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Purpose: Accurate patient registration is crucial for effective image-guidance in open cranial surgery.
Typically, it is accomplished by matching skin-affixed fiducials manually identified in the operating
room (OR) with their counterparts in the preoperative images, which not only consumes OR time and
personnel resources but also relies on the presence (and subsequent fixation) of the fiducials during
the preoperative scans (until the procedure begins). In this study, the authors present a completely
automatic, volumetric image-based patient registration technique that does not rely on fiducials by
registering tracked (true) 3D ultrasound (3DUS) directly with preoperative magnetic resonance (MR)
images.
Methods: Multistart registrations between binary 3DUS and MR volumes were first executed to gen-
erate an initial starting point without incorporating prior information on the US transducer contact
point location or orientation for subsequent registration between grayscale 3DUS and MR via max-
imization of either mutual information (MI) or correlation ratio (CR). Patient registration was then
computed through concatenation of spatial transformations.
Results: In ten (N = 10) patient cases, an average fiducial (marker) distance error (FDE) of 5.0 mm
and 4.3 mm was achieved using MI or CR registration (FDE was smaller with CR vs MI in eight
of ten cases), which are comparable to values reported for typical fiducial- or surface-based patient
registrations. The translational and rotational capture ranges were found to be 24.0 mm and 27.0◦ for
binary registrations (up to 32.8 mm and 36.4◦), 12.2 mm and 25.6◦ for MI registrations (up to 18.3 mm
and 34.4◦), and 22.6 mm and 40.8◦ for CR registrations (up to 48.5 mm and 65.6◦), respectively. The
execution time to complete a patient registration was 12–15 min with parallel processing, which can
be significantly reduced by confining the 3DUS transducer location to the center of craniotomy in
MR before registration (an execution time of 5 min is achievable).
Conclusions: Because common features deep in the brain and throughout the surgical volume of
interest are used, intraoperative fiducial-less patient registration is possible on-demand, which is at-
tractive in cases where preoperative patient registration is compromised (e.g., from loss/movement
of skin-affixed fiducials) or not possible (e.g., in cases of emergency when external fiducials were
not placed in time). CR registration was more robust than MI (capture range about twice as big) and
appears to be more accurate, although both methods are comparable to or better than fiducial-based
registration in the patient cases evaluated. The results presented here suggest that 3DUS image-based
patient registration holds promise for clinical application in the future. © 2012 American Association
of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4767758]
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I. INTRODUCTION

Intraoperative navigation based on preoperative images has
become the standard-of-care in most open cranial procedures
because it enables more effective neurosurgical interventions.
An accurate image-to-patient transformation (commonly re-
ferred to as “patient registration”) is crucial to the overall
performance of intraoperative neuronavigation because it de-

fines the degree of alignment between structures of interest
in the operating room (OR) and their counterparts in preop-
erative images (most often preoperative magnetic resonance,
MR, and computed tomography, CT). Seamless integration of
the registration procedure with surgical workflow is becom-
ing increasingly important as pressures mount to improve ef-
ficiencies in all phases of OR patient management in order to
increase throughput and/or reduce health care costs.

7540 Med. Phys. 39 (12), December 2012 © 2012 Am. Assoc. Phys. Med. 75400094-2405/2012/39(12)/7540/13/$30.00

http://dx.doi.org/10.1118/1.4767758


7541 Ji et al.: Patient registration without fiducials 7541

Patient registration is typically accomplished by matching
a set of homologous fiducial markers implanted in skull or
affixed to skin with their corresponding locations identified
in MR. Matching skull-implanted fiducials yields the high-
est registration accuracy [∼1 mm (Ref. 1)], and is often re-
garded as the “gold standard”; however, registration based on
skin-affixed fiducials is more common in practice due to their
noninvasiveness, despite the relatively inferior registration ac-
curacy [typically 2–5 mm (Refs. 2 and 3) in terms of fiducial
registration error, FRE (Ref. 4)]. Fiducial-based registration
(FBR) usually requires manual identification of the markers in
the OR (typically with a digitizing stylus) as well as in image
space, which not only consumes personnel time but also in-
volves communication and coordination between individuals
with sufficient expertise to ensure proper anatomical/image
pairing. FBR may also require special imaging sequences in
addition to typical diagnostic scans, which can add time and
associated costs. Because fiducials must remain on the pa-
tient’s head from the start of preoperative image acquisition
(usually on the day of surgery) until registration is completed
in the OR, risks of marker movement, loss, or removal (in
which case patient registration may be compromised or even
become infeasible) always exist (typically FBR is no longer
possible once surgery begins).

As a result, alternative patient registration techniques that
do not rely on fiducials have been of considerable inter-
est. Various approaches have been proposed and their per-
formances examined. Although methods based on discrete
anatomical landmarks are simple to implement, they have not
gained acceptance in practice because their registration accu-
racy has been limited.5 Most fiducial-less techniques rely on
surface-based registration (SBR) in which the natural curva-
tures/features of the face, forehead (e.g., Refs. 6–10), or ex-
posed cortical surface (e.g., Refs. 11 and 12) are recovered
with laser range scanning6–9, 11 or stereovision.10 Registration
is then performed by matching the reconstructed surface in
the OR with its counterpart derived from MR or CT using al-
gorithms based on the iterative closest point (ICP; Ref. 13)
technique. When texture information is available, image in-
tensity has also been employed to enhance registration (e.g.,
“surface mutual-information” registration11).

Registration accuracy with SBR has also been evaluated.
Although comparing the registration accuracies between
studies is imperfect because of the multiplicity of error
metrics and techniques which have been used, these quanti-
tative assessments provide important insights into the relative
performance of the various registration techniques that have
been investigated. For example, an accuracy of <3 mm in
target registration error (TRE; Ref. 4) can be achieved in the
frontal region using natural facial contours for registration,10

but TRE degrades significantly in regions farther away from
the surface (e.g., Refs. 6 and 7). Mascott et al.14 statistically
compared the performances of FBR and SBR and confirmed
that skull-implanted fiducials yield statistically superior reg-
istration accuracy (1.7 ± 0.7 mm). However, no significant
difference in accuracy was found in other skin-based methods
by matching either fiducials or surfaces (4.0 ± 1.7 mm),
except when discrete anatomical landmarks were used instead

(4.8 ± 1.9 mm). Similarly, a more recent comparison between
different registration techniques suggests that extracranial
methods using skin fiducials or face-based registrations are
statistically equivalent in terms of TRE (5.3 mm) based on
distinct vessel bifurcations and gyral points taken as targets
from the exposed cortical surface. However, the accuracy
was improved significantly (to approximately 2 mm) with
intracranial reregistration using discrete features, vessels, or
intensity in an effort to compensate for brain shift.12

In addition to having similar registration accuracy, SBR
and FBR are also both performed before the start of surgery
(or at the very beginning of surgery in the case of intracranial
reregistration12). Once retraction or tumor resection occurs
which prevent access to or distort features used for establish-
ing correspondence, patient registration is no longer possible.
Further, because same-sided superficial features are typically
involved in SBR techniques, degradation of TRE away from
these surfaces (e.g., Refs. 6 and 7) and deeper in the brain
may occur which could lead to poor and/or erratic registra-
tion accuracy when the tumor or other structures of interest
are located well below the surface.

In this paper, we present an image-based patient regis-
tration technique that directly establishes coordinate system
correspondence between tracked 3D volumetric ultrasound
(3DUS) and the MR image volume automatically and
without fiducials or other information on the location and
orientation of the US scan-head. Similar to SBR methods, the
approach does not rely on fiducials or require manual image
processing operations; however, it differs significantly from
other techniques because volumetric image data including
features deep in the brain (as opposed to on the surface) are
used for registration, which reduces TRE within the surgical
volume of interest (e.g., around the tumor) when located
deeper in the brain. In addition, our registration technique
allows intraoperative patient registration on-demand even
after surgery begins or in emergency cases when preoperative
patient registration is not always possible (because fiducials
were not in place in time) as long as features deep in the brain
are visible in 3DUS. Although US has been successfully
applied to improve fiducial-based patient registration at
the start of surgery by reregistering with MR images to
compensate for initial brain deformation (e.g., Refs. 17
and 30), the technique reported in this paper represents a
significant advance because it achieves the same advantage
of volumetric image-based patient registration but does so
automatically and without fiducials or other prior information
on location/orientation of the US transducer.

Intensity-based registration between US and MR is chal-
lenging because of differences in their underlying physics
and image characteristics.15 Successes with both mutual
information (MI) and correlation ratio (CR) (along with their
variants) as image similarity measures have been reported
(e.g., for brain,16, 17 liver,18 and phantoms19 based on MI; and
for brain20, 21 based on CR). For example, Rasmussen et al.16

developed a coregistration method for automatic brain-shift
correction by rigidly registering reconstructed 3D US with
MR using MI-based image similarity metrics (either between
anatomical US and MR images or between power-Doppler
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US and MR angiography). More recently, we have also
employed normalized mutual information (nMI) as an image
similarity metric to reregister 2D US images with MR using
an initial starting point generated from FBR. In these studies,
we achieved millimeter-level registration accuracy around
the tumor boundary (reduced from an initial misalignment of
2.5 mm on average with a maximum of 4.9 mm) with trans-
lational and rotational capture ranges of 5.9 mm and 5.2◦,
respectively.17 In parallel, Roche et al.26 developed CR as a
new image similarity measure based on standard theoretical
statistics. Its applications to MR, CT, and PET images suggest
that CR provides a favorable trade-off between accuracy and
robustness. Subsequently, the authors extended the measure
to include both MR intensity and gradient information (i.e.,
bivariate-CR) to register MR with US and achieved accuracy
comparable to MR voxel resolution using phantom, pediatric,
and adult brain datasets. Comparison of the original CR (i.e.,
monovariate) and MI suggested that the relative robustness
of these different image similarity measures largely depends
on the image data and whether MR intensity or gradient
images were used. Similarly, a more recent comparison21 of
registration between reconstructed US and MR of the liver
using nMI, CR, and their variants found that accuracy was
predominantly a function of the quality and sampling volume
of the US images. However, CR (with a MR-gradient-norm
image volume) was significantly more robust, although with
longer computation times (about twice that of nMI).

Given these prior investigations, we investigated both MI
and (monovariate) CR image similarity measures to rigidly
register 3DUS with gradient-encoded MR as the basis for pa-
tient registration without using fiducials or introducing prior
information on the US transducer contact point location and
orientation, and compared their relative performances. The
details of our image-based registration technique and its out-
comes with MI and CR applied to MR and 3DUS image data
from ten patient cases are presented in the following sections.

II. METHODS

Establishing the spatial transformation between the 3DUS
and MR image volumes directly is key to successful pa-
tient registration without using fiducials. For operational ac-
ceptance, a fully automated procedure which requires as lit-

tle prior information as possible, but is sufficiently accurate
(comparable or superior to FBR) and robust, is desired. To this
end, a two-step registration scheme was developed in which
binary image volumes generated from 3DUS and MR were
first registered. The resulting registration provided an ini-
tial starting point for a second registration between grayscale
3DUS and MR volumes (details appear in Secs. II.C and II.D,
respectively).

II.A. Image acquisition

Ten (N = 10) patients undergoing open cranial proce-
dures (nine tumor resections and one epilepsy surgery) where
intraoperative 3DUS was deployed at Dartmouth-Hitchcock
Medical Center were retrospectively evaluated in this study
(Table I). Patient recruitment and image analyses were ap-
proved by the Institutional Review Board at Dartmouth
College. The only criterion for inclusion in the analysis was
the presence of parenchymal boundary features contralateral
to the craniotomy in 3DUS. All patients had T1-weighted,
gadolinium-enhanced axial MR scans from a 1.5 T GE scan-
ner prior to surgery (256 × 256 × 124; voxel size in dx × dy
× dz: 0.94 × 0.94 × 1.5 mm3; 16-bit grayscale). The brain
was automatically segmented with a level-set technique22 to
generate a triangular brain surface. For each patient, a set
of 3DUS volumes was acquired (3–9 volumes) before dural
opening using a broadband matrix array transducer (X3-1)
connected to a dedicated ultrasound system (iU22, Philips
Healthcare, N.A.; Bothell, WA). For consistency across pa-
tients, we used the first 3DUS image volume with sufficient
scan-depth (typically 14–16 cm) to capture the parenchymal
boundary contralateral to the craniotomy for patient registra-
tion. All image acquisitions were configured to cover the max-
imum angular ranges allowed by the scanner (−42.9◦ to 44.4◦

in θ , and −36.6◦ to 36.6◦ in ϕ, respectively; see Ref. 23 for
details of 3DUS image format and coordinate system).

II.B. Coordinate systems involved
in patient registration

Because image-to-patient registration was computed by
concatenating spatial transformations, a “world” coordinate
system was necessary to provide a common reference and was

TABLE I. Summary of patient age, gender, type, and location of brain lesion, and size of craniotomy.

Patient Age/gender Type of lesion Location of lesion Size of craniotomy

1 46/M Low grade glioma Left frontal 10 × 6 cm2

2 27/F Epilepsy Right parietal 5 × 5 cm2

3 51/M Low grade glioma Right frontotemporal insula 6 × 7 cm2

4 60/F Meningioma Supratentorial 6 × 6 cm2

5 74/F Meningioma Right frontal 6.5 × 6.2 cm2

6 50/F Meningioma Right temporal 3.5 × 3.5 cm2

7 48/F Low grade glioma Left fronal 7.4 × 4.5 cm2

8 70/F Glioblastomamultiforme Right temporal 6 × 6 cm2

9 56/M Glioblastomamultiforme Left frontal 7 × 6.2 cm2

10 55/M Low grade glioma Left frontal 10 × 7 cm2
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FIG. 1. Coordinate systems involved in patient registration. Solid/dashed arrows indicate transformations determined from calibration/registration. A transfor-
mation reversing the arrow direction is obtained by matrix inversion.

defined by an optical tracking system (Polaris; The North-
ern Digital Inc., Canada) that determines the spatial posi-
tions and orientations of the trackers rigidly fixed to the pa-
tient’s head clamp and 3DUS transducer (i.e., patientTworld and
US_trackerTworld, respectively; Fig. 1). In order to transform the
3DUS image volume from its image coordinate system into
the tracker space (i.e., US_trac kerTUS), the transducer was cal-
ibrated prior to surgery using phantom images (with an ac-
curacy of approximately 1 mm; Ref. 24). When the spatial
transformation between 3DUS and MR image volumes (i.e.,
MRTUS) is available, the transformation between the patient in
the OR and MR (i.e., “patient registration” or MRTpatient) can
be readily computed from

MRTpatient = MRTUS × inv
(US_tracker

TUS
) × US_trackerTworld

× inv
(patient

Tworld
)
, (1)

which completes the volumetric image-based patient registra-
tion technique described this work (Fig. 1).

The FBR was computed by matching two sets of homolo-
gous markers separately identified in the OR using a digitizing
stylus (typically 8–10 fiducials were successfully identified)
and in the MR image space using a custom interactive soft-
ware tool. These markers were not paired (no special effort
was made to record their acquisition orders with either the
digitizing stylus or the software interface to simplify surgical
workflow at the start of a case), and a genetic algorithm25 was

used to establish the transformation between the patient in the
OR and MR [i.e., MRTpatient in Eq. (1)]. Figure 2 illustrates a
representative fiducial marker layout used for patient registra-
tion in a typical surgery.

II.C. Binary image volume registration

Instead of registering grayscale 3DUS and MR directly, bi-
nary registrations were performed to generate an initial start-
ing point without imposing any prior information on the point
of contact of orientation of the US transducer with respect to
the segmented brain surface. Essentially, binary image vol-
umes highlighting parenchymal boundaries opposite to the
craniotomy from both 3DUS and MR were produced via au-
tomated image preprocessing (see Sec. II.D for details). The
sum of squared intensity differences (SSD; Ref. 15) was cho-
sen as the image similarity measure and a gradient descent
optimization was applied.

Because an initial alignment between the binary image
volumes was purposely not introduced, a multistart approach
was implemented using a set of random initial positions. To
generate these initial starting points, the 3DUS transducer
was assumed to be in contact with and pointing towards
the parenchyma during image acquisition. Conceptually,
when the location of craniotomy is known, the transducer
tip location relative to the brain can be further constrained
(e.g., via manual positioning of the transducer), which would
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FIG. 2. Illustration of fiducial markers identified in the OR (long thin lines represent the sequence of markers located with a digitizing stylus; nine markers in
total) and in the MR image space (short thin lines; ten markers in total) for patient 6. Six fiducial markers (black dots) that produced the best FRE were used to
determine patient registration in this case. The computed gravitational vector in the OR is also shown for reference (patient was lying on the right).

reduce the number of initial starting points necessary for
successful registration convergence. In this work, however,
we minimized the use of any prior knowledge about the
initial starting point relative to patient in order to explore
the clinical feasibility and potential utility of the technique.
Therefore, a subset of triangulated brain surface nodes (50
in total) was randomly chosen as potential transducer tip
positions, and the central axis of the 3DUS image (i.e., both
θ and ϕ are zeroed) was positioned along the corresponding
surface normal. The only remaining degree-of-freedom
(DOF) was the transducer’s orientation with respect to the
central axis (0◦–360◦), and ten equally spaced orientations
were generated for each transducer position. In total, 500 (50
× 10) initial starting positions were evaluated [see Fig. 3(f)
or illustration of the initial starting points].

FIG. 3. Generation of random initial starting points for registering binary
3DUS and MR image volumes. A typical transducer location was generated
to coincide with a brain surface node and was directed along the inward
(towards the parenchyma) normal. Equally spaced angular orientations of
the transducer were subsequently created (dashed fan-shapes showing two
representative orientations). The “true” location of the 3DUS relative to the
triangular brain surface is also shown for comparison.

II.D. Registration between grayscale image volumes

For each patient, the converged transformation correspond-
ing to the minimum SSD among all binary image registrations
was selected as the initial starting point for the subsequent
volumetric grayscale image registration. Two image similar-
ity measures, mutual information (MI; Ref. 15) and correla-
tion ratio (CR; Ref. 26) were used to register preprocessed
grayscale 3DUS and MR image volumes (see Sec. II.D for
details on image preprocessing) in order to compare their reg-
istration performances. Given two image sets, X and Y, their
MI (I(X,Y)), is defined as

I (X, Y ) = H (X) + H (Y ) − H (X, Y ), (2)

where H(X) and H(Y) are the marginal entropy of the re-
spective images, and H(X,Y) is their joint entropy. A gradi-
ent descent optimization scheme in the Insight Segmentation
and Registration Toolkit (ITK; version 3.10; Ref. 27) was
utilized to maximize MI between the 3DUS and MR image
volumes.15, 17

CR-based registration of two images, X and Y, finds a spa-
tial transformation, T, that maximizes the functional depen-
dence between the two images defined as

η(Y |X ) = 1 − Var[Y − E(Y |X )]

Var(Y )
, (3)

where η(Y|X) is the correlation ratio, E(Y|X) is the conditional
expectation of Y given X, and Var(Y) is the variance. Imple-
mentation Eq. (3) was based on a discrete approach.26 Specif-
ically, for an overlapping image region, �, the total number
of voxels is defined as its cardinal, N = Card(�). Similarly,
for iso-sets of X, �i = {ω ∈ �, X(ω) = i}, their cardinals, Ni

= Card(�i), also represent the total number of voxels in each
set. The total (σ ) and conditional (σ i) variance and the mean
of Y for the overlapping region as well as for iso-sets of X(m
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FIG. 4. Image preprocessing of MR to generate its binary image volume (patient 8): (a) axial MR image; (b) binary image of the segmented brain; (c) thresholded
gradient image; (d) dilated parenchymal surface.

and mi, respectively) are determined from

σ 2 = 1

N

∑
ω∈�

Y (ω)2 − m2, m = 1

N

∑
ω∈�

Y (ω) (4)

and,

σ 2 = 1

Ni

∑
ω∈�i

Y (ω)2 − m2
i , mi = 1

Ni

∑
ω∈�i

Y (ω), (5)

respectively, in which case the expression for CR is finally
obtained as26

η(Y |X ) = 1 − 1

Nσ 2

∑
i

Niσ
2
i . (6)

We implemented CR-based registration through the Insight
Segmentation and Registration Toolkit (ITK; version 3.10;
Ref. 27) with multithreading to compute the similarity
metric.

II.E. Preprocessing of MR and 3DUS image volumes

Generation of the binary image volumes was achieved
through automatic preprocessing with computation time of
less than 20 s on average. Specifically, for each MR volume,
a gradient image of the segmented brain was produced. The
resulting gradient image volume was then thresholded29 to
highlight parenchymal features, and further dilated (with a

kernel of 5 × 5 × 5) to emulate its appearance in the cor-
responding 3DUS image volume as illustrated in Fig. 4.

For 3DUS, the acquisition was rasterized into a 200 × 200
× 200 Cartesian grid [Ref. 28; Fig. 5(a)], Gaussian smoothed
(with a kernel of 5 × 5 × 5) to reduce speckle noise
[Fig. 5(b)], and thresholded29 to produce a binary image vol-
ume [Fig. 5(c)]. The result was eroded (with a kernel of 3
× 3 × 3) to create the largest connected region in 3D and
dilated [with a kernel of 3 × 3 × 3; Fig. 5(d)]. Erosion
and dilation maximized the presence of parenchymal bound-
ary features while minimizing the appearance of internal
structures.

Prior to grayscale registration, the MR (grayscale) gradi-
ent image was Gaussian smoothed (with a kernel of 5 × 5
× 5) to emulate the feature appearance in 3DUS [Fig. 6(a)].
Each gray-level 3DUS volume was also Gaussian smoothed
(with a kernel of 5 × 5 × 5) to reduce speckle noise and
only voxels with intensities larger than the global threshold
value were retained for registration [effectively, this result in
Fig. 6(b) was generated by multiplying images corresponding
to Figs. 5(b) and 5(c) at the voxel level].

II.F. Registration accuracy

Quantitative evaluation of patient registration accuracy is
a practical challenge because homologous internal points are
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FIG. 5. Image preprocessing of 3DUS to generate its binary image volume (patient 8). (a) rasterized 3DUS image; (b) 3DUS after Gaussian smoothing and
thresholding; (c) corresponding binary image; and (d) binary image after erosion, selection of largest connected region in 3D, and dilation.

difficult to identify with certainty in 3DUS and MR for true
TRE assessment. One approach uses segmented features such
as tumor boundaries (e.g., Refs. 17 and 30) or centerlines of
segmented vessels (e.g., Refs. 30 and 31) to assess TRE. How-
ever, these methods introduce segmentation errors that can be
equally difficult to assess. More importantly, our 3DUS ac-
quisitions at the start of surgery were optimized to acquire
parenchymal features contralateral to the craniotomy to fa-
cilitate initial binary image registration (and not to highlight
tumor boundaries per se, which are often located closer to the
transducer). We also did not have routine access to MR an-

giography or power Doppler US images in the patient cases
used in the study; hence, vessel features were not always
available in the conventional T-1 weighted MR or B-mode
3DUS image volumes for quantitative evaluation of registra-
tion accuracy.

Instead, we computed the mean FDEs (analogous to FREs)
using spatial transformations generated from both the bi-
nary and grayscale image registrations based on either MI
or CR maximization. These distance results were then com-
pared with the corresponding FREs from the fiducial-based
approach, which effectively provided an objective evaluation

FIG. 6. Illustration of typical preprocessed grayscale (a) MR and (b) 3DUS image volumes for CR reregistration.

Medical Physics, Vol. 39, No. 12, December 2012



7547 Ji et al.: Patient registration without fiducials 7547

of the different registration transformations relative to the
clinical standard (i.e., fiducial-based registration). Mathemat-
ically, FRE (Ref. 4) is defined as

FRE =
√√√√ 1

L

L∑
i=1

‖qi − Tf idpi‖2, (7)

where Tfid represents the spatial transformation obtained from
the fiducial-based approach, qi and pi are the corresponding
fiducial point locations identified in the MR image space and
in the OR physical space, respectively, and L is the total num-
ber of fiducial markers used. Analogously, the FDE is defined
as

FDE =
√√√√ 1

L

L∑
i=1

‖qi − Tpi‖2, (8)

where T is the spatial transformation under scrutiny obtained
from the registrations based on either binary or grayscale
images.

To further quantitatively evaluate the spatial similarity (as
opposed to the “true” accuracy based on TRE) of the MI-
and CR-based registrations, we computed the converged lo-
cations of 3DUS image voxels of prominent features (seg-
mented via thresholding) using the two registration transfor-
mations. The average distances between corresponding point-
pairs were then obtained to assess the spatial similarity in the
registration results from the two methods.

II.G. Capture ranges

Capture range quantifies the extent to which the initial
starting point parameters in an iterative registration algorithm
can be perturbed from their converged values, and the reg-
istration process returned with a high probability to a con-
verged solution in which voxels in the floating image volume
are transformed into the same spatial neighborhood.32 Cap-
ture ranges of the binary and grayscale image registrations
are of practical significance because they define the robust-
ness of the technique, which is important to understand for
clinical application in the OR. In this work, both translational
and rotational capture ranges were evaluated. A perturbation-
reregistration approach similar to that described in Ref. 17
was employed, in which a converged registration was used
to generate perturbations that served as starting locations for
additional registrations. A converged registration was consid-
ered to be one that corresponded to the minimum sum of
squared differences (SSD) for the binary image data and max-
imized MI or CR for grayscale image volumes, respectively.
The floating 3DUS image volume was transformed according
to these converged registrations and was systematically per-
turbed by either a linear translation or a pure rotation with step
sizes of 0.25 mm and 0.25◦, respectively, where the direction-
ality of the translational/rotational axis passing through the
centroid of all floating image voxels was randomly generated
in space. The “ground-truth” locations of the floating voxels
were determined from the average of all converged locations
(i.e., image voxel locations when the registration optimization

converged) in which the perturbation magnitude (i.e., the ini-
tial translational and rotational perturbations) was less than
1 mm and 1◦, respectively (four perturbations of each). Reg-
istration of floating image volumes with larger perturbations
were then executed via SSD minimization or MI/CR maxi-
mization (for binary and grayscale image volumes, respec-
tively), and the converged locations of the floating image vox-
els were compared to their respective ground truth counter-
parts. A successful registration was considered to occur when
the average distance between the two sets of point locations
(i.e., distance error) was no more than 2 mm.17 The transla-
tional and rotational capture ranges were then defined by the
maximum perturbation at or below which the registration suc-
cess rate was at least 95%.

II.H. Data analysis

For each patient, all binary image registrations were ex-
ecuted independently and in parallel on two Linux clusters
(2.8–3.1 GHz; 8–16 G RAM) that had a total of 15 dual-quad
nodes, allowing 120 (15 × 8) single-threaded registrations
to be performed simultaneously. For MI and CR registration,
multithreading with 8 CPUs was employed. A sampling rate
of 50% was applied to the floating image volume for all reg-
istrations as a reasonable trade-off between sufficient regis-
tration robustness in terms of convergence and computation
time. All of the registrations performed in this study were
rigid as intraoperative 3DUS image volumes were acquired
before dural opening at which time minimum brain shift is
expected, especially for anatomical features deep in the brain
that are used for registration. All registration algorithms were
implemented in ITK.

For each patient, accuracy from the binary, MI and CR reg-
istrations was quantitatively compared with the fiducial-based
approach in terms of the resulting FDEs. These registration
accuracies were also compared statistically using Wilcoxon’s
paired tests (which do not require normally distributed data)
to examine whether the average registration accuracy differed
significantly with choice of registration approach. If the dif-
ference in registration accuracy was found to be statistically
significant, Wilcoxon and sign tests were further performed
to evaluate whether the difference was clinically relevant. To
assess the clinical relevance of any FDEs that were found
to be statistically different between the registration methods,
we added an increment to the mean FDE of the method with
smaller error (up to 2 mm, which is consistent with the thresh-
old used to define a successful registration in Sec. II.G), re-
computed the statistical tests and found the largest increment
which eliminated the statistical difference in the FDEs of the
methods as a way of quantifying the clinical relevance of
the statistical differences that could then be judged accord-
ingly (rather than subjectively picking a single threshold for
clinical relevance and testing for statistical significance). For
all statistical analyses, the significance level was defined at
95%. In addition, the relative similarity of the MI- and CR-
based image registrations was evaluated in terms of the av-
erage distance between converged voxel pair locations from
the resulting spatial transformations. The translational and
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rotational capture ranges using the binary, MI and CR regis-
trations were reported for each patient. Finally, typical execu-
tion times to complete image-based patient registration were
also indicated. All data analyses were performed in MATLAB

(Release 2010b, Mathworks, Inc.).

III. RESULTS

For all patients, the spatial transformation between 3DUS
and MR generated from either the binary, MI, CR, or fiducial
registrations was used to produce image overlays for quali-
tative assessment of registration accuracy. Representative re-
sults are illustrated in Fig. 7 for four patient cases. The binary
image registrations successfully generated an initial transfor-
mation with sufficient proximity between features in the two

image volumes (see left column in Fig. 7) that the alignment
could be further improved with either MI or CR registration
(second and third columns in Fig. 7, respectively) using fea-
tures both at the parenchymal boundary and deep in the brain.
The resulting feature alignment was comparable to or even
better than the correspondence obtained from the fiducial-
based approach (fourth column in Fig. 7).

Registration accuracy was quantitatively evaluated using
FDEs for the ten patients and these results are reported in
Table II, together with the average FDEs for the pooled popu-
lation. Wilcoxon and sign tests indicate that both MI and CR
registrations significantly reduced the FDE relative to binary
registration, and that the thresholds for preserving the statis-
tical significance in mean FDE between MI and binary regis-
tration and CR and binary registration were added-increments

FIG. 7. Overlays of 3DUS and MR for four patient cases using transformations generated from the binary (first column), MI (second column), CR (third
column), and fiducial (fourth column) registrations. Representative feature alignment is noted between MI, CR, and fiducial registrations (arrows).
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TABLE II. Summary of fiducial distance errors (mean ± std) between markers for the ten patients using transformations generated from the binary (FDEbin),
MI (FDEMI), and CR(FDECR) registrations, along with the fiducial-based FRE (FREfid). Units are in mm.

Patient 1 2 3 4 5 6 7 8 9 10 Avrg.

FDEbin 6.4 ± 2.9 3.6 ± 1.0 7.5 ± 0.9 4.7 ± 2.1 7.8 ± 1.6 6.4 ± 2.0 5.7 ± 1.7 7.9 ± 1.7 7.6 ± 3.2 5.7 ± 2.6 6.3 ± 1.5
FDEMI 5.3 ± 1.1 3.2 ± 0.9 7.4 ± 0.8 3.7 ± 0.7 4.7 ± 2.4 4.3 ± 1.2 4.2 ± 1.8 7.1 ± 2.1 4.2 ± 1.2 5.7 ± 1.6 5.0 ± 1.4
FDECR 4.7 ± 1.2 2.8 ± 0.9 3.5 ± 0.9 3.6 ± 1.1 4.3 ± 1.7 3.9 ± 1.8 5.1 ± 2.0 5.3 ± 1.8 5.7 ± 1.6 4.5 ± 1.2 4.3 ± 0.9
FREfid 3.4 ± 1.9 6.1 ± 2.6 3.8 ± 1.9 2.9 ± 1.1 6.3 ± 0.7 4.9 ± 2.4 4.2 ± 2.9 6.8 ± 2.0 5.1 ± 2.4 6.3 ± 2.0 5.0 ± 1.4

of 0.2 mm and 0.8 mm, respectively. These results suggest
that MI or CR registration based on the starting point pro-
vided by binary registration is important and necessary to fur-
ther improve patient registration accuracy. However, no sig-
nificant difference in FDE was found between outcomes from
the MI and CR registrations, or when comparing with FRE
from fiducial registration (p > 0.05), indicating that the accu-
racy obtained from either the MI or CR registrations as well as
from the fiducial-based approach was statistically comparable
in these surgical cases (although FDE in the CR image regis-
trations was lower than that of MI in eight of the ten cases and
lower in six of ten cases relative to fiducial registration).

The spatial similarity between the two grayscale image
registrations using MI or CR for the ten patient cases is
reported in Table III. Overall, the distance between voxel
pair locations in the 3DUS volume when transformed by the
two registrations averaged 2.6 ± 0.9 mm (ranged from 0.9
to 3.9 mm), which is within the typical FRE from FBR of
2–5 mm, once again suggesting that accuracies from the two
registration methods are comparable.

Representative scatter plots of distance errors as a func-
tion of translational and rotational perturbations for binary,
MI, and CR registrations are shown in Fig. 8 for two pa-
tients. Distance errors were tightly clustered near zero (typi-
cally ∼0.1 mm, ∼0.1–0.01 mm, and∼0.01 mm for binary, MI,
and CR registrations) for successful registrations indicating
their consistency in convergence regardless of initial starting
point.

For each patient, the translational and rotational capture
ranges are summarized in Table IV, together with the aver-
ages for the binary, MI, and CR registrations for the group
of ten cases. The maximum translational (rotational) capture
ranges for the binary, MI, and CR registrations were 32.8 mm,
18.3 mm, and 48.5 mm (36.4◦, 34.4◦, and 65.6◦), respectively.

The computation time for each independent binary regis-
tration was 1–2 min on average resulting in 8–10 min on two
Linux clusters to complete all binary registrations. The com-
putation times for MI and CR registrations were similar and
were typically 3–4 min using 8 threads. The total execution
time was 12–15 min to complete a typical image-based pa-
tient registration.

IV. DISCUSSION

Accurate and efficient patient registration is crucial for ef-
fective deployment of image-guidance systems that navigate
structures of interest based on preoperative images. Although
image registration techniques are relatively mature in image-
guided neurosurgery, new methods are still emerging that seek
to eliminate the dependency on external fiducials without sac-
rificing registration accuracy (e.g., Refs. 6–12) and/or im-
proving registration accuracy in targeted areas (e.g., around
the tumor boundary17 or on the exposed cortical surface12)
through approaches that exploit image features found within
the neighborhoods of interest. Efficiency and convenience rel-
ative to workflow in the OR environment (e.g., reducing per-
sonnel requirements) in order to increase operational through-
put is also increasingly important. Most of these techniques
reconstruct the natural contours of the face and forehead or in-
traoperative cortical surface at the craniotomy through which
either point or surface registration is performed. The fiducial-
less patient registration technique described in this work uti-
lizes a 3DUS image volume to register with its MR counter-
part directly via a rigid image-based approach. The resulting
interimage registration allows the spatial transformation be-
tween the patient’s head in the OR and MR to be determined
through a concatenation of transformations. Similar to other
SBR methods, our patient registration technique is completely
automatic and does not require fiducial markers. However,
it differs significantly from other FBR or SBR approaches
because features deep in the brain are used to establish cor-
respondence enabling intraoperative patient registration on-
demand even after surgery begins (e.g., in emergency cases),
which is usually not possible with existing SBR or FBR meth-
ods that rely on superficial features.

The clinical feasibility of image-based, fiducial-less pa-
tient registration is largely dependent on its accuracy, robust-
ness, and efficiency. A clinically more important measure of
accuracy is perhaps the TRE around the tumor/lesion of sur-
gical interest,33 which is often deep in the brain. Unfortu-
nately, an objective evaluation of TRE is challenging because
ground-truth identification of homologous features in 3DUS
and MR is not readily available. Although segmenting fea-
tures in 3DUS manually (e.g., ventricle, falx, gyri, etc.) and

TABLE III. Summary of average distance between 3DUS voxel pair locations in the MI- and CR-based registrations (units in mm).

Patient 1 2 3 4 5 6 7 8 9 10 Avrg.

Dist. 1.8 ± 0.7 3.0 ± 1.5 3.4 ± 1.2 0.9 ± 0.3 3.5 ± 1.2 3.9 ± 1.8 2.3 ± 0.8 2.5 ± 1.0 2.7 ± 1.1 2.5 ± 0.6 2.6 ± 0.9
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FIG. 8. Representative scatter plots of distance error vs translational (open circle) and rotational (cross) perturbations for binary (a) and (d), MI (b) and (e), and
CR (c) and (f) registrations for two patients (patient 1: top; patient 8: bottom). Distance errors are shown on a log scale. Vertical dashed lines indicate capture
ranges, while the horizontal lines indicate the distance error threshold used to define successful registrations.

comparing them against their counterparts in MR is feasi-
ble, the influence of segmentation errors and crossmodality
feature correspondence on the TRE assessment is difficult to
evaluate. In this paper, we used FDEs as a surrogate measure
of registration accuracy, and found that our volumetric image-
based, fiducial-less MI or CR patient registration is compara-
ble to typical FBR or SBR approaches (FRE ranged 2–5 mm;
e.g., Refs. 2, 3, 12, and 14). Specifically, both MI and CR reg-
istrations significantly reduced the FDE in the initial binary
image registration, and while not statistically different, the
mean FDE of CR image registrations was lower than that of
MI in eight of the ten cases (and in six of ten cases for FBR),
likely due to its smoother feature space17 as indicated by the
much smaller residual displacement error recovered from per-
turbation (Fig. 8).

Our technique offers some potential advantages over
traditional FBR because it could be used to compensate
for registration errors when external fiducial markers are
lost have moved subsequent to preprocedure imaging or
are not available all together. Further, it is likely to be an

improvement over FBR or SBR when more significant brain
deformation has occurred after the dura has been opened
(prior to dural opening brain shift is expected to be small)
or when the area of surgical interest is deeper in the brain.
In this study, we applied image-based rigid registration,
which may become less attractive for maintaining registration
later in a case because of the nonrigid brain movement that
often occurs in the operative field as surgery progresses.
In principle, nonrigid image-based registration methods
could replace the rigid transformations we applied here, but
nonrigid intermodality registration is more challenging to
compute and is less robust.15 Thus, better strategies may exist
such as those that incorporate intramodality image-based
registration as displacement mapping methods which provide
data for model-based image compensation approaches.34

The relative spatial similarity in the registration transfor-
mations generated with MI and CR was also investigated. In
the ten patients evaluated, we found that the average distance
between converged 3DUS voxel locations produced by the
two methods was 2.6 mm. Qualitative assessment of internal

TABLE IV. Summary of translational (mm) and rotational (deg) capture ranges for 3DUS and MR registration using binary, MI, and CR registration for the ten
patient cases.

Patient 1 2 3 4 5 6 7 8 9 10 Average

Transbin 10.3 21.7 26.7 24.5 29.3 23.3 28.3 21.7 21.7 32.8 24.0 ± 6.1
Rotbin 27.1 22.1 32.8 33.6 19.1 30.8 36.4 22.5 20.5 25.5 27.0 ± 6.1
TransMI 14.7 18.3 2.2 16.1 16.5 10.7 16.5 15.1 7.6 4.2 12.2 ± 5.7
RotMI 34.4 26.7 10.3 28.5 28.5 7.4 33.4 32.8 20.9 32.7 25.6 ± 9.7
TransCR 32.9 12.1 20.3 16.1 26.6 48.5 30.2 17.3 10.7 11.4 22.6 ± 12.0
RotCR 65.6 25.3 46.3 28.9 31.2 45.3 52.1 63.0 29.1 21.5 40.8 ± 15.9
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feature alignment (Fig. 7) also confirmed that the volumetric
image-based, fiducial-less patient registration achieved simi-
lar or even improved performance relative to FBR, especially
deeper in the brain or far away from the surface markers.

Translational and rotational capture ranges for the binary,
MI and CR image registrations were compared to evaluate
their relative robustness. When data from the ten patient cases
were pooled, the average translational and rotational capture
ranges were 24.0 mm and 27.0◦ for the binary registrations,
12.2 mm and 25.6◦ for MI registrations, and 22.6 mm and
40.8◦ for the CR registrations, respectively. These values are
much larger than the ranges achieved between 2D US and MR
using nMI (Ref. 17) because of the much larger and more
regularly sampled image volumes available through 3DUS
(relative to reconstructed image volumes from 2DUS). Inter-
estingly, the CR capture ranges were much larger than (nearly
twice) the MI equivalents, similar to the findings reported in
Ref. 21 and are consistent with those reported for pairs of
3DUS image volumes (35.2 mm and 35.8◦ for translational
and rotational capture ranges, respectively;28 32.5 mm for
translational capture range35), and between reconstructed 3D
power Doppler US and MR angiography (40◦ for rotational
capture range36). These comparisons of the robustness of dif-
ferent registrations between US and MR images provide im-
portant quantitative evaluations of their relative performances.
In addition, they suggest that automatic “fiducial-less” patient
registration may not be possible with hand-swept 2D US im-
ages alone. Fully automatic, direct registration of volumetric
grayscale 3DUS and MR may also not be feasible because of
the significant computation time involved, especially when no
prior knowledge on the location of the US transducer (relative
to MR) is provided. In this case (i.e., when no prior informa-
tion on US transducer location is given), a two-step approach
that initially registers binary image volumes of 3DUS and MR
to obtain a starting point for volumetric grayscale image reg-
istration is effective.

The total execution time to complete an volumetric image-
based fiducial-less patient registration was 12–15 min on av-
erage for each patient using either MI or CR, which was com-
parable to the personnel time involved in a typical FBR where
manual localization of markers is necessary (especially, if the
manual effort has to be repeated due to poor registration accu-
racy). Unlike FBR, however, image-based fiducial-less regis-
tration requires no personnel time (beyond 3DUS acquisition
which is typically <10 s). The computational efficiency of
our volumetric image-based fiducial-less patient registration
can be improved by limiting the number of random starting
points visited for binary registration (to generate a sufficiently
well-defined initial registration for further improvement). In
fact, the overall computational efficiency can be improved
significantly by restricting the 3DUS transducer tip location
to the center of the craniotomy (whose size and approximate
position is already known at the time of 3DUS acquisition).
Alternatively, the brain surface can be subdivided into a fi-
nite number of representative zones to standardize the possi-
ble transducer tip locations in order to limit the search range.
Because of the large capture ranges available for CR registra-
tion between 3DUS and gradient-encoded MR (up to 48.5 mm

and 65.6◦ in the cases presented here), multistart registrations
between grayscale 3DUS and MR may be launched directly
without the need for binary registration as a starting location.
In addition, a reduced image sampling rate may be possible
without significantly sacrificing registration accuracy (a 50%
sampling rate was used in all registrations in this work). With
these enhancements, we estimate that a total execution time of
approximately 5 min is readily attainable in the future, and be-
lieve that computation time, alone, will not be a barrier to clin-
ical acceptance of the approach. As illustrated in this study,
we have successfully applied the image-based technique in
ten patient cases involving four types of brain diseases and
have achieved patient registration accuracies comparable to
FBR. Nonetheless, more prospective studies are warranted to
evaluate the approach in a much larger number and range
of clinical cases and to understand and further improve the
performance of the volumetric image-based”fiducial-less” pa-
tient registration technique described here before it can be
considered as a possible replacement for and/or (more likely)
adjunct to FBR because no fiducials will be available after
craniotomy to perform patient registration, which may re-
sult in a loss of image-guidance if the fiducial-less registra-
tion fails. On the other hand, this fiducial-less registration
approach is already applicable in emergency surgical oper-
ations where image-guidance is desired but no fiducials are
typically used to perform conventional fiducial-based patient
registration.

V. CONCLUSION

In summary, we have developed a completely automatic
patient registration technique that does not rely on fiducial
markers by directly registering tracked 3DUS with MR. The
performance of the method was evaluated in ten neurosurgi-
cal patient cases and found to be statistically comparable to
fiducial-based registration regardless of whether mutual infor-
mation or correlation ratio similarity measures were used, al-
though the lowest fiducial distance error (4.3 ± 0.9 mm) was
achieved with correlation ratio on average and in eight out
of the ten cases, individually. CR capture ranges were also
the largest and were about twice the size of those achieved
with MI (22.6 mm and 40.8◦ for CR, vs 12.2 mm and 25.6◦

for MI, respectively). Computational efficiency was compara-
ble, about 10–15 min, independent of whether CR or MI was
used, but can be reduced considerably through several mod-
ifications that are not expected to degrade registration per-
formance (i.e., accuracy, robustness, and convenience). Thus,
computational cost is not anticipated to be a barrier to clinical
acceptance. Because parenchymal features deep in the brain
are utilized, the technique also has the potential for intraop-
erative patient registration that is important for neurosurgical
operations where conventional FBR is not possible or imprac-
tical (e.g., fiducial loss/movement or absence in emergency
cases). However, the current approach does rely on 3DUS fea-
tures and may not be successful in every surgical case. Regis-
tration after craniotomy is potentially very attractive because
of its convenience and efficiency, but also carries some risk
because an alternative registration may no longer be possible
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if the method fails. Continued evaluation of the technique in
a much larger number and range of surgical cases will be crit-
ical to establishing its long-term clinical potential.
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