
Entropy–enthalpy transduction caused by
conformational shifts can obscure the forces
driving protein–ligand binding
Andrew T. Fenley, Hari S. Muddana, and Michael K. Gilson1

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0736

Edited by Barry Honig, Columbia University/The Howard Hughes Medical Institute, New York, NY, and approved October 12, 2012 (received for review
July 30, 2012)

Molecular dynamics simulations of unprecedented duration now
can provide new insights into biomolecular mechanisms. Analysis
of a 1-ms molecular dynamics simulation of the small protein bo-
vine pancreatic trypsin inhibitor reveals that its main conforma-
tions have different thermodynamic profiles and that perturbation
of a single geometric variable, such as a torsion angle or interresi-
due distance, can select for occupancy of one or another conforma-
tional state. These results establish the basis for a mechanism that
we term entropy–enthalpy transduction (EET), in which the ther-
modynamic character of a local perturbation, such as enthalpic
binding of a small molecule, is camouflaged by the thermodynam-
ics of a global conformational change induced by the perturbation,
such as a switch into a high-entropy conformational state. It is noted
that EET could occur in many systems, making measured entropies
and enthalpies of folding and binding unreliable indicators of actual
thermodynamic driving forces. The same mechanism might also ac-
count for the high experimental variance of measured enthalpies
and entropies relative to free energies in some calorimetric studies.
Finally, EET may be the physical mechanism underlying many cases
of entropy–enthalpy compensation.
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The entropic and enthalpic components of free energy can be
informative regarding the mechanisms of biophysical pro-

cesses, like protein folding and protein–ligand binding. Moreover,
information on changes in entropy and enthalpy can usefully
guide the design of improved drug molecules (1), with advanta-
geous specificity (2) and physical properties (3). However, calo-
rimetric studies of biomolecular binding and folding often reveal
unexpected changes in entropy and enthalpy that are difficult to
interpret in terms of physical driving forces (4–8). Some of these
puzzling results are instances of entropy–enthalpy compensation
(9), a common but not universal (10, 11) phenomenon in which
perturbations of a system that increase the enthalpy also increase
the entropy or vice versa; therefore, the net change in the free
energy remains small. Experimental error in measured enthalpies,
particularly when obtained by the relatively imprecise van ’t Hoff
method, can generate spurious entropy–enthalpy compensation
(12); the nonphysical operation of Berkson’s paradox (selection
bias) (13) can also generate this compensation. However, analysis
of collected calorimetric data for protein–ligand binding indicates
that entropy–enthalpy compensation is a genuine and common
physical phenomenon (13).
Today, novel computational technologies, such as graphical

processor units (14–17) and the specialized Anton computer (18),
are enabling dramatically longer molecular dynamics (MD) sim-
ulations than hitherto feasible. The enormous conformational
sampling power of these technologies has the potential to open a
new window on the molecular mechanisms underlying the ther-
modynamics of biomolecular systems. For example, it can provide
increasingly accurate estimates of thermodynamic quantities that
are notoriously difficult to converge, such as configurational en-
tropy (19–21). Such thermodynamic results, coupled with atomistic

structural and dynamical data, hold the potential to address some
of the conundrums in calorimetric data outlined above. Recently,
a 1-ms MD simulation of a relatively simple protein, bovine
pancreatic trypsin inhibitor (BPTI), was released to the scientific
community (22). This simulation provides a level of sampling un-
paralleled by any other biomolecular simulation to date, making
it an ideal dataset for gaining a deeper understanding of the
thermodynamics of proteins.
Here, we present a statistical thermodynamic analysis of the

main conformational clusters observed in the 1-ms BPTI simu-
lation using the maximum information spanning tree (MIST)
(23, 24) approach to estimate configurational entropy. A central
finding is that even this simple protein is delicately poised be-
tween states of similar free energy but very different entropy and
enthalpy. We also introduce a method, based on the Jensen–
Shannon divergence (25, 26), to show that there exists structural
degrees of freedom that can easily be perturbed to drive the sys-
tem into any of the major conformational states. These observa-
tions combine to yield a concept of entropy–enthalpy transduction
(EET), in which local thermodynamic driving forces are trans-
duced into different global thermodynamics through conforma-
tional selection. Finally, we provide a statistical thermodynamic
description of EET that does not rely on the idealization of con-
formational selection. The methods and results presented here
bear on the interpretation of simulation and calorimetry data and
the physical basis for entropy–enthalpy compensation.

Results
We carried out a thermodynamic analysis of the trajectory of the
longest MD simulation of a protein published to date (22), a
1-ms simulation of the small trypsin inhibitor BPTI. The simu-
lation results are available to the scientific community and agree
reasonably well with NMR data (27). The previously defined
conformational clusters (22) 0, 1, and 2 (C0, C1, and C2) account
for 92.3% of the simulation time and include the required number
of simulation snapshots for thermodynamic analysis. Cluster C1 is
the most rigid and similar to crystal structures of BPTI bound to
trypsin (22), whereas C2 is the most mobile (Fig. 1, Upper).
Although the occupancies (probabilities) of the three confor-

mational clusters vary about fivefold, they are of similar stability,
with free energies ranging over only ∼0.95 kcal/mol (1 kcal =
4.18 kJ) because of, essentially, the logarithmic relationship be-
tween probability and free energy (Methods). However, considerably
larger entropy and enthalpy differences underlie these small free
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energy differences. For example, although clusters C1 and C2 are
equistable to within 0.5 kcal/mol, their entropy (−TS) and en-
thalpy differences are, respectively, −3.2 and 3.7 kcal/mol; their
configurational entropy differences are estimated at 19 kcal/mol,
and the more mobile C2 has weaker intraprotein (25 kcal/mol)
and intrasolvent (22 kcal/mol) interactions, partly balanced by
stronger protein-solvent interactions (−42 kcal/mol). The mag-
nitudes of these thermodynamic components reveal an under-
lying potential for much larger swings in energy and entropy:
even slightly imbalanced perturbation of these terms, such as by
mutations or changes in solvent composition, could generate
larger net entropy and enthalpy differences between the clusters.
Because the three conformational clusters are so closely bal-

anced in free energy, small perturbations of the system might
easily shift their probabilities. Such shifts would then be expected
to yield significant changes in the entropy–enthalpy balance at
minimal cost in free energy. In particular, we hypothesized the
existence of control variables, here defined as geometric vari-
ables xi, whose perturbations could select for one of three main
conformational clusters and therefore, influence the global en-
tropy and enthalpy. In searching for such variables, one may use
the fact that a canonical MD simulation contains information on
how the equilibrium distribution of conformations will respond
to local perturbations, because perturbing the marginal proba-
bility distribution function (pdf) of a subset of variables xc from
p(xc) to p′(xc) will cause the equilibrium joint pdf over all vari-
ables x to change from p(x) to p′(x) = p(xjxc)p′(xc). The condi-
tional pdf thus represents a response function of the system to
shifts in the pdf of the control variables (SI Text shows the der-
ivation). We focus here on perturbations in which the accessible
range of a single variable is reduced, because these perturbations
are simple to analyze; also, good statistics are available for the
associated conditional probabilities. Thus, for each cluster Ca,

where a = 0, 1, or 2, we sought a geometric variable xi, either
an interatomic distance or a torsion angle, for which a range
R could be identified such that, to good approximation,
pðCajxi ∈RÞ= 1 and pðxi ∈RjCaÞ= 1. These conditions are best
met when there is little overlap of the pdfs of xi conditioned on
the three clusters, p(xijCa). Because the Jensen–Shannon di-
vergence (25, 26) is zero for identical pdfs and reaches its
maximum (

ffiffiffiffiffiffiffi
ln2

p
) for nonoverlapping pdfs, we used it to define

a metric Mia,

0 ≤ Mia ≡
XNclusters

b≠a
JSD

�
pðxijCaÞkpðxijCbÞ

�
≤ ðNcluster − 1Þðln2Þ1=2;

[1]

which scores the ability of variable xi to select cluster Ca from all
other clusters Cb.
For each cluster, we found multiple carbon α-carbon α dis-

tances (xi) whose Mia scores are near the theoretical maximum of
1.67 (Fig. 2, row 1) and hence, had low overlap of the pdfs p-
(xijC0), p(xijC1), and p(xijC2) (Fig. 2, row 3). For example, re-
stricting the Thr11–Tyr35 distance to be greater than 6 Å (Fig. 2,
row 2) drives the protein almost entirely into cluster C2. Inter-
estingly, experiments have shown that the Tyr35Gly mutation
makes the loop region of BPTI more flexible (28). Note that the
significance of certain carbon α-carbon α distances does not de-
rive from direct energetic interactions between the two corre-
sponding residues, but rather from a complex set of couplings
of each distance with the structure as a whole. We also used the
same analysis to seek other classes of geometric variable that
could yield similarly large values of the Mia metric and indeed,
found a number of torsional pdfs with similarly low overlaps, as
shown in Fig. 2, row 4. This result amplifies the observation that
many control variables are available to shift the conformational
state of this protein.
We validated the ability of the control variables to isolate ther-

modynamically distinct clusters as follows. For each cluster, we
chose the control variable with the greatest value of Mia (1.55,
1.52, and 1.59 for clusters C0, C1, and C2, respectively). We then
reweighted the entire trajectory by imposing on the associated
control variable an infinitely high-walled square-well potential
positioned to select the bulk of the conformations associated with
the desired cluster, while avoiding values of the control variable
shared by any other cluster. The thermodynamic quantities of the
reweighted trajectory were compared with those quantities asso-
ciated with the original cluster. The results for the reweighted
trajectories agree with the original cluster thermodynamics to
within 0.3 kcal/mol for all ΔGab, 0.4 kcal/mol for all ΔEab, and
0.6 kcal/mol for all −TΔSab (Table S1). Thus, the control vari-
ables select the intended conformational substates with their
respective thermodynamic signatures.

Discussion
Thermodynamic and Structural Analysis of the BPTI Simulation. The
present analysis of a long MD simulation indicates that BPTI
can exist in multiple conformational states with distinct thermo-
dynamic signatures, and that a variety of control variables are
available to drive it into selected conformational states. Given
that BPTI is a small protein rigidified by three disulfide bonds and
not normally regarded as allosteric, it seems likely that larger,
more flexible proteins have even greater scope to shift among
global states of different entropy and enthalpy. If so, then various
perturbations of biomolecules, such as ligand binding and muta-
tion, should often be accompanied by changes in entropy and
entropy that derive from global population shifts rather than local
interactions. Even relatively subtle changes, such as chemical
changes across a congeneric series of ligands, could produce large

Fig. 1. (Upper) Representative backbone traces of the main conformational
clusters C0, C1, and C2 as labeled, and their percent occupancies during the
simulation; color and thickness of the traces indicate rms fluctuation of the
backbone (narrow blue, 0.4 Å; thick red, 3.7 Å) after structural superposition.
(Lower) Bar graph of the computed thermodynamics (kilocalories per mole)
of clusters C0 (red) and C2 (green) relative to cluster C1. ΔE, total potential
energy; ΔEprot-prot, potential energy of protein; ΔEprot-solv, interaction energy
of protein and solvent; ΔEsolv-solv, potential energy of solvent; ΔG, free en-
ergy; −TΔS, total entropic free energy contribution; −TΔSconfig, configura-
tional entropy estimated by MIST at second order and corrected by
subtraction of matched results with block-shuffled data; −TΔSsolv, solvent
entropy computed as −T(ΔS − ΔSconfig).

Fenley et al. PNAS | December 4, 2012 | vol. 109 | no. 49 | 20007

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213180109/-/DCSupplemental/pnas.201213180SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213180109/-/DCSupplemental/pnas.201213180SI.pdf?targetid=nameddest=ST1


changes in entropy and enthalpy of binding if the global states are
of similar free energy. Furthermore, because the local forces driv-
ing, for example, ligand binding need not be the same as the global
thermodynamic consequences of binding, one may view the bio-
molecule as transducing the local driving force into a quite dif-
ferent global thermodynamic signature. This phenomenon, essen-
tially a manifestation of thermodynamic linkage (29), may be
termed entropy–enthalpy transduction (EET).

Illustration and Implications of EET. Some of the implications of
EET may be illustrated quantitatively by considering a protein P,
which can occupy either a low-entropy state, A, or a high-entropy
state, B, where the intrinsic free energy difference between the
two states is x kcal/mol (Fig. 3, Upper). The ligand L binds ex-
clusively to state B through mainly enthalpic forces. (Note that,
as in the BPTI analysis above, the changes in entropy and en-
thalpy in this model are considered to include contributions from
the protein, ligand, and solvent.) When x exceeds thermal energy
(RT = 0.6 kcal/mol, and R is the gas constant), the free protein
exists primarily in state B, and the overall binding thermody-
namics are simply the thermodynamics of the ligand’s binding
to B and hence are seen to be enthalpy-driven (Fig. 3, Lower).
When x < −RT, the free protein exists primarily in state A, but
it can switch to the high-entropy state B when L binds; therefore,
the binding process now seems entropy-driven. In this way, the
protein’s ability to switch states on binding enables transduction of

the ligand’s binding enthalpy into entropy. Conversely, the
Tyr35Gly mutant of BPTI, which makes its loops more flexible
without visibly perturbing the trypsin-bound conformation (30),
causes trypsin binding to become more favorable enthalpically
but less favorable entropically (30), which was expected for a
mutation that selectively stabilizes a conformational state similar
in character to cluster C2. The EET mechanism can also reinforce
or amplify the driving forces of binding and other reactions. In
the present example, this would occur if state B, rather than state
A, were more stable enthalpically and less stable entropically. The
enthalpic driving force for binding would then seem much stronger
than the actual enthalpic forces driving ligand binding to the
protein. In general, EET can generate shifts in enthalpy and
entropy that are opposite to or far larger than expected based on
local considerations. This finding implies that calorimetric data
alone cannot be relied on to report the actual thermodynamic
forces driving binding.
Especially when unexpected shifts are observed, a structure-

based search for substantial and potentially functionally relevant
conformational changes may be fruitful, as illustrated by prior
studies of drug binding to various sequences of DNA (31) and
the binding of agonists and antagonists to the A2B adenosine
receptor (32). Changes in NMR-order parameters (33) can be
informative in this regard. In some cases, they indicate increases
in protein flexibility—and hence, presumably in configurational
entropy—caused by protein–ligand binding (34–36). However,

Fig. 2. Identification and analysis of control variables. (Row 1) Heat maps of the Mia values for each cluster a, where the possible control variables xi are Cα–
Cα distances among all 58 residues. The brightest pixels correspond to distances that can best isolate the respective cluster. (Row 2) Representative structure of
the respective clusters, with the Cα–Cα distance, xi, corresponding to the largest Mia value shown as a dashed line. (Row 3) 1D pdfs of the Cα–Cα distances
labeled in the row 2 for all three clusters; the pdf corresponding to the largest Mia value for a particular cluster is shaded. (Row 4) Analogous pdfs corre-
sponding to the largest Mia value for each cluster when torsions are used as the xi instead of Cα–Cα distances.
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an increase in configurational entropy identified in this way may
be balanced by a decrease in solvent entropy, as in the present
calculations and further considered below, leading to either a
positive or negative change in the net entropy. It is also worth
noting that, although likely cases of EET amounting to 10 kcal/mol
or more have been uncovered experimentally (31, 32, 35, 37, 38),
identifying them required a combination of calorimetric and
noncalorimetric experiments. Thus, there are presumably many
systems where EET affects calorimetric results but has not been
brought to light. Similarly, although measured changes in heat
capacity are often used to elucidate the polar or nonpolar char-
acter of a protein–protein binding interface (39), if binding indu-
ces a significant conformational change in either protein, then the
measured heat capacity may not accurately indicate the nature of
the binding interface. The potential significance of this scenario is
supported by the present calculations, because the computed heat
capacity of conformational cluster C2 is ∼0.09 and 0.13 kcal/mol
per Kelvin greater than the computed heat capacities of clusters
C0 and C1, respectively (Table S2).
A biomolecular systemmay access a high-entropy state not only

through increased protein motion, but also through a conforma-
tional shift that leads to release of water or other solvent mole-
cules far from the site of the inducing perturbation. The potential
role of solvent in EET is illustrated by thrombin, whose affinity
for dissolved Na+ increases when substrate binds (40), leading
to possible cobinding of substrate and Na+. Because binding of
Na+ to the enzyme–substrate complex at 300 K is enthalpically
favorable (−18 kcal/mol) and entropically unfavorable (15.6 kcal/
mol) (40), cobinding of substrate with Na+ could cause a substrate
with intrinsic binding that is entropy-driven to seem enthalpy-
driven. More generally, subtle changes in solvent, or indeed, in
other experimental conditions, could lead to marked changes in
measured entropy and enthalpy, with minimal change in free
energy. Thus, in the scenario of Fig. 3, small changes in experi-
mental conditions may produce small changes in the balance
between states A and B (i.e., changes in x) and hence, large var-
iations in the apparent thermodynamics of binding. Such sensi-
tivity to experimental conditions could help explain cases where

the variance of calorimetric enthalpies exceeds the variance of
free energy (41), although other factors can also contribute (42).
Finally, the EET mechanism could underlie many cases of

entropy–enthalpy compensation, a phenomenon in which related
processes, such as a drug-like molecule binding various similar
biomolecules, are associated with similar free energy changes but
seemingly disproportionately large entropy and enthalpy changes
that correlate near-linearly with a slope or compensation tem-
perature, Tc ≡ dΔS

dΔH ≈ T. Entropy–enthalpy compensation is often
explained on physical grounds by arguing that deeper energy
wells are narrower and hence lower in entropy than shallow ones
(43, 44). Although this mechanism may indeed play a role, it is
not known whether the depths and widths of energy wells in fact
anticorrelate or show no correlation at all (45). Moreover, this
mechanism would not explain why compensation is usually near-
linear with slope Tc ≈T. The present analysis of BPTI suggests
that a series of related proteins with similar binding sites could
readily access different conformations of similar free energy but
different enthalpy and entropy. As a consequence, the same li-
gand could bind the series of proteins with similar free energies
but quite different entropies and enthalpies. In this way, the EET
mechanism can lead to highly linear entropy–enthalpy compen-
sation. This observation is broadly consistent with prior sugges-
tions, derived from plausible mathematical models rather than
detailed simulation, regarding the importance of delicately poised
equilibria (46), large fluctuations, and a high density of states (47–
51). Although the EET mechanism can, in this manner, generate
a highly linear correlation between entropy and enthalpy, it can
also generate other thermodynamic patterns. For example, if the
various drug-like molecules that bind a protein drive it into global
conformational states with free energies that vary substantially,
one may still observe a degree of entropy–enthalpy compensa-
tion, but it will not be as clear cut as in a system where the protein
instead moves among states of very similar free energy.

General Formalism for EET. To unify and generalize the ideas
above, we describe here how the concepts of control variables
and response functions allow partitioning of the thermodynamics
of protein–ligand binding into an intrinsic part, due to the
ligand’s direct interactions with the protein, and a transduced
part, due to the long-ranged conformational response to the
ligand’s manipulation of control variables in the binding site:
ΔE = ΔEint + ΔEt, ΔSo = ΔSoint + ΔSt, and ΔGo = ΔGo

int + ΔGt.
(A detailed derivation is provided in SI Text.) Given the full set of
spatial coordinates, x, the coordinates of the atoms local to the
binding site are defined as the control variables, xc, which will be
manipulated by the ligand when it binds. The coordinates of the
remaining atoms are termed the transducing variables, xt, which
will respond to the manipulation of the control variables. For the
free protein, the potential energy function of the whole system
Epðxc; xtÞ is expressed as the sum of a binding site part that de-
pends only on the control variables and a transducing part that
depends on the transducing variables as well. For the energy of
the ligand–protein complex, Eqðxc; xtÞ, the binding site part also
depends on the conformation, position, and orientation of the
ligand, ðxl; r;ωÞ, whereas the ligand’s long-ranged energetic in-
teractions with atoms beyond the binding site may be approxi-
mated as a small constant value, Elt. Thus, binding of the ligand
is approximated as directly affecting only the control variables,
while the energy landscape of the transducing variables remains
unchanged for any conformation of the control variables. This
approximation should be good in a number of cases, such as when
a small ligand binds a large protein. Hence,

Epðxc; xtÞ=EcðxcÞ + Etðxc; xtÞ [2]

and

Fig. 3. Two-state model system illustrating EET. (Upper) The protein P
has two states A and B with a free energy difference of ΔGAB. By con-
struction, state B is higher in entropy and lower in enthalpy than A. Ligand
L binds only state B and hence, drives P from a two- to one-state system. The
overall binding free energy is ΔGPL. (Lower) Overall thermodynamics of ligand–
protein binding as a function of a small free energy bias, x, added to ΔGAB to
shift the preferred unbound state of P from state A (x < 0) to state B (x > 0).
Here, ΔHBL = −7.5, −TΔSBL = 2.5, ΔHAB = 10.0, −TΔSAB = −10.0, and RT = 0.6,
where ΔHBL and −TΔSBL correspond to the enthalpy and entropy of the ligand
L binding to state B. All quantities are in kilocalories per mole.
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Eqðxl; r;ω; xc; xtÞ=
�
Elcðxl; r;ω; xcÞ+Elt

�
+ Etðxc; xtÞ: [3]

The energetic and entropic contributions of the transducing part
of the system may now be expressed as functions of the control
variables, �EtðxcÞ and �StðxcÞ, respectively, and these functions can,
furthermore, be combined to yield the contribution of the trans-
ducing variables to the potential of mean force over the control
variable Wt(xc):

�EtðxcÞ=
Z
pðxtjxcÞEtðxc; xtÞdxt; [4]

�StðxcÞ= −R
Z
pðxtjxcÞ ln pðxtjxcÞdxt; [5]

where R is the gas constant, and

WtðxcÞ= �EtðxcÞ− T�StðxcÞ: [6]

These thermodynamic response functions, which apply to both
the free protein and the complex, are mediated by p(xtjxc), the
pdf of the transduced variables conditioned on the control var-
iables. The net contribution of the transducing variables to the
binding thermodynamics may now be written as

ΔEt =
Z h

pq;cðxcÞ− pp;cðxcÞ
i
E
−
tðxcÞdxc

ΔSt =
Z h

pq;cðxcÞ− pp;cðxcÞ
i
S
−
tðxcÞdxc

ΔGt =
Z h

pq;cðxcÞ− pp;cðxcÞ
i
WtðxcÞdxc

; [7]

where pq,c(xc) and pp,c(xc) are the marginal pdfs over the control
variables for the complex and free protein, respectively, at
equilibrium.
The intrinsic binding terms, which make up the remainder of

the binding thermodynamics, are as follows:

ΔEint = hElciq − hEcip − hElil; [8]

ΔSoint = −R ln
8π2

Co + Sq;lc − Sp;c − Sl; [9]

and

ΔGo
int = ΔEint − TΔSoint: [10]

Here, the angle brackets signify Boltzmann averages for the com-
plex, free protein, and free ligand, respectively; El is the potential
function of the free ligand, and Sx signifies the Gibbs–Shannon
entropies of the subscripted variables for the complex, free pro-
tein, and free ligand, respectively. Note that, although the intrinsic
and transduced quantities are formally separated, the control and
transducing variables are linked in the sense that the potential of
mean force of the control variables, which influences both the
intrinsic and transduced quantities, is determined jointly by both
parts of the system. Thus, the control variables may be viewed as

a boundary between two parts of the system, the ligand and trans-
ducing part of the protein. The present analysis, thus, is reminis-
cent of the fluctuating boundary ensemble (48).
The transduction mechanism, then, operates as follows. When

a ligand binds, it changes the pdf of the control variables from
pp,c(xc) to pq,c(xc), driving the transducing variables to adopt a new
pdf dictated by the response function p(xtjxc) and thus, altering the
thermodynamic contributions of the transducing part of the pro-
tein according to the above expressions. Because there is no re-
quirement that this conformational distribution match any state
of the free protein, conformational selection is not an issue. Also
note that ΔGo

t can be negative in sign. For example, stabilizing
interactions internal to the binding site of the free protein might
hold it in a closed conformation that keeps the transducing part
in an unstable state; then, binding of the ligand could open up
the binding site and allow the transducing part to relax.
Entropy–enthalpy compensation occurs when WtðxcÞ, the trans-

ducing variables’ contribution to the potential of mean force over
the control variables, varies little (e.g., ∼RT or less) over some
conformational region R. In this case, the transducing variables
permit the conformation of the binding site to rearrange freely
within the bounds of R in response to a variety of ligands.
However, saying that WtðxcÞ varies little with xc places no con-
straint on either EtðxcÞ or StðxcÞ individually; therefore, these
components can still vary substantially over R. As a conse-
quence, there can be many possible changes in p(xc) that are
associated with small changes in ΔGt but large changes in ΔEt
and ΔSt. Such changes will lead directly to entropy–enthalpy
compensation across the series of ligands, with compensation
temperatures, Tc, near unity, as commonly observed experimen-
tally. Deviations from such perfect (or strong) (50) entropy–en-
thalpy compensation will occur, however, if some ligands drive
the binding site conformation (i.e., the control variables) into
regions of conformational space associated with large changes in
WtðxcÞ and hence, generate different values of ΔGt or if the in-
trinsic energy and entropy changes vary substantially across the
set of ligands.

Methods
The numerical thermodynamic analysis presented above and detailed in SI
Text is based on the recent 1-ms BPTI simulation (22). Because the simulation
yields a canonical distribution, the relative free energy ΔGab of two clusters
a and b can be estimated as −RT ln(na/nb), where ni is the number of sim-
ulation snapshots in cluster i. By the same token, the Boltzmann-averaged
potential energy of cluster a, Ea, can be computed as a simple mean over the
snapshots in each cluster. The entropy difference between clusters a and b
then is given by −TΔSab = ΔGab − ΔEab. Furthermore, we decomposed the
total energy into protein–protein, water–water, and protein–water contri-
butions and estimated the protein configurational (19, 20) entropy of each
cluster by means of the MIST approach (23, 24). Issues with noise and con-
vergence were minimized by subtracting out the results for block-permuted
data (SI Text). Solvation entropy differences were then estimated as differ-
ences between total entropy differences and configurational entropy dif-
ferences (52). Finally, the heat capacity of each conformational cluster was
computed by application of existing formulae (53). Fig. 1 and Table S2 sum-
marize the results, and Figs. S1, S2, and S3 provide convergence plots of the
various thermodynamic quantities.
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