties of the signal can be revealed (Ohala,
1981).

In contrast, Kluender and colleagues argue that low-level auditory mechanisms may do
some of the work of compensation. Acoustic properties (like frequency) may be interpreted
relative to other portions of the signal: a 1000 Hz tone played after a 500 Hz tone will sound
higher than after an 800 Hz tone. This is supported by findings that non-speech events (e.g.
pure tones) can create seemingly compensatory effects on speech (e.g. Lotto & Kluender,
1998, Holt, 2006; Kluender, Coady & Kiefte, 2003; though see Viswanathan, Fowler, &
Magnuson, 2009). Thus, auditory contrast, either from other events in the signal or from
long-term expectations about cues (Kluender et al, 2003) may alter the information available
in the signal.

Parsing and contrast accounts offer principles that apply across many acoustic cues,
categories and sources of variation. However, they have not been formalized in a way that
permits a test of the sufficiency of such mechanisms to support categorization of speech
input. All three accounts also make strong representational claims (articulatory vs. auditory),
and a more general approach to compensation may be more useful (Ohala, 1981).

In developing a principled, yet computationally specific approach to compensation, one final
concern is the role of fine phonetic detail. Traditional approaches to normalization assumed
bottom-up processes that operate autonomously to clean up the signal before categorization,
stripping away factors like talker or speaking rate2. However, research shows that such
seemingly irrelevant detail is useful to phonetic categorization and word recognition. Word
recognition is sensitive to within-category variation in voice onset time (Andruski,
Blumstein & Burton, 1994; McMurray et al, 2002, 2008a), indexical detail (Creel et al,
2005, Goldinger, 1998), word-level prosody (Salverda, Dahan & McQueen, 2003),
coarticulation (Marslen-Wilson & Warren, 1994; Dahan, Magnuson, Tanenhaus & Hogan,
2001), and alternations like reduction (Connine, 2004; Connine, Ronbom & Patterson, 2008)

2Such accounts did not imply that such factors were eliminated from every level of encoding; rather that they are stripped away from
encodings used during phonetic categorization. Indexical variation, for example, would be posited to be eliminated in the
representations that support phonological categorization while still being available to support speaker identification.
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and assimilation (Gow, 2003). In many of these cases, such detail facilitates processing by
allowing listeners to anticipate upcoming material (Martin & Bunnel, 1981, 1982; Gow,
2001, 2003), resolve prior ambiguity (Gow, 2003; McMurray, Tanenhaus & Aslin, 2009b)
and disambiguate words faster (Salverda et al, 2003). Such evidence has led some to reject
normalization altogether in favor of exemplar approaches (e.g. Pisoni, 1997; Port, 2007)
which preserve continuous detail.

What is needed is a compensation scheme which is applicable across different cues and
sources of variance, is computationally well-specified, and can retain and harness fine-
grained acoustic detail. Cole et al. (2010; McMurray, Cole & Munson, in press) introduced
such a scheme in an analysis of vowel coarticulation; we develop it further as a more
complete account of compensation. This account, Computing Cues Relative to Expectations
(C-CuRE), combines grouping principles from parsing accounts with the relativity of
contrast accounts.

Under C-CuRE, incoming acoustic cues are initially encoded veridically, but as different
sources of variance are categorized, cues are recoded in terms of their difference from
expected values. Consider a stop-vowel syllable. The fundamental frequency (F0) at the
onset of the vowel is a secondary cue for voicing. In the dataset we describe here, F0 at
vowel onset had a mean of 149 Hz for voiced sounds and 163 Hz for voiceless ones, though
it was variable (SDvoiced=43.2; SDvoiceless=49.8). Thus F0 is informative for voicing, but
any given F0 is difficult to interpret. An F0 of 154 Hz, for example, could be high for a
voiced sound or low for a voiceless one. However once the talker is identified (on the basis
of other cues or portions of the signal) this cue may become more useful. If the talker’s
average F0 was 128 Hz, then the current 154 Hz is 26 Hz higher than expected and likely the
result of a voiceless segment. Such an operation removes the effects of talker on F0 by
recoding F0 in terms of its difference from the expected F0 for that talker, making it more
useful for voicing judgments.

C-CuRE is similar to both versions of parsing in that it partials out influences on the signal
at any time point. It also builds on auditory-contrast approaches by positing that acoustic
cues are coded as the difference from expectations. However, it is also more general than
these theories. Unlike gestural and feature-cue parsing, talker is parsed from acoustic cues
the same way coarticulation is; unlike contrast accounts, expectations can be based on
abstractions and there is an explicit role for categorization (phonetic categories, talkers, etc.)
in compensation.

C-CuRE is straightforward to implement using linear regression. To do this, first a
regression equation is estimated predicting the cue-value from the factor(s) being parsed out,
for example, F0 as a function of talker gender. Next, for any incoming speech token, this
formula is used to generate the expected cue-value given what is known (e.g., if the speaker
is known), and the actual cue value is subtracted from it. The residual becomes the estimate
of contrast or deviation from expectations. In terms of linear regression, then, parsing in the
C-CuRE framework separates the variance in any cue into components and uses the
regression formula to generate expectations on which the remaining variance can be used to
do perceptual work.

When the independent factors are dichotomous (e.g. male/female), the regression predictions
will be based on the cell means of each factor. This could lead to computational
intractability if the regression had to capture all combinations of factors. For example, a
vowel’s first formant frequency (F1) is influenced by the talker’s gender, the voicing of
neighboring consonants, and the height of the subsequent vowel. If listeners required cell-
means of the four-way <talker> × <initial voicing> × <final voicing> × <vowel height>
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contrast to generate expectations it is unlikely that they could track all of the possible
combinations of influences on a cue. However, Cole et al (2010; McMurray et al, in press)
demonstrated that by performing the regression hierarchically (e.g., first partialing out the
simple effect of talker, then the simple effect of voicing, then vowel height, and so on),
substantial improvements can be made in the utility of the signal using only simple effects,
without needing higher-order interactions.

In sum, C-CuRE offers a somewhat new approach to compensation that is computationally
well specified, yet principled. It maintains a continuous representation of cue values and
does not discard variation due to talker, coarticulation and the like. Rather C-CuRE
capitalizes on this variation to build representations for other categories. It is neutral with
respect to whether speech is auditory or gestural, but consistent with principles from both
parsing approaches, and with the notion of contrast in auditory contrast accounts. Finally, C-
CuRE explicitly demands a categorization framework: compensation occurs as the
informational content of the signal is interpreted relative to expectations driven by
categories.

The goal of this project is to evaluate the informational assumptions of theories of speech
categorization in terms of compensated vs. uncompensated inputs, a question at the
computational level (Marr, 1982). Testing this quantitatively requires that we assume a
particular form of compensation, a solution properly described at the algorithmic level, and
existing forms of compensation do not have the generality or computational specificity to be
applied. C-CuRE offers such a general, yet implementable compensation scheme and as a
result, our test of compensation at the information level also tests this specific processing
approach.

Such a test has only been examined in limited form by Cole et al (2010). This study used
parsing in the C-CuRE framework to examine information used to anticipate upcoming
vowels, and did not examine compensation for variance in a target segment. It showed that
the recoding of formant values as the difference from expectations on the basis of talker and
intervening consonant was necessary to leverage coarticulatory information for anticipating
upcoming vowels. This validated C-CuRE’s ability to harness fine-grained detail, but did
not address its generality as only two cues were examined (F1 and F2); these cues were
similar in form (both frequencies); only a small number of vowels were used; and results
were not compared to listener data. Thus, it is an open question as to how well C-CuRE
scales to dozens of cues representing different signal components (e.g. amplitudes, durations
and frequencies) in the context of a larger set of categories, and it is unclear whether its
predictions match listeners.

1.3 Logic and Overview
Our goal is to contrast three informational accounts: 1) that a small number of invariant cues
distinguishes speech categories; 2) that a large number of cues is sufficient without
compensation; and 3) that compensation must be applied. To accomplish this, we measured
a set of cues from a corpus of speech sounds, and used them to train a generic categorization
model. This was compared to listener performance on a subset of that corpus. By
manipulating the cues available to the model and whether or not compensation was applied,
we assessed the information required to yield listener performance.

One question that arises is which phonemes to use. Ideally, they should be difficult to
classify, as accuracy is likely to be a distinguishing factor. There should also be a large
number of categories for a more realistic test. For a fair test, the categories should have a
mix of cues in which some have been posited to be invariant and others more contextually
determined. Finally, C-CuRE suggests that the ability to identify context (e.g. the
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neighboring phoneme) underlies compensation. Thus, during perceptual testing, it would be
useful to be able to separate the portion of the stimulus that primarily cues the phoneme
categories of interest from portions that primarily cue contextual factors. The fricatives of
English meet these criteria.

1.4 Phonetics of Fricatives
English has eight fricatives created by partially obstructing the airflow through the mouth
(see Table 1). They are commonly defined by three phonological features: sibilance, place of
articulation and voicing. There are four places of articulation, each of which can be either
voiced or voiceless. Fricatives produced at the alveolar ridge (/s/ or /z/ as in sip and zip) or
at the post-alveolar position (/∫/ as in ship or /ʒ/ as in genre) are known as sibilants due to
their high-frequency spectra; labiodental (/f/ or /v/ as in face and vase) and interdental
fricatives (/θ/ or /ð/ as in think and this) are non-sibilants. The fact that there are eight
categories makes categorization a challenging but realistic problem for listeners and models.
As a result, listeners are not at ceiling even for naturally produced unambiguous tokens
(LaRiviere, Winitz & Herriman, 1975; You, 1979; Jongman, 1989; Tomiak, 1990; Balise &
Diehl, 1994), particularly for the non-sibilants (/f, v, θ, ð/) where accuracy estimates range
from 43% to 99%.

Fricatives are signaled by a large number of cues. Place of articulation can be distinguished
by the four spectral moments (mean, variance, skew and kurtosis of the frequency spectrum
of the frication) (Forrest, et al., 1988; Jongman, et al., 2000), and by spectral changes in the
onset of the subsequent vowel, particularly the second formant (Jongman et al, 2000;
Fowler, 1994). Duration and amplitude of the frication are related to place of articulation,
primarily distinguishing sibilants from non-sibilants (Behrens & Blumstein, 1988; Baum &
Blumstein, 1987; Crystal & House, 1988; Jongman et al., 2000; Strevens, 1960). Voicing is
marked by changes in duration (Behrens & Blumstein, 1988; Baum & Blumstein, 1987;
Jongman et al., 2000) and spectral properties (Stevens, Blumstein, Glicksman, Burton, &
Kurowski, 1992; Jongman et al, 2000). Thus, there are large numbers of potentially useful
cues.

This offers fodder for distinguishing invariance and cue-integration approaches on the basis
of the number of cues, and across fricatives we see differences in the utility of a small
number of cues. The four sibilants (/s, z, ∫, ʒ/ can be distinguished at 97% by just the four
spectral moments (Forrest et al, 1988). Thus, an invariance approach may be sufficient for
sibilants. On the other hand, most studies have failed to find any single cue that
distinguishes non-sibilants (/f, v, θ, ð/) (Maniwa, Jongman & Wade, 2008, 2009; though see
Nissen & Fox, 2005), and Jongman et al.’s (2000) discriminant analysis using 21 cues only
achieved 66% correct. Thus, non-sibilants may require many information sources, and
possibly compensation.

In this vein, virtually all fricative cues are dependent on context including talker identity
(Hughes & Halle, 1956; Jongman et al, 2000), the adjacent vowel (Soli, 1981; Jongman et
al, 2000; LaRiviere et al., 1975; Whalen, 1981) and socio-phonetic factors (Munson, 2007;
Munson et al, 2006; Jongman, Wang & Sereno, 2000). This is true even for cues like
spectral moments that have been posited to be relatively invariant.

Thus, fricatives represent an ideal platform for examining the informational assumptions of
models of speech categorization. They are difficult to categorize, and listeners can
potentially utilize a large number of cues to do so. Both invariant and cue-combination
approaches may be appropriate for some fricatives, but the context dependence of many, if
not all cues, raises the possibility that compensation is necessary. Given the large number of
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cues, it is currently uncertain what information will be required for successful
categorization.

1.5 Research Design
We first collected a corpus of fricative productions and measured a large set of cues in both
the frication and vocalic portion of each. Next, we presented a subset of this corpus to
listeners in an identification experiment with and without the vocalic portion. While this
portion contains a number of secondary cues to fricative identity, it is also necessary for
accurate identification of the talker (Lee, Dutton & Ram, 2010) and vowel, which is
necessary for compensating in the C-CuRE framework. The complete corpus of
measurements, including the perceptual results, is available in the online supplement.
Finally, we implemented a generic categorization model using logistic regression (see also
Cole et al, 2010; McMurray et al, in press), which is inspired by Nearey’s (1990, 1997)
NAPP model and Smits’ (2001a,b) HICAT model. This model was trained to predict the
intended production (not listeners’ categorizations, as in NAPP and some versions of
HICAT) from particular sets of cues in either raw form or after parsing. The model’s
performance was then compared to listeners’ to determine what informational structure is
needed to create their pattern of responding. This was used to contrast three informational
accounts distinguished by the number of cues and the presence or absence of compensation.

2.0 Empirical Work
2.1 The Corpus

The corpus of fricatives for this study was based on the recordings and measurements of
Jongman et al (2000) with additional measurements of ten new cues on these tokens.

2.1.1 Methods and Measurements—Jongman et al (2000) analyzed 2873 recordings of
the 8 English fricatives /f, v, θ, ð, s, z, ∫, ʒ/. Fricatives were produced in the initial position
of a CVC syllable in which the vowel was /i, e, æ, ɑ, o, u/, and the final consonant was /p/.
Twenty speakers (10 female) produced each CVC three times in the carrier phrase “Say ___
again”. This led to 8 (fricatives) × 6 (vowels) × 3 (repetitions) × 20 (speakers), or 2880
tokens, of which 2873 were analyzed. All recordings were sampled at 22 kHz (16 bit
quantization, 11 kHz low-pass filter). The measurements reported here are all of the original
measurements of Jongman et al. (2000, the JWW database)3, although some cues were
collapsed (e.g. spectral moments at two locations). We also measured 10 new cues from
these tokens to yield a set of 24 cues for each fricative. A complete list is shown in Table 2,
and Figure 1 shows a labeled waveform and spectrogram of a typical fricative recording.
Details on the measurements of individual cues and the transformations applied to them can
be found in Appendix A.

We deliberately left out compound or relative cues (based on two measured values) like
locus equations or duration ratios to avoid introducing additional forms of compensation
into our dataset. We did include the independent measurements that contribute to such cues
(e.g. duration of the vowel and consonant separately). Compound cues are discussed (and
modeled in a similar framework) in the Online Supplement, Note #6.

The final set of 24 cues represents to the best of our knowledge all simple cues that have
been proposed for distinguishing place, voicing or sibilance in fricatives, and also includes a

3The exception to this is the second formant frequency (F2) which was remeasured in order to ensure consistency between it and the
other four formants in terms of the procedure and the measurer.
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number of cues not previously considered (such as F3, F4 and F5, and low frequency
energy).

2.1.2 Results—Since the purpose of this corpus is to examine the information available to
categorization, we do not report a complete phonetic analysis. Instead, we offer a brief
analysis that characterizes the information in this dataset, asking which cues could be useful
for fricative categorization and the effect of context (talker and vowel) on them. A complete
analysis is found in the Online Supplement, Note #1, and see Jongman et al. (2000) for
extensive analyses of those measures.

Our analyses consisted of a series of hierarchical linear regressions. In each one, a single cue
was the dependent variable, and the independent variables were a set of dummy codes4 for
fricative identity (7 variables). Each regression first partialed out the effect of talker (19
dummy codes) and vowel (5 dummy codes), before entering the fricative terms into the
model. We also ran individual regressions breaking fricative identity down into phonetic
features (sibilance, place of articulation and voicing). Table 3 displays a summary.

Every cue was affected by fricative identity. While effect sizes ranged from large (10 cues
had R2

change> .40) to very small (RMSvowel, the smallest: R2
change =.011), all were highly

significant. Even cues that were originally measured to compensate for variance in other
cues (e.g. vowel duration to normalize fricative duration) had significant effects.
Interestingly, two of the new measures (F4 and F5) had surprisingly large effects.

A few cues could clearly be attributed to one feature over others, although none were
associated with a single feature. The two duration measures and low frequency energy were
largely associated with voicing; RMSF and F5AMPF were largely affected by sibilance; and
the formant frequencies, F2, F4 and F5 had moderate effects of place of articulation for
sibilants and non-sibilants. However, the bulk of the cues were correlated with multiple
features.

While few cues were uniquely associated with one feature, most features had strong
correlates. Many cues were sensitive to place of articulation in sibilants, suggesting an
invariance approach may be successful for distinguishing sibilants. However, there were few
cues for place in non-sibilants (F4, F5, and the 3rd and 4th moments in the transition). These
showed only moderate to low effect sizes (none greater than .1), and were context-
dependent. Thus, categorizing non-sibilants may require at least cue-integration, and
potentially, compensation.

We next asked if any cues appeared more invariant than others. That is, are there cues that
are correlated with a single feature (place of articulation, sibilance or voicing), but not with
context? There is no standard for what statistically constitutes an invariant cue, so we
adopted a simple criterion based on Cohen and Cohen’s (1983) definition of effect sizes as
small (R2 <.05), medium (.05<R2<.15) and large (R2>.15): a cue is invariant if it had a large
effect of a single feature (sibilance, place of articulation, voicing) and at most, small effects
of context.

No cue met this definition. Contextual factors (talker and vowel) accounted for a significant
portion of the variance in every cue, particularly cues in the vocalic portion. However,
relaxing this criterion to allow moderate context effects yielded several.

4Dummy coding is a standard technique in regression (Cohen & Cohen, 1983) in which an independent factor with multiple levels
(e.g. talker) is recoded into several variables. Each of the N-1 levels of the factor is given a single variable which is coded 1.0 if the
current data-point has that level and 0 otherwise. These variables are then entered as a group into the regression.

McMurray and Jongman Page 12

Psychol Rev. Author manuscript; available in PMC 2012 December 17.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Peak frequency (MaxPF) was highly correlated with place of articulation (R2
change=.483),

less so with sibilance (R2=.260) (it distinguishes /s/ from /∫/), and virtually uncorrelated
with voicing (R2=.004). While it was moderately related to talker (R2=.084), it was not
related to vowel. The narrow-band amplitudes in the frication (F3AMPF and F5AMPF)
showed a similar pattern. Amplitude at F3 had a strong relationship to place (R2=.450; /s/
vs. /∫/), and a smaller relationship to sibilance (R2=.239); while amplitude at F5 was related
to sibilance (R2

change=.394) but not place within either class (non-sibilants: R2
change<.001;

sibilants: R2
change=.02). Neither was strongly related to voicing (F3AMPF: R2

change=.002;
F5AMPF=.024) and they were only moderately affected by context (F3AMPF: R2

change=.
098; F5AMPF=.089).

Finally, the upper spectral moments in the frication were strongly associated with fricative
identity (M2: R2

change=.68; M3: R2
change=.39; M4: R2

change=.26) (primarily place of
articulation), and only moderately with context (M2: R2

change=.04; M3: R2
change=.07; M4:

R2
change=.03). This was true to a lesser extent for M1 (Fric.: R2

change=.42; Context:
R2

change=.12).

In sum, every cue was useful for distinguishing fricatives, although most were related to
multiple phonetic features, and every cue was affected by context. There were several highly
predictive cues that met a liberal criterion for invariance. Together, they may be sufficient
for categorization, particularly given the large number of potentially supporting cues.

2.2 Perceptual Experiment
The perceptual experiment probed listeners’ categorization of a subset of the corpus. We
assessed overall accuracy and variation in accuracy across talkers and vowels on the
complete syllable and the frication alone. Excising the vocalic portion eliminates some
secondary cues to fricatives, but also reduces the ability to categorize the vowel and talker,
which is required for compensation in C-CuRE. Thus, the difference between the frication-
only and complete-syllable conditions may offer a crucial platform for model comparison.

2.2.1 Methods—The 2880 fricatives in the corpus were too many for listeners to classify
in a reasonable amount of time, so this was trimmed to include 10 talkers (5 female), 3
vowels (/i, ɑ, u/), and the second repetition. This left 240 stimuli which were identified
twice by each listener. The presence or absence of the vocalic portion was manipulated
between-subjects.

Procedure: Listeners were tested in groups of two to four. Stimuli were played from disk
over Sony (MDR-7506) headphones, using BLISS (Mertus, 1989). Stimuli were presented
in random order at 3-s intervals. Listeners responded by circling one of 9 alternatives f, v, th,
dh, s, z, sh, zh, or ‘other’ on answer sheets. Participants were asked to repeat a few words
with /θ, ð, ∫, ʒ/ in initial position to ensure they were aware of the difference between these
sounds.

Participants: Forty Cornell University students (20 females) participated. Twenty served in
each condition (complete-syllable vs. frication-only). All were native speakers of English
with no known speech or hearing impairments. Participants were paid for their participation.

2.2.2 Results—Figure 2 shows a summary of listeners’ accuracy. In the complete-syllable
condition, listeners were highly accurate overall (M=91.2%), particularly on the sibilants
(M=97.4%), while in the frication-only condition, performance dropped substantially
(M=76.3%). There were also systematic effects of vowel (Figure 2B) and talker (Figure 2C)
on accuracy. It was necessary to characterize which of these effects were reliable to identify
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criteria for model evaluation. However, this proved challenging given that our dependent
measure has eight possibilities (eight response categories), and the independent factors
included condition, talker, vowel, place and voicing. Since we only needed to identify
diagnostic patterns, we simplified this by focusing on accuracy and collapsing the dependent
measure into a single binary variable: correct or incorrect (though see Supplementary Note 3
for a more descriptive analysis of the confusion matrices).

We used generalized estimating equations with a logistic linking function to conduct the
equivalent of a repeated measures ANOVA (Lipsitz, Kim & Zhao, 2006). Talker, vowel,
place and voicing were within-subjects factors; syllable-type (complete-syllable vs.
frication-only) was between-subjects. Since we only had two repetitions of each stimulus per
subject, the complete model (subject, five factors and interactions) was almost fully
saturated. Thus, the context factors (talker and vowel) were included as main effects, but did
not participate in interactions.

There was a significant main effect of syllable-type (Wald χ2(1)=69.9, p<.0001) with better
performance in the complete-syllable condition (90.8% vs. 75.4%) for every fricative
(Figure 2A). Vowel (Figure 2B) had a significant main effect (Wald χ2(2)=12.1, p=.02):
fricatives preceding /i/ had the lowest performance followed by those preceding /ɑ/, and
then /u/; and both /i/ and /ɑ/ were significantly different from /u/ (/i/: Wald χ2(1)=12.1, p=.
001; /ɑ/: Wald χ2(1)=5.5, p=.019). Talker was also a significant source of variance (Talker:
Wald χ2(9)=278.1, p<.0001), with performance by talker ranging from 75.0% to 88.2%
(Figure 2C).

Place of articulation was highly significant (Wald χ2(3)=312.5, p<.0001). Individual
comparisons against the postalveolars (which showed the best performance) showed that all
three places of articulation were significantly worse (Labiodental: Wald χ2(1)=72.2, p<.
0001; Interdental: Wald χ2(1)=75.0, p<.0001; Alveolar: Wald χ2(1)=51.6, p<.0001), though
the large difference between sibilants and non-sibilants was the biggest component of this
effect. A similar place effect was seen in both syllable-types (Figure 2D), though attenuated
in complete-syllables, leading to a place × condition interaction (Wald χ2(3)=12.0, p=.008).

The main effect of voicing was significant (Wald χ2(1)=6.2, p=.013): voiceless fricatives
were identified better than voiced fricatives. This was driven by the interdentals (Figure 2E),
leading to a significant voicing × place interaction (Wald χ2(3)=47.0, p<.0001). The voicing
effect was also enhanced in the noise-only condition, where voiceless sounds were 8.9%
better, relative to the complete-syllable condition where the difference was 2.1%, a
significant voicing × syllable-type interaction (Wald χ2(1)=4.1, p=.042). The three-way
interaction (voicing × place × syllable type) was not significant (Wald χ2(3)=5.9, p=.12).

Follow-up analyses separated the data by syllable-type. Complete details are presented in the
Online Note #2, but several key effects should be mentioned. First, talker was significant for
both conditions (complete-syllable: Wald χ2(9)=135.5, p<.0001; frication-only: Wald
χ2(9)=196.9, p<.0001), but vowel was only significant in complete-syllables (complete-
syllable: Wald χ2(1)=71.0, p<.0001; frication-only: Wald χ2(2)=.9, p=.6). Place of
articulation was significant in both conditions (complete-syllable: Wald χ2(3)=180.5, p<.
0001; frication-only: Wald χ2(3)=189.8, p<.0001), although voicing was only significant in
the frication-only condition (complete-syllable: Wald χ2(1)=.08, p=.7; frication-only: Wald
χ2(1)=15.0, p<.0001).

To summarize, we found that 1) performance without the vocalic portion was substantially
worse than with it, though performance in both cases was fairly good; 2) accuracy varied
across talkers; 3) sibilants were easier to identify than non-sibilants but there were place
differences even within sibilants; and 4) the vowel identity affected performance, but only in
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the complete-syllable condition. This may be due to two factors. First, particular vowels
may alter secondary cues in the vocalic portion in a way that misleads listeners (for /ɑ/ and /
i/) or helps them (for /u/). Alternatively, the identity of the vowel may cause subjects to treat
the cues in the frication noise differently. This may be particularly important for /u/—its lip
rounding has a strong effect on the frication. As a result, listeners’ ability to identify the
vowel (and thus account for these effects) may offer a benefit for /u/ that is not seen for the
unrounded vowels.

2.3 Discussion
The acoustic analysis revealed that every cue was useful for categorizing fricatives, but all
were affected by context. However, the handful of nearly invariant cues raises the possibility
that uncompensated cues, particularly in combination, may be sufficient for separating
categories. Our perceptual study also revealed consistent differences across talkers, vowels
and fricatives in accuracy. The presence or absence of the vocalic portion had the largest
effect. This hints at compensation using C-CuRE mechanisms since this difference may be
both due to secondary cues to the fricative, and also to listeners’ ability to identify the talker
and the vowel as a basis of compensation. This may also account for the effect of context
vowels on accuracy in the complete-syllable condition but not in the fricative-only
condition.

3. Computational Approach
Our primary goal was to determine what information is needed to separate fricative
categories at listener-like levels. We thus employed multinomial logistic regression as a
simple, common model of phoneme categorization that is theoretically similar to several
existing approaches (Oden & Massaro, 1978; Nearey, 1990; Smits, 2001; Cole et a., 2010).
We varied its training set to examine three sets of informational assumptions:

1. Naïve Invariance: This model used the small number of cues that were robustly
correlated with fricative identify and less with context. Cues did not undergo
compensation—if cues are invariant with respect to context, this should not be
required.

2. Cue-Integration: This model used every cue available, without compensation. This
is consistent with the informational assumptions of exemplar approaches, and is an
unexamined assumption of cue-integration models like NAPP (Nearey, 1997).

3. Compensation: This model used every cue, but after the effects of talker and vowel
on these cues had been accounted for using C-CuRE.

It may seem a forgone conclusion that compensation will yield the best performance–it has
the most information and involves the most processing. However, our acoustic analysis
suggests there is substantial information in the raw cues to support fricative categorization,
and no one has tested the power of integrating 24 cues for supporting categorization. Thus,
uncompensated cues may be sufficient. Moreover, compensation in C-CuRE is not
optimized to fricative categorization – it could transform the input in ways that hurt
categorization. Finally, the goal is not necessarily the best performance, but listener-like
performance—none of the models are optimized to the listeners’ responses and they may or
may not show such effects

The next section describes the categorization model and its assumptions. Next, we describes
how we instantiated each of our three hypotheses in terms of specific sets of cues.
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3.1 Logistic Regression as a model of Phoneme Categorization
Our model is based on work by Nearey (1990, 1997; see also Smits, 2001a,b; Cole et al.,
2010; McMurray, et al., in press) which uses logistic regression as a model of listeners’
mappings between acoustic cues and categories. Logistic regression first weights and
combines multiple cues linearly. This is transformed into a probability (e.g. the probability
of an /s/ given the cues). Weights are determined during training to optimally separate
categories (Hosmer & Lemshow, 2000, for a tutorial). These parameters allow the model to
alter both the location of the boundary in a multi-dimensional space and the amount each
cue participates in categorization.

Logistic regression typically uses a binary dependent variable (e.g. /s/ vs. /∫/) as in (1).

(1)

Here, the exponential term is a linear function of the independent factors (cues: x1…xn)
weighted by their regression coefficients (β’s). Multinomial logistic regression generalizes
this to map cues to any number of categories. Consider, for example, a model built to
distinguish /s/, /z/, /f/ and /v/. First, there are separate regression parameters for each of the
four categories, except one, the reference category5 (in this case, /v/). The exponential of
each of these linear terms is in (2)

(2)

These are then combined to yield a probability for any given category.

(3)

The probability of the reference category is

(4)

Thus, if there are 10 cues, the logistic regression requires 10 parameters plus an intercept for
each category (minus one). Thus, a multinomial logistic regression mapping 10 cues to four
categories requires 33 parameters. Typically these are estimated using gradient descent
methods that maximize the likelihood of the data given the parameters.

The models used here were first trained to map the dataset of acoustic measurements to the
intended production. This is overgenerous. The model knows both the cues in the acoustic
signal, and the category the speaker intended to produce—something which learners may
not always have access to. However, by training it on intended productions, not listener data,
its match to listeners’ performance must come from the information in the input, as the
model is not trained to match listeners, only to achieve the best categorization it can with the
input.

5Multinomial logistic regression generalizes the binary form of logistic regression by implementing a series of binary comparisons
between each category and the reference category—so a common reference category is required. The choice of which outcome serves
as the reference category is arbitrary and will make no difference in the resulting probability predictions (Hosmer & Lemshow, 2000).

McMurray and Jongman Page 16

Psychol Rev. Author manuscript; available in PMC 2012 December 17.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



We held out from training the 240 tokens used in the perception experiment. Thus, training
consisted of 2880 - 240 = 2640 tokens. After estimating the parameters, we used them to
determine the likelihood of each category for each token in the perceptual experiment.

3.1.1 Evaluating the models—Evaluating logistic models is tricky. There is no agreed
upon measure for model comparison (like R2 in linear regression). Moreover, this study
compares models that use only a handful of cues to those that use many, and therefore
should compensate for the increased power of the more complex models. Finally, model fit
(e.g. how well the model predicts the training data) is less important than its ability to yield
listener-like performance (on which it was not trained). Thus, we evaluated our models in
three ways: Bayesian Information Criterion (BIC); estimated performance by experimental
condition; and the likelihood of the human data given the model. We discuss the first two
here, and discuss the final measure in Section 4.4 where it is used.

Bayesian Information Criterion (BIC; Schwarz, 1978) is used for selecting among
competing models. BIC is sensitive to the number of free parameters and the sample-size. It
is usually computed using (5), which provides an asymptotic approximation for large sample
sizes.

(5)

Here, L is the likelihood of the model, k is the number of free parameters, and n is the
number of samples. Given two models, the one with the lower BIC is preferred.

BIC can be used in two ways. It is primarily used to compare two models’ fit to the training
data. Secondarily, it offers an omnibus test of model fit. To do this, the model is first
estimated with no independent variables. This “intercept-only” model should have little
predictive value, but if one response was a priori more likely, it could perform above
chance. Next, the independent factors are added and the two models are compared using
BIC to determine if the addition of the variables offers any real advantage.

Categorization performance can be computed from logistic regression models and is
analogous to the listener data. This estimated listener performance can be compared as a
function of experimental condition (e.g. as a function of fricative, talker or vowel), for a
qualitative match to listeners. If one of the models shows similar effects of talker, vowel, or
fricative this may offer a compelling case for this set of informational assumptions.

Crucially, this relies on the ability to generate data analogous to listener categorization from
the logistic model. While, the logistic formula yields a probability of each of the categories
for any given set of cues, there is debate about how best to map this to listener performance.

For any token, the optimal decision rule is to choose the most likely category as the response
(Nearey & Hogan, 1986)6. This implies that listeners always choose the same category for
repetitions of the same token (even if it is only marginally better). This seems unrealistic: in
our experiment listeners responded identically to each repetition only 76.4% of the time in
the frication-only condition and 90.5% in complete-syllables (close to the average
accuracies). Thus, a more realistic approach is to use the probabilities generated by the
model as the probability the listener chose each category (as in Nearey, 1990; Oden &
Massaro, 1978).

6This is how classification tables in statistics packages like SPSS are constructed.
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The discrete-choice rule generally yields better performance than the probabilistic rule
(typically about 10% in these models) and listeners likely lie between these extremes. This
could be modeled with something like the Luce-choice rule (Luce, 1959), which includes a
temperature parameter controlling how “winner-take-all” the decision is. However, we had
no independent data on the listeners’ decision criteria, and since models were fit to the
intended production, not to the perceptual response, we could not estimate this during
training. We thus report both the discrete-choice and probabilistic decision rules for each
model as a range, with the discrete-choice as the upper limit and the probabilistic rule as the
lower limit.

Finally, neither method offers a direct fit to the perceptual data. BIC is based on the training
data, and performance-based measures are analogous to perceptual data but offer no way to
quantitatively relate them. Thus, in Section 4.4, we describe a method of comparing models
based on the likelihood that the perceptual data was generated by each model.

3.1.2 Theoretical Assumptions of logistic regression as a categorization
model—As a model of the interface between continuous cues and phoneme categories,
logistic regression makes a number of simplifications. First, it assumes linear boundaries in
cue-space (unless interaction terms are included). However, Nearey (1990) has shown that
this can be sufficient for some speech categories. Similarly, cue combination is treated as a
linear process. However, weighting-by-reliability in vision (e.g. Jacobs, 2002; Ernst &
Banks, 2002) also assumes linear combinations and this has been tested in speech as well
(Toscano & McMurray, 2010). Given the wide-spread use of this assumption in similar
models in speech (e.g. Oden & Massaro, 1978; Nearey, 1997; Smits, 2001b), this seems
uncontroversial. Moreover, lacking hypotheses about particular nonlinearities or interaction
terms, the use of a full complement of interactions and nonlinear transformations may add
too many parameters to fit effectively.

Second, while there are more complicated ways to model categorization, many of these
approaches are related to logistic regression. For example, a network that uses no hidden
units and the softmax activation function is identical to logistic regression, and an exemplar
model in which speech is compared to all available exemplars will be highly similar to our
approach

Third, logistic regression can be seen as instantiating the outcome of statistical learning (e.g.
Werker et al, 2007) as its categories are derived from the statistics of the cues in the input.
However, many statistical learning approaches in speech perception (e.g. McMurray et al,
2009a; Maye, Werker & Gerken, 2002) assume unsupervised learning, while logistic
regression is supervised–the learner has access to both cues and categories. We are not
taking a strong stance on learning—likely both are at work in development. Logistic
regression is just a useful tool for getting the maximum categorization value out of the input
to compare informational hypotheses.

Finally, our use logistic regression as a common categorization platform intentionally
simplifies the perceptual processes proposed in models of speech perception. However this
allows us to test assumptions about the information that contribute to categorization. By
modeling phoneme identification using the same framework, we can understand the unique
contributions of these informational assumptions made by each class of models.

3.2 Hypotheses and datasets
3.2.1 Naïve Invariance Model—The naïve invariance model asked whether a small
number of uncompensated cues are sufficient for classification. Prior studies have asked
similar questions for fricatives (Forrest et al, 1988; Jongman et al, 2000) using discriminant

McMurray and Jongman Page 18

Psychol Rev. Author manuscript; available in PMC 2012 December 17.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



analysis and results have been good, though imperfect. This has not yet been attempted with
more powerful logistic regression; and we have a lot more cues (particularly for non-
sibilants). Thus, it would be premature to rule out such hypotheses.

Section 2.1.2 suggested a handful of cues that are somewhat invariant with respect to
context (Table 4). These nine cues distinguish voicing and sibilance in all fricatives, and
place of articulation in sibilants. We did not find any cues that were even modestly invariant
for place of articulation in non-sibilants. Thus, we added four additional cues: two with
relatively high R2’s for place of articulation, but also context (F4 and F5), and two that were
less associated with place but also with context (M3trans and M4trans). These were located in
the vocalic portion, offering a way for the naïve invariance model to account for the
differences between the frication-only and complete-syllable conditions in the perceptual
experiment—the loss of these cues should lead to bigger decrements for non-sibilants, and
smaller decrements for sibilants. As our selection of this cue-set was made solely by
statistical reliability (rather than a theory of production), and we did not use any compound
cues, we term this a naïve invariance approach.

3.2.2 Cue-integration Model—The cue-integration hypothesis suggests that if sufficient
cues are encoded in detail, their combination is sufficient to overcome variability in any one
cue. This is reflected in the informational assumptions of exemplar approaches (e.g.
Goldinger, 1998; Pierrehumbert, 2001, 2003) and it is an unexamined assumption in many
cue-integration models. It is possible that in a high-dimensional input-space (24 cues), there
are boundaries that distinguish the eight fricatives.

Our use of logistic regression as a categorizer could is a potentially problematic assessment
of exemplar accounts, as it is clearly more akin to a prototype model than true exemplar
matching. However, if the speech signal is compared with the entire “cloud” of exemplars,
then the decision of an exemplar model for any input will reflect an aggregate of all the
exemplars, a “Generic Echo” (Goldinger, 1998, p. 254), allowing it to show prototype-like
effects (Pierrehumbert, 2003). In contrast, if the signal is compared to only a smaller number
of tokens this breaks down. Ultimately, formal models will be required to determine the
optimal decision rule for exemplar models in speech. However, given our emphasis on
information, logistic regression is a reasonable test—it maps closely to both cue-integration
models and some versions of exemplar theory and is sufficiently powerful to permit good
categorization.

Thus, we instantiated the cue-integration assumptions by using all 24 cues with no
compensation for talker or vowel. To account for the difference between the frication-only
and complete-syllable condition, we eliminated the 14 cues found in the vocalic portion
(Table 2), asking whether the difference in performance was due to the loss of additional
cues.

3.2.3 Compensation/C-CuRE Model—The final dataset tests the hypothesis that
compensation is required to achieve listener-like performance. This is supported by our
phonetic analysis suggesting that all of the cues were somewhat context-sensitive. To
construct this dataset, all 24 cues were processed to compensate for the effects of the talker
and vowel on each one. While the goal of this dataset was to test compensation in general,
this was instantiated using C-CuRE because it is, to our knowledge, the only general
purpose compensation scheme that is computationally specific and can be applied to any
cue; and can accomplish compensation without discarding fine-grained detail in the signal
(and may enable greater use of it: Cole et al, 2010).
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To construct the C-CuRE model, all 24 cues were first subjected to individual regressions in
which each cue was the dependent variable and talker and vowel were independent factors.
These two factors were each represented by 19 and 5 dummy variables (respectively), one
for each talker/vowel (minus one)7. After the regression equation was estimated, individual
cue-values were then recoded as standardized residuals. This recodes each cue as the
difference between the actual cue value and what would be predicted for that talker and
vowel.

The use of context in C-CuRE offers an additional route to account for differences between
the complete-syllable and frication-only condition. While excising the vocalic portion
eliminates a lot of useful first order cues (as in the cue-integration model), it would also
impair parsing. This is because it would be difficult to identify the talker or vowel from the
frication alone. Indeed, Lee et al. (2010) showed that the vocalic portion supports much
more robust identification of gender than the frication, even when only six pitch pulses were
present. Thus, if fricative categorization is contingent on identifying the talker or vowel, we
should see an additional decrement in the frication-only condition due to the absence of this
information.

Our use of regression for compensation complicates model comparison using BIC. How do
we count the additional parameters? In the cue-integration model, each cue corresponds to
seven degrees of freedom (one parameter for each category minus one). In contrast, the
compensation/C-CuRE model uses additional degrees of freedom in the regressions for each
cue: 19 df for talkers, 5 for vowels, and an intercept. Thus, instead of 7×24 parameters, the
complete C-CuRE model now has 32×24 parameters, suggesting a substantial penalty.

However, there are three reasons why such a penalty would be ill advised. First, the free
parameters added by C-CuRE do not directly contribute to categorization, nor are they
optimized when the categorization model is trained. These parameters are fit to a different
problem (the relationship between contextual factors and cues), and are not manipulated to
estimate the logistic regression model. So while they are parameters in the system, they are
not optimized to improve categorization. In fact, it is possible that the transformations
imposed by C-CuRE impede categorization or make categorization look less like listeners,
as C-CuRE is removing the effect of factors like vowel and talker that we found to affect
listener performance.

Second, the parameters for parsing with C-CuRE can be computed directly from the data.
When the independent variables are discrete, the regression parameters are related to the
combination of cell means. No complex optimization is needed to estimate these values.

Finally, any scaled up system, even without compensation, would need to identify vowels
and talkers. Since the parameters used in C-CuRE are simply the mean values of each cue
with respect to context, a cue-integration model that was trained to identify the context along
with the fricative would be estimating similar parameters anyways—they just would not be
used in fricative identification. The C-CuRE model simply reuses those parameters for
compensation.

7Parsing regressions were run entering speaker codes first and then vowel. However, this choice does not affect the residuals as the
ultimate regression equation (using all of the terms) is the same regardless of order of entry. However, during online perception this
may matter as certain factors may not be available at every time point – for example, the presence of a carrier sentence prior to the
fricative may make speaker available for parsing before the vowel (see McMurray, et al., in press, for a discussion).
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4. Results
Our analysis starts with a description of the results of each model. Next we describe a
scheme for making quantitative model fits to the perceptual data and compare the three
approaches. Finally, we address several assumptions of the Compensation/C-CuRE model.

4.1 Naïve Invariance
4.2.1 Complete Syllables—Overall, the naïve invariance model offered a good fit to the
production data. BIC decreased substantially from the intercept-only model (Intercept-only:
11034; Invariance Model: 3399), and the χ2 test of model fit was significant (χ2(91)=8353,
p<.0001). Likelihood ratio tests showed that the model used all 13 cues (all χ2(7)>28, p<.
0001). The model averaged 83.3% correct on the perception tokens using the discrete-choice
rule, and 74.8% correct using the probabilistic rule. Thus, this handful of invariant cues
supports fairly accurate identification, though less so than listeners.

However, it was not a good fit to listener performance. It is much poorer on non-sibilants
than listeners, and there are no differences within them (Figure 3A). Similarly, within
sibilants, it fails to capture listeners’ slightly better performance on the post-alveolars (/∫, ʒ)
than alveolars (/s, z/). Moreover, the breakdown of performance by both vowel (Figure 3B)
and talker (Figure 3C) does not show the expected patterns, with the model showing the
inverse effect of vowel, and little correlation with listeners’ performance across talkers (R=.
18).

Thus, this model undershoots listener performance by about 15% when measured with the
more realistic probabilistic decision rule and by about 7.5% with the discrete choice rule.
More importantly, it does not describe listeners’ errors. The model showed the inverse effect
of context vowel, and a different effect of talker. Together, this suggests that the information
in this small set of cues does not fully capture the similarity relations that underlie listeners’
categorization, nor is it sufficient to support listeners’ levels of accuracy.

4.2.2 Frication Only—The invariant cues were largely in the frication portion of the
stimulus – only four of the 13 were found in the vocalic portion. Thus, there should be little
difference when the cues in the vocalic portion were eliminated to model the frication-only
condition. This was confirmed as this model performed at 70.1% on the probabilistic rule
and 78.7% on the discrete rule (compared with 74.5% and 83.3%). Given the small
difference between models, and the fact that both models were in the range of the listeners
(M=76.3%), we do not report more on this model.

4.2 Cue-integration
4.2.1 Complete Syllables—When all cues were used, model fit improved markedly. The
intercept-only model had a BIC of 11034, and the full model showed a substantial decrease
to 3381—lower than the naïve invariance model even when penalized for additional cues.
The χ2 analysis of fit was highly significant (χ2(168)=8977, p<.0001), however, the model
did not take advantage of all the cues. Likelihood ratio tests showed that five were not used:
F2 (χ2(7)=8.7, p=.27), F3AMPv (χ2(7)=12.7, p=.08), F5AMPv (χ2(7)=7.1, p=.41), M3trans
(χ2(7)=9.7, p=.21) and M4trans (χ2(7)=12.7, p=.08)8. Interestingly, these were the cues that
were most affected by vowel context. All other cues were highly significant (all χ2(7)>15,
p<.03).

The model performed at 85.0% with the discrete-choice rule, and 79.2% with the
probabilistic rule, an increase over the naïve invariance model (2.5%, 5% respectively). The
new cues also allowed the model to better approximate listener performance. As Figure 4A
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shows, the model now exhibits differential performance within the non-sibilants: the
interdentals are now worse than the labiodentals. In other ways, accuracy did not reflect
listeners. The model performs better on alveolars than postalveolars, better for /i/ than the
other two vowels (Figure 4B), and its performance across talkers is not correlated with
listeners (R=−.01). Thus, this model improves over the naïve invariance model in accuracy
and match to listeners, but it does not fully capture the pattern of errors and context effects.

4.2.2 Frication Only—Next, we examined whether the model could account for
performance on the frication noise alone by training a new model on just the 10 cues in the
frication (Table 2).

This model fit the training data well, with a BIC of 11034 for the intercept-only version and
3431 for the final model (χ2(70)=8155, p<.0001), and all 10 cues significantly contributed
to performance (all χ2(7)>31, p<.001). Performance was worse than the full model,
mimicking the effect of eliminating the vocalic portion, averaging 77.9% for the discrete
choice rule and 70.9% for the probabilistic one. This was quite close to listeners (75.4%).
This model also offers a close fit to the listeners’ accuracy across fricatives (Figure 5A).
While it outperforms them on /ð/9, it correctly captures differences between the other seven,
particularly the sibilants. Its accuracy across talkers and vowels was more variable. Listeners
showed little differences across vowel while the model was again best with /i/, although its
range of performance mostly included the listener data. The effect of talker, however, was
different between listeners and the model (R=−.04), though, as with vowels, listener
performance is largely in the model’s range.

Thus, the frication-only version of the cue-integration model offers a better fit to the
corresponding empirical data than the complete-syllable version, particularly in overall
accuracy. It is imperfect for some of the context effects, but many of the broad patterns are
there. If anything, the complete-syllable version needs improvement to account for listener
performance.

4.3 Compensation/C-CuRE
The compensation model showed the best fit of all (χ2(168)=10381, p<.0001) with BIC
reducing from 11977 to 2990. In contrast to the cue-integration model, likelihood ratio tests
showed that all 24 cues affected performance (all χ2(7)>21, p<.004), suggesting that
compensating for contextual variance helps the model gain access to new information
sources.

Accuracy was excellent. The model was 92.9% correct using the discrete decision rule and
87.0% correct using the probabilistic rule (Figure 6A). This is a large improvement (over
7%) over the cue-integration model that puts performance in the range of human listeners.
As Figure 6A shows, the model performed equivalently to listeners for sibilants and /θ/,

8We were initially surprised at the failure of F2 to participate in the categorization model given the wealth of studies positing a role
for either F2 at onset or F2 locus equations. We can think of two reasons for this. First, many of these studies have only examined
sibilants (and voiceless sibilants at that)—the utility of this cue for sibilants may not have been sufficient to reach significance given
the other meaningful contrasts and the redundant information in the signal like the other formants (F3 in particular). Second, Nearey
(personal communication) suggested that F2 should show a quadratic relationship to place of articulation. We thus ran a second model
including both linear and quadratic terms for each formant. Model performance was increased by .8% (85.8% vs. 85.0%), but not
enough to outweigh the penalty of the additional parameters (BICquadratics: 3453 vs. BIClinear: 3381 without). However in the
quadratic model, both the linear and quadratic terms for F2 were now significant (L: χ2(7)=25.6, p=.01; Q: χ2(7)=120.1, p<.0001),
and significant quadratic effects were also observed for F4 (χ2(7)=18.4, p<.0001) and F5 (χ2(7)=15.1 p=.035). Given the higher BIC,
however, and the complexities of using quadratic terms in the parsing model, we used only the linear term in this and subsequent
models.
9This may have been due to cognitive factors that were not modeled. The fact that /ð/ generally only appears word-initially in function
words and has the same orthographic representation as /θ/ may have led listeners to select /ð/ less than other responses.
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although it slightly undershot them for /f/ and /v/ and overshot them for /ð/. Perhaps most
impressively, the effect of vowel context has completely reversed from prior models and
now fits the human data (Figure 6B), and the talker differences are also well correlated (R=.
52) (Figure 6C). At a statistical level, this is surprising – we have partialed the effects of
talker and vowel out of the raw cues, and yet, we are now seeing the correct effects in
performance. This suggests that listeners’ differences across vowels may be due to
differences in compensation, not differences in the raw information available.

4.4 Model Comparison
The results thus far (Table 5) indicate that compensated cues using C-CuRE offer the closest
match to listeners in the complete-syllable condition, while the cue-integration approach
works well in the frication-only condition. Our goodness of fit measure, however, compared
each model’s fit to the training data (the intended productions), showing only that the C-
CuRE model is the better classifier of this data. While the qualitative differences between
models in predicting vowel and talker effects suggest the C-CuRE model is a better fit to
listeners, we have not reported goodness of fit to the perceptual data. Here we develop the
tools to do so.

We focus on comparing the three models in the complete-syllable condition. The naïve
invariance and cue-integration models were similar for the frication-only data, and differed
only by a single cue (M4). Second, applying the C-CuRE model to the frication-only data
makes little sense theoretically—without the vocalic portion it would be difficult to identify
the talker or vowel to parse their effects from the cues in the frication.

The perception data takes the form of a frequency distribution: for each token, the number of
times each category was chosen. The output of logistic regression is analogous: the
probability of each category given the input. From these probabilities and frequencies, we
can use the multinomial distribution to compute the likelihood of getting a particular
distribution of responses (the listener data) given the probabilities computed by the model:

(6)

Here, N is the total number of responses; Xi is the number of times category i was selected;
and pi is the probability of that category from the model. Multiplying this across each token
in the dataset (with p1…p8 for each computed from the model based on that token’s cues)
gives the total likelihood of the entire perceptual dataset given the model.

This allows us to compare any two models using odds-ratios (the ratio of the two
likelihoods) to determine how much more likely one model is over the other. Generally, to
compute the odds-ratio, we divided the likelihoods by 240 to compute the average likelihood
of each token, and used this to compute the average odds ratio across tokens. We can also
compute BIC from the log-likelihoods, to compute a BIC value relative to the observed
perceptual data.

Thus, we first used each of the three models to compute the probabilities for each response
for each token in the dataset. We next computed the likelihood of obtaining the distribution
of responses observed in perceptual data for each token. These were logged and summed to
obtain the total log-likelihood of the data given each model.

Consistent with the accuracy data, the cue-integration model fit the listener data better than
the naïve invariance model. Its log-likelihood was larger (−3823 vs. −4740), and it was 45.7
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times more likely to give rise to the responses for any perceptual token than the naïve
invariance model. Even when penalized for its cues, its BIC was still lower (8605.3 vs.
10018.2).

Next, we compared the cue-integration and compensation/C-CuRE models. Surprisingly, the
C-CuRE model (LL=−7142.7; BIC=15245) was a worse fit than the cue-integration model
(LL=−3823.1; BIC=8605.3). This was unexpected given the compensation model’s better
overall performance and its closer match to the perceptual data.

Examining the log-likelihoods for individual tokens, we noticed that while most were in the
0 to −50 range, the C-CuRE model had a handful of very unlikely tokens: 16 (out of 240)
had log-likelihoods less than −100, and one was less than −1000. This was due to the fact
that it was extremely confident in categorizing some tokens, outputting probabilities near
zero (1e-50 or less) for dispreferred fricatives. If subjects responded even once for these
near-zero probability events (e.g. if they were guessing), this dramatically decreased the
likelihood of the model (since this tiny probability, multiplied by all the others, squashes the
more likely probabilities from other trials). In contrast, the cue-integration model was less
confident in its decision so the probabilities for dispreferred fricatives were orders of
magnitude larger. As a result, guessing was not nearly as deleterious—the model expected to
be wrong occasionally.

Thus, we modified the logistic model to include a chance of guessing, by constructing a
mixture model in which the probability of a category was a mixture of logistic and guess
trials.

(7)

Here, plogistic is the probability of a given fricative from the logistic regression, pguess is the
likelihood of guessing, and there is a 1/8 chance of selecting any fricative on guess trials.

It was not clear how to estimate pguess, as we had no independent data on listeners’ guessing.
Ideally, one would estimate this parameter with the rest of the parameters in the logistic
model. However, the logistic model was fit to intended productions, not perceptual data,
which left no way to estimate a property of the listener from an unambiguous training signal.
Thus, we examined a roughly logarithmic range of guess-rates from 0 (the previously
reported results) to 20%, to allow a comparison of each model at the same pguess. We also
estimated the optimal pguess for each model and compared models at their optimal guess
rates.

Figure 7 shows the results. At very low guess rates, (0 ≤ pguess ≤ 1e-6), the cue-integration
model was more likely. However, once pguess exceeded 1e-6, the C-CuRE model was better
at all values. At 1e-6, the average odds-ratio (C-CuRE/cue-integration) for individual tokens
was 1.2, and this increased to 13.5 by .005, and stayed above 20 at when pguess was greater
than .0225. Thus even assuming extremely low rates of guessing, the C-CuRE model was
more likely to generate the perceptual data than the cue-integration model. Our analysis at
the optimal guess rates confirmed this. For the cue-integration model, the optimal pguess
was .02122 with a log-likelihood of −3131.2; for the C-CuRE model the optimal pguess was
slightly higher at .03094 but with a much higher log-likelihood of −2397.6, and the average
odds ratio was 21.26 in favor of C-CuRE. Thus, comparing models at their optimal pguess
still favored the C-CuRE model.

McMurray and Jongman Page 24

Psychol Rev. Author manuscript; available in PMC 2012 December 17.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



4.5 Further Issues
There are a few important caveats to the claim that the C-CuRE model offers the best fit.
First, we made the simplifying assumption that listeners can identify talkers and vowels
perfectly. This is unreasonable, of course, so these data should be interpreted as an upper
bound of performance given this type of compensation. We probed the limit of this
(Supplementary Note #4) by allowing the model to mis-identify the talker/vowel on some
percentage of trials (thus compensating for the wrong talker or vowel). We found that until
the mis-identification rate reaches 30–35% (for both talker and vowel simultaneously) C-
CuRE still outperforms the cue-integration model (details in Supplementary note #4).
Moreover, the variation and accuracy across talkers and vowels that only the C-CuRE model
displayed was seen at every level of mis-parsing tested.

Similarly, we also examined the assumption that one must identify individual talkers and
vowels for successful compensation (Online Supplement, Note #5). We simplified the C-
CuRE model to categorize talkers only by gender, and to categorize vowels only in terms of
height and backness (independently). These are easier to identify than individual talkers and
phonemes, mitigating our assumption of perfect performance. This also reduces the number
of parameters in each regression used for compensation to 4 (from 25), yielding a simpler
model. This did not substantially affect performance with accuracy between 83.5% and
90.8%.

Finally, the C-CuRE framework is just one approach to compensation, and contrasts from
classic approaches that posit purely bottom-up combinations of cues. We examined this in a
more limited model that compare specific compound cues that have been proposed in the
literature (e.g. locus equations, duration ratios, etc) to the raw versions of these cues with
and without C-CuRE (Online Supplement, Note #6). The C-CuRE model outperformed the
relative cue model substantially. Given its broader generality (compensation via the same
mechanisms can be used with any cue), and the fact that it preserves (rather than discards)
fine-grained detail, C-CuRE may be the better approach to compensation.

5.0 General discussion
5.1 Summary

Our primary question concerned the information in the speech signal that is necessary to
support categorization. We collected a corpus of productions that was intended to capture as
complete a description as possible for a large sample of fricatives. We measured every cue
that had been proposed, and discovered some new ones (LowF, F4 and F5, Supplementary
Note #1). Acoustic analysis showed that these cues are heavily context- dependent, but also
that there is substantial information for categorization: every cue had some correlation with
fricative identity.

This database of measurements is the information available in the signal. We manipulated its
quantity and format in the context of a common categorization model, and compared that to
listener performance on the same tokens, testing three sets of informational assumptions: 1)
those of invariance models, that a small number of raw cues is sufficient; 2) those of
exemplar and cue-integration models: that a large number of uncompensated cues is
sufficient; and 3) those of compensation models, using cues after effects of context have
been compensated for. Compensation was instantiated in the C-CuRE framework, a
mechanism that preserves fine-grained acoustic detail, and posits categorization as a basis of
compensation.

Only the model using compensated cues yielded listeners’ accuracy level and pattern of
errors with complete-syllables, and no other model showed the right effects of vowel or
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talker. This was not due to our simplifying assumptions: the C-CuRE model can cope with
mis-identified talkers and vowels, factor out variance with a reduced feature set, and is
superior to complex relative cues (Online Notes #4–6). Minimally, this argues for some
form of compensation, and it more specifically suggests that C-CuRE is a useful way to
implement it. However, given the lack of formal models of compensation, it is possible that
other approaches to compensation will offer a similar benefit.

C-CuRE, however, offers a unique description of the difference between the frication-only
and complete-syllable conditions. If each portion of the signal subserves decisions about
multiple properties (segmental and talker), listeners’ differences between these conditions
will be due in part to first-order cues in the vocalic portion that directly cue fricatives, but
also to their abilities to use this portion to identify the talker and vowel as the basis of
compensation of cues in the fricative. This is underscored by the good fit of the cue-
integration to the frication-only condition, where the information necessary for
compensation with C-CuRE may not be available. It can also explain the beneficial
performance for /u/ (relative to the other values) – the coarticulatory effect of /u/ on the
frication due to lip-rounding is strong, and identifying this vowel will offer a unique
compensatory benefit for cues in the frication that is not seen with the other vowel (in the
complete-syllable condition), or when compensation is not possible (via C-CuRE), in the
frication-only condition.

5.2 Could uncompensated cues have worked?
There are a number of reasons the cue-integration and invariance models may have failed
that do not bear on their informational assumptions. First, did we measure enough cues, or
the right ones? Could the cue-integration model have succeeded with better information?
We think not. We examined every cue reported by Jongman et al (2000), the most thorough
fricative examination to date, and added 10 new ones (some of which were quite useful). We
also tried cue combinations that should have been more invariant, with little benefit
(Supplementary Note #6). Thus, our corpus did not lack information (although there may
still be undiscovered cues for /θ, f, v/—even the C-CuRE model underperformed slightly on
these).

Second, it is possible that the cues were not scaled properly. The auditory system represents
some information nonlinearly (e.g., log scales for duration). We were confronted with many
such choices during model development: how to scale the cues (e.g. bark vs. Hz frequency;
log vs. linear duration); whether to include polynomial terms; and how to compute residuals
(standardized, unstandardized, studentized). We explored many of these options and none
affected model performance by more than 1%.

While there may be some yet to-be-discovered cue or transformation that will offer a magic
bullet, we doubt it is forthcoming. Rather, the simulations suggest that once we include
many redundant sources of information, and particularly when information is coded relative
to expectations driven by other categories (e.g. vowel, talker), the details of which specific
cues and how they are scaled matter less. It is the redundancy, the context sensitivity, and
the statistical structure in the input that does the work, not the details of measuring and
coding cues.

Third, perhaps this finding is unique to the statistics of fricatives. It is possible that the
statistics of cues associated with other phonemic contrasts may better support categorization.
Cole et al (2010)’s, analysis of vowels, suggests that for at least one other class of phonemes
C-CuRE offers a decided advantage. However, there is a need for these sorts of comparative
informational analyses on other phonological feature, a fruitful (though laborious)
undertaking.
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Fourth, we didn’t model lexical or statistical factors that contribute to perception—perhaps
with such things, uncompensated cues would be sufficient. But such factors could not have
helped our listeners either: the stimuli were mostly nonwords, they uniformly spanned the
space of possible CVs, and each was spoken by each talker. These statistics were thus
uniform in our experiment, yet listeners performed better than the cue-integration model
predicted.

Finally, perhaps the problem is our categorization model. For example, the mechanisms of
categorization proposed by exemplar theory differ substantially from logistic regression, and
are potentially more powerful. We cannot rule this out. However, we have experimented
with three-layer neural networks which are capable of learning non linearly-separable
distributions, and should offer better categorization. This network performed at 87.5% on
the discrete-choice rule and 83.5% on the probabilistic rule, better than the cue integration
model (85.0%/78.2%) but less accurate than listeners. Uncompensated cues in the dataset
may not support accurate categorization under any categorization model. In fact, we found
even better performance when the same network was trained on cues parsed with C-CuRE
(90.4%/88.5%).

Thus the failure of the cue-integration models was not likely due to these simplifications and
we are left to conclude that simply using as much information as possible in its raw form
may be insufficient to account for listener performance. Interestingly, when this is the only
route available to listeners (in the frication-only condition), the cue-integration model
succeeds.

5.3 Is this result obvious?
Superficially, these results seem obvious. Of course, when we use many cues, performance
improves. Of course, compensation improves categorization. However, this misses several
important points. First, our criterion wasn’t simply perfect categorization; it was match to
listeners. Listeners were not at ceiling, averaging 90% correct—if invariant cues were
sufficient, for example, the cue-integration or C-CuRE models could have overshot
performance.

Second, our match to listener data was not based on accuracy alone, the effect of context
(talker and vowel) was equally important. This was not built into the models (they were not
trained on listener data) and there was no a priori reason any of them would give rise to such
effects. Indeed, as we added cues, moving from the invariance to the cue-integration model,
there was little improvement in this regard; it was only when we added compensation that
we saw such performance. While one might expect that adding cues or compensation could
increase the fit of the model to its training data, there was no reason to expect it to fit better
to a completely independent dataset reflecting idiosyncratic performance across context.
Thus, our close fit in this regard suggests that these differences across speakers and vowels
are not so much a function of the statistical distribution of speech cues within speakers and
vowels, but rather of the differential sensitivity of these distributions to compensation.

Third, C-CuRE was not optimized to the goal of identifying the fricative. This component of
the model was trained independently of fricative categorization, simply recoding the input as
distance from the expected cue-values for that talker and/or vowel. There was no guarantee
that this would yield a cue-space better suited to fricative categorization, nor that it would
result in the pattern of context effects we observed. In fact, it is surprising that we only see
the effects of talker and vowel in the categorization model after we have parsed their effects
out of the cue-set.
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Given these factors, success of the C-CuRE model was by no means a foregone conclusion
and its findings should not be dismissed easily.

5.4 Implications for Theories of Speech Perception
Fundamentally, the problem of lack of invariance is a question of information. On this issue,
our acoustic analyses confirm for fricatives what most researchers have concluded in
general: there is no invariance in the signal (e.g., Ohala, 1996; Lindblom, 1996). Even
measuring 24 cues and assessing the effects of context on each, we found no truly invariant
cues, and even the best of what we had were not sufficient to match listener categorization
performance.

More importantly, however, the lack of invariance is not problematic, and one does not need
to go to extremes to surmount it. Motor theory (Liberman & Mattingly, 1985; Liberman &
Whalen, 2000) explicitly argues that the only solution to the lack of invariance is to code
speech in terms of articulatory gestures. Exemplar theory (e.g. Pierrehumbert, 2001;
Hawkins, 2003) makes a similar point: if listeners retain every exemplar they hear in fine-
grained detail this can be overcome without compensation. While there are other reasons to
argue for these theories, the lack of invariance does not require any specific approach to
representation—categorization built on prototypes and acoustic cues can yield listener-like
performance as long as many information sources are used with simple compensation
schemes. Lack of invariance does not equal lack of information, and does not require a
particular solution.

As our emphasis was information, we did not examine the categorization process, and any
theory of speech categorization must describe both. Thus, here, we discuss the implications
of these findings for a number of theories of speech perception where they are directly
relevant.

First, our cue-integration model shares the informational assumptions of exemplar theory:
use every bit of the signal, but without compensation. Clearly, the redundancy in a large
cue-set offers advantages in performance and when compensation was not available (lacking
the vocalic portion) listeners behave in a way that is consistent with these informational
assumptions. However, C-CuRE offered substantially better accuracy (7–8%), and uniquely
fit the context effects on performance. This would seem to disfavor exemplar models.

One concern with this is that in exemplar models, categorization may do more of the work.
Storing complete exemplars may capture contextual dependencies, making compensation
less necessary and enabling better processing based on raw cues. Testing this will require a
formal implementation, which raises several issues. First, categorization decisions in
exemplar models are made by comparing the incoming input to clouds of stored exemplars.
But how many exemplars take part in this? If the input is compared to every exemplar, the
model will act like a prototype model as the entire distribution is relevant to categorization
and will perform similarly to logistic regression. On the other hand, if the input is only
compared to the closest matching exemplar (or a handful of nearby ones), a model would
harness more exemplar-like processing to achieve a better decision, if there is a close match.
However, when one was not available (e.g. a new talker), it may perform worse. Second,
depending on the scope of the exemplars, all types of contextual dependencies may not be
captured, for example, coarticulation that crosses a word boundary (Cole et al, 2010). Thus,
evaluating exemplar models may require concrete decisions about the categorization rule
and exemplar scope.

Second, without oversimplifying the differences, our use of logistic regression closely
overlaps with a range of models we termed cue integration models, models like FLMP
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(Oden & Massaro, 1978), NAPP (Nearey, 1990, 1997), and HICAT (Smits, 2001a,b). FLMP
and NAPP are not strongly committed to any particular form of input (other than cues being
continuous and independent), and we see no reason that input parsed with C-CuRE could not
be used (though this would introduce feedback which may be incompatible with FLMP:
Massaro, 1989, 2000).

Of the cue-integration models, HICAT (Smits, 2001a,b) is closest to our approach, in that a
cue’s interpretation is conditioned on other decisions (e.g. the vowel). In HICAT, this is
embedded (and optimized) as part of the categorization problem, using interaction terms
(e.g. F1 x Speaker) in the categorization model. This potentially creates a problem of
generalization, as the influence of categories on cues is encoded within a single
categorization decision. For example, one would have to learn the influence of a vowel and
speaker on F1onset for /s/ decisions separately from the same influences on F1 for /∫/
decisions. This may lead to an explosion of such interaction terms. In C-CuRE, on the other
hand, context effects are independent of specific categories: rather than conditionalizing the
interpretation of cues on context, cues are recoded relative to expectations derived from
context, making them available for many processes. This accounts for findings that listeners
hear the signal as compensated: for example, hearing a nasalized vowel as more oral if
nasalization can be attributed to coarticulation from a nasal consonant (Fowler & Brown,
2000; see also Pardo & Fowler, 1997; Beddor, Harnsberger & Lindemann, 2002). Of course,
it is an open question whether cues are only encoded in compensated form, and the frication-
only models suggest that both raw and compensated cues may need to be available to
listeners. Either way, however, by recoding cues the parameters needed for compensation
are independent of those needed for categorization (unlike HICAT), which makes model
estimation much more tractable. Crucially, our simulations suggest this simpler approach is
sufficient to account for listener performance in this corpus.

Cue-integration models like NAPP and HICAT have framed debates over cue-sharing,
situations like the one studied here where a single cue is affected by multiple factors
(Mermelstein, 1978; Whalen, 1989, 1992; Nearey, 1990, 1992; Smits, 2001a) and model fit
to complex perceptual datasets has been an important tool for comparing hypotheses. Nearey
(1990) has argued that compensation effects on fricative identity can be accounted for
without category→cue relationships by assuming listeners are simply biased toward
particular pairs of phonemes, while Whalen (1992) and Smits (2001a) argue that fricative
categorization is dependent on how the vowel is categorized. Our analysis supports the latter
view, but using stimuli that capture the natural statistical distribution of cue-values
(clustered), and a richer information source. The generality of the C-CuRE compensation
mechanism, however, extends this by suggesting that phoneme categorization may also be
contingent talker identity (cf., Strand, 1999; Nygaard et al, 1994) and thus offers a more
unified account.

Finally, in the last few years, a number of statistical learning accounts of speech perception
have emerged (de Boer & Kuhl, 1997; McMurray, et al, 2009; Vallabha et al, 2007; Toscano
& McMurray, 2010; Feldman, Griffiths & Morgan, 2009). Our logistic model was not meant
to advocate for any particular categorization framework, nor do we make strong claims
about learning. However, it shares with statistical approaches the intuition that the statistical
structure of the input is fundamental to categorization and it represents a powerful proof of
concept by demonstrating that speech perception may in principle be learnable from the
input, and that fairly complex variation in listener performance (e.g. the effect across talkers
and vowels) can be derived largely from the information in input.

Ultimately, however, statistics (and hence, information) will not be sufficient to fully
describe perception, we must also consider processing. Herein lies a limitation of our
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implementation of the ideas proposed here: in this specific domain, how do listeners identify
the vowel to compensate during fricative perception, when vowel identification may also
benefit from knowing the fricative? We suggest that listeners must simultaneously and
interactively identify the talker, vowel and fricative. While these factors are identified in
parallel, the cues for each may be available at different times, meaning that at some points in
processing (e.g. before the vowel arrives) listeners may rely on an approach closer to our
cue-integration approach, while once these contextual sources of information are available,
they may be able to revise their initial decisions. This favors an approach more akin to
interactive activation (e.g. Elman & McClelland, 1986), where a partial decision about talker
or vowel could be used to parse cues to the fricative, increasing confidence in the fricative
decision; while simultaneously, partial decisions about the fricative can be used to parse
cues to the vowel (see also, Smits’ [2001b], fuzzy parallel version of HICAT). Over time,
the system gradually settles on a complete parse of all three factors without ever making a
discrete decision about any one. Ultimately, though, understanding such mechanisms will
require detailed analyses of the timecourse of processing (e.g. McMurray, Clayards,
Tanenhaus & Aslin, 2008b) and more dynamic models of perception.

5.5 Computing Cues Relative to Expectations
The C-CuRE approach builds on parsing approaches which have historically been associated
with gestural or acoustic accounts (Fowler, 1984; Gow, 2003). In contrast, our work shows
that such operations do not require a particular representational form (cf., Ohala, 1981;
McMurray et al, in press). C-CuRE also builds on auditory contrast accounts (Lotto &
Kluender, 1998, Holt, 2006; Kluender, Coady & Kiefte, 2003) by proposing that cues are
interpreted relative to expectations, though these expectations can be driven by categories
(perhaps in addition to lower-level expectations). This generality allows a simple
implementation using linear regression to partial out both articulatory (vowel) and non-
articulatory (talker) factors as the difference between expected and actual cue values.

When compared against other ways of relativizing cues, C-CuRE has several advantages. By
relying on remembered prototype values it avoids having to wait to accumulate information.
For example, relativizing frication duration on the basis of vowel duration means that
listeners must wait until the end of the vowel to identify the fricative. In fact, recent work
(McMurray, et al, 2008b) on asynchronous cues to voicing suggests listeners do not do this.
C-CuRE also does not require a lifetime of phonetic studies to determine relativizing
relationships for each cue, and it can be used equally well with any cue. It also is consistent
with prototype and statistical accounts of phonetic categories since in order to parse out the
effect of a category on a cue you must know its mean and variance (McMurray & Farris-
Trimble, in press).

Finally, like exemplar accounts, C-CuRE stresses the importance of fine-grained, continuous
detail including indexical information, and the fact that it must be retained and used for
multiple decisions during perception. Thus, it is not vulnerable to critiques leveled at
normalization models (e.g. Pisoni, 1997). Finally, also like exemplar accounts, we stress the
importance of indexical cues, while positing a different role for them. Rather than simply
lumping indexical information in with phonetic cues, indexical cues are used to identify
talkers, and that in turn is used to interpret cues signaling phonetic contrasts.

5.6 Conclusions
Speech categorization fundamentally requires massive cue-integration, but categorization
must be performed at the same time as compensatory mechanisms that cope with contextual
influences. When we approach categorization in this richer framework, many problems
appear easier. While studies of small numbers of cues are valuable for exploring which cues
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are used (e.g. Summerfield, 1981; Massaro & Cohen, 1976) and answering theoretical
questions (e.g. Pisoni & Tash, 1974; Miller & Volaitis, 1989), they may also oversimplify
issues and exaggerate problems (e.g., Shinn, Blumstein & Jongman 1985).

Massively redundant information is the norm in speech categorization, but at the same time,
cue-sharing happens everywhere and compensation using information from other types of
categories is needed to cope with it. That is, categorization and compensation mechanisms
may be deeply intertwined, challenging the conception that compensation occurs
autonomously and pre-categorically. This has not been extensively explored outside of
speech but may be crucial for understanding domains in which the information that supports
categorization is variable and context-dependent, domains like face perception, color
perception and even abstract category systems like syntactic categories (e.g. Monaghan,
Christensen & Chater, 2005).

C-CuRE suggests important interactions between categorization and the encoding of
perceptual cues. However, it is not the only such interaction that has been proposed.
Categorical perception (Liberman et al, 1957), for example, implies that cue-encoding is
accomplished in terms of categories. Categorical perception has not held up to empirical
scrutiny in speech (Massaro & Cohen, 1983; Schouten, et al., 2003; Toscano et al, 2010),
largely due to evidence that fine-grained detail is retained. C-CuRE suggests a more
interesting way in which categories may affect the encoding of continuous cues, one that
preserves continuous detail by recoding cues relative to expectations derived from
categories. Thus, understanding compensation in perception may require us to understand
higher-level processes like categorization, object recognition, and scene organization, and
vice versa. More importantly, the generality of mechanisms like C-CuRE suggests that
debates over representation may be of less importance in understanding categorization than
debates over process: when the information is right, the framework for categorization may
matter less than the content it works on.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Measurement and Data Processing of the Corpus of Cue
Values

This appendix describes each of the individual cues that were measured in the corpus of
fricatives and how they were measured. JWW refers to the original Jongman et al (2000)
study.

Peak frequency was taken from JWW and measured from a 40 ms window at the center of
the frication noise. It is the frequency of the highest-amplitude peak of the FFT spectrum.

Frication Duration and Vowel Duration were also obtained from JWW and measured from
zero-crossings. Fricative onset was the first point at which high-frequency energy appeared
in the spectrogram. Fricative offset/vowel onset was marked at the intensity minimum prior
to the onset of periodic voicing energy for voiceless fricatives; and as the earliest period at
which the waveform changed substantially (with respect to the frication) for voiced
fricatives. Vowel offset was identified as the onset of the closure portion of the /p/.

Frication RMS amplitude and Vowel RMS amplitude were obtained from JWW, and
measured by computing the RMS amplitude in dB for the entire frication as well as three
consecutive pitch periods at the point of maximum vowel amplitude, respectively.
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Spectral mean, variance, skewness, and kurtosis were JWW measurements and computed
from spectra obtained from three 40 ms Hamming windows centered at the onset, midpoint
and end of the frication. Spectra were based on a linear frequency scale as Jongman et al.
(2000) reported little difference when values were derived from bark-scaled frequencies.

Transition moments were also derived in the same way from a window that included the last
20 ms of the frication and the first 20 ms of the vowel.

All spectral moment data were taken directly from the JWW database, with three
modifications. First, Jongman et al. (2000) reported the second moment as spectral variance
which can have very high values. We converted the second moment to standard deviations
by taking the square root of each value (see Stoel-Gammon et al., 1994). Second, Window-3
(the last 40 ms of the frication) was removed from the analysis because it overlapped with
Window-4 (which included the final 20 ms of the frication and the first 20 ms of the vowel)
and would hence violate the independence assumptions of most statistical tests. Third, the
moments in Windows-1 and -2 were highly correlated, particularly for the first two moments
(M1: R=.85; M2: R=.82; M3: .63; M4: .43). This made it difficult for some of the models to
converge. Therefore, moments in these two windows were averaged to create estimates of
spectral mean, variance, skew and kurtosis that spanned the two windows.

We also measured the following new cues, using a combination of the Praat speech analysis
software (Boersma and Weenink, 2009) and several custom Matlab scripts.

Low Frequency Energy was included as a potential measure of voicing during the frication.
A spectrum over the entire frication noise was computed, and the average amplitude of the
components below 500 Hz was measured.

Formant Frequencies
The frequency of the first five formants over the first 23.3 ms of vowel onset was measured
in two stages. First, frequencies were automatically extracted for all files using the Burg
algorithm method with two different parameter-sets (one selected for men and one for
women). Next, a trained phonetic coder viewed plots of both formant tracks on top of the
corresponding spectrograms and determined if either of the automatically coded tracks was
correct. If not, formant frequency values were entered by hand from the spectrogram.

Fundamental frequency (F0) was computed for the first 46.6 ms of each vowel.

Narrow-band amplitude
This is a modification of the relative amplitude measure reported by JWW. In their paper,
relative amplitude was computed in two stages. First, the amplitude of F3 at vowel onset for
sibilants (/s, z, ∫, ʒ/), and of F5 for non-sibilants (/f, v, θ, ð/) was measured using a discrete
Fourier transform over a 23.3 ms window. Second, a spectrum was derived over the middle
23.3 ms of the fricative and the amplitude of the frequency component closest to the F3 or
F5 values was obtained. Relative amplitude was then the difference between fricative
amplitude and vowel amplitude.

While this is an excellent cue to place of articulation, we were concerned that this cue was
measured differently depending on sibilance. In the vocalic portion, the amplitude in the F3
region (used for sibilants) is almost certainly greater than in the F5 region (used for non-
sibilants). Thus this cue could artificially distinguish sibilants from non-sibilants. To avoid
this, we measured both F3 and F5 amplitude for all fricatives and treated them as two
separate cues.
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Jongman et al. (2000) relativized this measure by subtracting the amplitude in the fricative
from that of the vowel. We chose not to do this for two reasons. First, several of the analyses
were intended to examine the cues in the frication noise alone and it was unclear whether
such cues should be counted as frication cues or vowel cues – there is clearly amplitude
information in the fricative alone even if it cannot be relativized against the vowel. Second,
and more importantly, we wanted our models to use first-order cues (e.g. without
normalization). Thus, it made sense to treat these as four independent cues: the amplitude in
the F3 and F5 regions for the frication and for the vocalic portion. We refer to these
measurements as narrow-band amplitudes.

Finally, some of the cues (spectral mean and variance, in particular) were large in real
valued terms (spectral mean averaged 5879 Hz, and standard deviation averaged 2121 Hz in
window 1. Including these with values in the 0–1 range (e.g. duration in seconds) posed a
problem for fitting the logistic models used in Sections 4–8. Thus, prior to analysis, all
variables were converted to Z-scores (relative to the overall mean and standard deviation), a
form of centering that is common in regression and other generalized linear models
(Cronbach, 1987).
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Figure 1.
Annotated waveform and spectrogram of a typical sample in the corpus, /∫ip/ ‘sheep’.
Annotations indicate a subset of the cues that are described in Table 2.
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Figure 2.
Listeners’ performance (proportion correct) on an 8AFC fricative categorization task. A)
Performance on each of the eight fricatives as function of condition. B) Performance across
fricatives as a function of vowel and condition C). Performance by condition and speaker.
D) Performance as a function of place of articulation and condition. E) Performance as a
function of place of articulation and voicing across conditions.
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Figure 3.
Performance of the naïve invariance model and human listeners (in black). Model
performance is represented by the gray range, bounded by the model’s performance
estimated with the probabilistic rule on the bottom and the discrete-choice rule on the top.
A) Accuracy for each of the eight fricatives. B) As a function of vowel context. C) As a
function of speaker.
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Figure 4.
Performance of the cue-integration model and human listeners on the complete syllable
condition. Model performance is represented by the gray range whose lower bound is
performance using the probabilistic rule and whose upper bound reflects the discrete-choice
rule. A) The complete model as a function of fricative. B) The complete model as a function
of vowel context. C) The complete model as a function of speaker.
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Figure 5.
Performance of the cue-integration model and human listeners on the frication-only
condition. Model performance is represented by the gray range whose lower bound is
performance using the probabilistic rule and whose upper bound reflects the discrete-choice
rule. A) As a function of fricative. B) As a function of vowel context. C) As a function of
speaker.
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Figure 6.
Performance of the Compensation/C-CuRE model and human listeners on the complete-
syllable condition. Model performance is represented by the gray range whose lower bound
is performance using the probabilistic rule and whose upper bound reflects the discrete-
choice rule. A) As a function of fricative. B) As a function of vowel context. C) As a
function of speaker.
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Figure 7.
Log-likelihood for each of the models as a function of the guess rate.
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Table 3

Summary of regression analyses examining effects of speaker (20), vowel (6) and fricative (8) for each cue.
Shown are R2

change values. Missing values were not significant (p>.05). The final column shows secondary
analyses examining individual contrasts. Each cue is given the appropriate letter code if the effect size was
Medium or Large (R2

change>.05). A few exceptions with smaller effect sizes are marked because there were
few robust cues to non-sibilants. Sibilant vs. non-sibilant (/s, z, ∫, ʒ/ vs. /f, v, θ, ð/) is coded as S; voicing is
coded as V; place of articulation in non-sibilants (/f, v/ vs. /θ, ð/) is coded as Pn; and place of articulation in
sibilants (/s, z/ vs. /∫, ʒ/) is coded as Ps.

Cue

Contextual Factors

Fricative Identity df=7,2848 Cue forSpeaker df=19,2860 Vowel df=5,2855

MaxPF 0.084* 0.493* S, Ps

DURF 0.158* 0.021* 0.469* S, V

DURV 0.475* 0.316* 0.060* V

RMSF 0.081* 0.657* S, V

RMSV 0.570* 0.043* 0.011*

F3AMPF 0.070* 0.028* 0.483* S, Ps

F3AMPV 0.140* 0.156* 0.076* Pn
1, Ps

F5AMPF 0.077* 0.012* 0.460* S

F5AMPV 0.203* 0.040* 0.046*

LF 0.117* 0.004+ 0.607* S, V

F0 0.838* 0.007* 0.023*

F1 0.064* 0.603* 0.082* V2

F2 0.109* 0.514* 0.119* S, Pn, Ps

F3 0.341* 0.128* 0.054* Pn

F4 0.428* 0.050* 0.121* Pn, Ps

F5 0.294* 0.045* 0.117* Pn, Ps

M1 0.122* 0.425* V, Ps

M2 0.036* 0.678* S, V, Ps

M3 0.064* 0.387* S, Ps

M4 0.031* 0.262* Ps

M1trans 0.066* 0.043* 0.430* S, V, Ps

M2trans 0.084* 0.061* 0.164* Pn
3, Ps

M3trans 0.029* 0.079* 0.403* S, V, Pn, Ps

M4trans 0.031* 0.069* 0.192* S, Pn, Ps

+
p<.05

*
p<.0001
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1
R2change=.043

2
R2change=.045

3
R2change=.038
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Table 4

Summary of the 9 cues that were relatively invariant with respect to speaker and vowel as well as four non-
invariant cues that were included because they provided the best information about place of articulation in
non-sibilants. R2 are change statistics taken from analyses presented in Section 2.

Cue Cue for Context Effects

MaxPF Place in sibilants (R2=.504) Speaker: Moderate (R2=.084)
Vowel: n.s.

DURF Voicing (R2=.40) Speaker: Large (R2=.16)
Vowel: Small (R2=.021)

RMSF Sibilance (R2=.419) Speaker: Moderate (R2=.081)
Vowel: n.s.

F3AMPF Place in sibilants (R2=.44)
Sibilance (R2=.24)

Speaker: Moderate (R2=.07)
Vowel: Small (R2=.028)

F5AMPF Sibilance (R2=.39) Speaker: Moderate (R2=.07)
Vowel: Small (R2=.012)

LF Voicing (R2=.48) Speaker: Moderate (R2=.11)
Vowel: Small (R2=.004)

M1 Place in sibilants (R2=.55) Speaker: Moderate (R2=.122)
Vowel: n.s.

M2 Sibilance (R2=.44)
Place in sibilants (R2=.34)

Speaker: Small (R2=.036)
Vowel: n.s.

M3 Place in sibilants (R2=.37) Speaker: Moderate (R2=.064)
Vowel: n.s.

Non-invariant cues to place in non-sibilants

F4 Place in non-sibilants (R2=.083) Speaker: Large (R2=.43)
Vowel: Small (R2=.05)

F5 Place in non-sibilants (R2=.082) Speaker: Large (R2=.29)
Vowel: Small (R2=.045)

M3trans Place in non-sibilants (R2=.061) Speaker: Small (R2=.029)
Vowel: Moderate (R2=.079)

M4trans Place in non-sibilants (R2=.062) Speaker: Small(R2=.031)
Vowel: Small (R2=.069)
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