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Purpose: Simulation of x-ray projection images plays an important role in cone beam CT (CBCT)
related research projects, such as the design of reconstruction algorithms or scanners. A projection
image contains primary signal, scatter signal, and noise. It is computationally demanding to perform
accurate and realistic computations for all of these components. In this work, the authors develop a
package on graphics processing unit (GPU), called gDRR, for the accurate and efficient computations
of x-ray projection images in CBCT under clinically realistic conditions.

Methods: The primary signal is computed by a trilinear ray-tracing algorithm. A Monte Carlo (MC)
simulation is then performed, yielding the primary signal and the scatter signal, both with noise. A
denoising process specifically designed for Poisson noise removal is applied to obtain a smooth scatter
signal. The noise component is then obtained by combining the difference between the MC primary
and the ray-tracing primary signals, and the difference between the MC simulated scatter and the
denoised scatter signals. Finally, a calibration step converts the calculated noise signal into a realistic
one by scaling its amplitude according to a specified mAs level. The computations of gDRR include
a number of realistic features, e.g., a bowtie filter, a polyenergetic spectrum, and detector response.
The implementation is fine-tuned for a GPU platform to yield high computational efficiency.
Results: For a typical CBCT projection with a polyenergetic spectrum, the calculation time for
the primary signal using the ray-tracing algorithms is 1.2-2.3 s, while the MC simulations take
28.1-95.3 s, depending on the voxel size. Computation time for all other steps is negligible. The
ray-tracing primary signal matches well with the primary part of the MC simulation result. The MC
simulated scatter signal using gDRR is in agreement with EGSnrc results with a relative difference
of 3.8%. A noise calibration process is conducted to calibrate gDRR against a real CBCT scanner.
The calculated projections are accurate and realistic, such that beam-hardening artifacts and scatter
artifacts can be reproduced using the simulated projections. The noise amplitudes in the CBCT im-
ages reconstructed from the simulated projections also agree with those in the measured images at
corresponding mAs levels.

Conclusions: A GPU computational tool, gDRR, has been developed for the accurate and efficient
simulations of x-ray projections of CBCT with realistic configurations. © 2012 American Association
of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4766436]
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. INTRODUCTION

Cone beam computed tomography (CBCT) (Refs. 1 and 2)
has become an important tool in medical imaging for direct
visualization of patient anatomy. In many CBCT-related re-
search topics, for instance the design of CBCT scanners and
the development of reconstruction algorithms, it is highly de-
sirable to perform accurate and realistic simulations to ob-
tain x-ray projection images. Not only is this a cost-effective
way of acquiring data without performing real experiments,
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it also offers the opportunities and freedoms to disentangle
all the physical effects in CBCT, such as various types of
scatter signals, so that researchers can specifically focus their
studies.

Generally speaking, there are three components that one
needs to consider in a projection image, namely, primary sig-
nal, scatter signal, and noise signal, all of which are of interest
to certain research projects and applications. The computa-
tions of these components are very demanding, especially if
one would like to achieve a high level of accuracy and realism.

© 2012 Am. Assoc. Phys. Med. 7368
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Over the years, there have been a number of research efforts
dedicated to the computations of these components.

The primary signal characterizes x-ray attenuation while
traveling from an x-ray source to a detector pixel. This
signal forms the fundamentals for the CT technology. There-
fore, computation of the primary signal is widely employed
in studies regarding the design and validation of reconstruc-
tion algorithms. Although it is conceptually straightforward
to compute this signal by ray-tracing methods,*™ it becomes
very computationally intensive to obtain accurate results in
a realistic context. For instance, repeated ray-tracing calcu-
lations are needed in those cases with a polyenergetic x-ray
spectrum, each corresponding to an energy channel.

Scatter signal is the second component of interest. As it is
the primary contamination in CBCT imaging, calculating this
signal serves as the basis for understanding, modeling, and
removing scatter.® Monte Carlo (MC) methods have been
widely used for scatter calculations®'? due to its faithful de-
scriptions of the underlying physical process and the accu-
rate considerations of the problem geometry. Nonetheless, the
extremely prolonged computation time required to achieve
an acceptable precision level has seriously impeded its ap-
plications. To speed up the computations, variance reduction
techniques have been utilized.!% ' Moreover, because of the
smoothness of a scatter signal, it has also been proposed to
compute it on a detector grid with a low resolution and a large
pixel size to improve signal-to-noise ratio, and hence effec-
tively reduce computational time.'>'3 Yet, the computation
time, especially when computing a large number of projec-
tions, is still not satisfactory.

The third component in a projection image is noise. Since
itis usually desirable to acquire CBCT projections at low mAs
levels for the consideration of imaging dose reduction, study-
ing properties of the amplified noise is necessary to facilitate
the development of noise removal techniques. In the past, a
number of noise models have been proposed,'+'¢ where vari-
ance of the noise at each pixel is usually assumed to be a func-
tion of the primary signal and the parameters in these models
are obtained by fitting against measurement data. However,
these models generate noise signals only in a phenomeno-
logical manner, and the physical process of noise formation,
namely the quantum fluctuation of photons arrival at a detec-
tor pixel, is neglected.

To our knowledge, there is no single package that com-
putes all of these components together to an adequate de-
gree in terms of combined accuracy, realism, and efficiency.
This fact motivates us to develop a new package, gDRR,
aiming at meeting all of these requirements. Generally, sat-
isfactory accuracy and realism usually lead to compromised
efficiency. gDRR overcomes this problem by employing
the high-performance platform of graphics processing unit
(GPU), as well as simulation algorithms and schemes suit-
able for GPU. Recently, GPUs have been increasingly uti-
lized in medical physics to speed up computationally inten-
sive tasks.!”-?® In particular, it has been demonstrated that
GPUs can greatly enhance the MC simulation efficiency of
particle transport,>’? the most computationally demanding
task in x-ray projection simulations. Among them, MC-GPU
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(Refs. 30 and 31) has been developed for x-ray radiograph
simulations, and up to ~30 times speedup has been observed
compared to CPU simulations. Yet, the photon transport func-
tions in MC-GPU are essentially a straightforward translation
of the PENELOPE (Ref. 33) subroutines and the well-tuned
implementations in PENELOPE for CPU may not be optimal
on the GPU platform. Moreover, a number of realistic fea-
tures required in simulations are missing in MC-GPU, such
as detector response.

In this work, we will present our recent progress toward a
high performance x-ray imaging simulation package, gDRR.
This package computes primary signals using ray-tracing al-
gorithms, while a MC simulation optimized for the GPU plat-
form is employed to obtain the primary and the scatter signals
with noise. A denoising procedure designed for Poisson noise
removal is utilized to yield the scatter signal that is smooth
across the detector. Finally, gDRR computes the difference
between the simulation results with and without noise, yield-
ing the computed noise components, whose amplitude is then
properly scaled according to a specified mAs level. Realis-
tic CBCT geometry and detailed physical aspects are consid-
ered in gDRR. The entire computation is performed on GPU,
which leads to a high efficiency.

Il. METHODS AND MATERIALS
ILA. System setup

Let us consider the geometry for a CBCT system as il-
lustrated in Fig. 1. An x-ray source is at one side of a pa-
tient, which is able to rotate inside the xOy plane about the
z axis. The location of the x-ray source S is parameterized
by the source-to-axis distance (SAD) and the rotation angle
@ between §¢ and the positive x direction. An x-ray im-
age detector is perpendicular to the source rotational plane
xOy as well as the direction (p . The imager location is de-
fined by the axis-to-imager distance (AID) and another angle
0 between §¢ and G p. This configuration allows for an
easy placement of the imager not necessarily in the opposite
side of the source required in studies such as Compton scatter
tomography.>* A coordinate system (u, v) is defined on the
detector plane with its origin at the point P and the v axis is
parallel to the z axis.

gDRR computes the projections of a voxelized phantom
represented by a 3D array indicated by the cube shown in
Fig. 1. At each voxel, a material type index i(x) and a

“e

FIG. 1. An illustration of simulation geometry in gDRR.
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FIG. 2. From (a) to (c): a typical detector response curve, a typical 100 kVp
source energy spectrum, and a photon fluence map after a full-fan bowtie
filter.

density value p(x) are specified. X-ray mass attenuation co-
efficient [, (i, E) is also available corresponding to each type
of material i, where the subscript k = 1, 2, 3 labels the three
interaction types relevant in the kilo-voltage energy regime,
namely Rayleigh scattering, Compton scattering, and photo-
electric effect.

As for the image detector, it is modeled to be a 2D pixel ar-
ray. Each detector pixel acquires photon signals in energy in-
tegration mode, where the total photon energy deposited to the
pixel is recorded. Detector response is considered in gDRR
through a user supplied response curve r(E), which specifies
the amount of energy deposited by an incoming photon of en-
ergy E. An example of the detector response curve of XVI
flat-panel is shown in Fig. 2(a). In principle, the detector re-
sponse could also be pixel dependent. In our calculation, we
ignore this pixel dependence for simplicity.

gDRR does not transport photons inside an x-ray source,
e.g., the x-ray target and the bowtie filter. Therefore, all quan-
tities used to characterize the source properties are defined
after the bowtie filter. Specifically, the x-ray source is defined
by its energy spectrum and its fluence map. The energy spec-
trum ¢ (E) describes the probability density of a source photon
as a function of its energy E. A typical 100 kVp energy spec-
trum with a tungsten target and 2 mm Al filtration is depicted
in Fig. 2(b). User can specify such an energy spectrum by
using the method developed by Boone and Seibert.>> As for
the photon fluence map, w(w), it is used to specify the prob-
ability density of a photon traveling toward the detector co-
ordinate u = (u, v) after coming from the source and can be
obtained by acquiring a CBCT air scan image. A typical ex-
ample of the fluence map after a full-fan bowtie filter for a
Varian TrueBeam On-Board-Imaging system (Varian Medi-
cal System Inc. Palo Alto, CA) is illustrated in Fig. 2(c). In
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[ 2. MC simulation
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g¢DRR, both the spectrum and the fluence map are normalized,
such that [dE ¢(E) =1 and fdu w(u) = 1. Note that this
simple approach is only an effective source model. It cannot
capture some realistic features in a real x-ray source, which
include, but not limited to spectra variation due to the beam
filtration of the bowtie filter, the bowtie filter scatter, and the
detector spatial spread function. It is our future goal to further
improve the degree of reality of this package and its feasibility
to support more geometry and source models.

II.B. Overall computational structure

Figure 3 illustrates the overall workflow and data flow in
gDRR. Those key steps are labeled with numbers, while the
shaded boxes are the data sets generated during calculations.
Let us denote the primary, scatter, and noise signals by P(u),
S(u), and N(u). In gDRR, Step 1 utilizes a ray-tracing algo-
rithm to compute the primary x-ray attenuation signal at the
detector P(u). Step 2 calculates the primary signal P(u) and
the scatter signal S(u) via MC simulations and the results con-
tains noise due to the stochastic nature of the MC method.
The difference between the noisy primary signal from the
MC simulation and the noise-free one from the ray-tracing
method yields the noise signal in the primary signal calcula-
tion ﬁp(u) = Pw)— Pu). A denoising technique (Step 3)
is then applied to the noisy scatter signals S(u), leading to the
smoothed scatter signal S(u), as well as the noise on the scat-
ter part N s(u) = S‘(u) — S(u). The noise from the primary
and that from the scatter add up to the total simulated noise in
the projection ﬁ(u) = va )+ ﬁs(u). Finally, a noise scal-
ing step in Step 4 is invoked to scale the noise amplitude ac-
cording to an mAs level specified in the simulation, result-
ing in the final noise signal N(u) = aN (u). After launching
gDRR, three components in a CBCT projection are computed,
namely the primary signal P(u), the scatter signal S(u), and
the noise signal N (u). Subsections II.C-IL.F will be devoted
to the description of the detailed computational strategies in
those key steps.

Il.C. Ray-tracing for primary signal calculation

The primary signal at a detector pixel corresponds to the x-
ray attenuation process while photons travel from the source
to the detector pixel. This process can be accurately modeled

Total noise
N=N,+N,

4. Noise scaling

Noise signal
N=aN

Noise on primary
N,=P-P

Noise on Scatter
Ny=§-§

FIG. 3. Task and data flow of gDRR. Boxes with numbers are those key steps in gDRR, while shaded boxes indicate key data sets generated during calculations.
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by the Beer—Lambert law. In the context with a polyenergetic
source spectrum, fluence map, and detector response, the pri-
mary x-ray signal at a pixel u is expressed as

P(u) = / dE¢(E)w(u)r(E)exp [— f dlu(x, E)] (1)
L

Inside the exponential term, a line integral represents the ra-
diological length for an energy E, where the path L is a
straight line connecting the source to the detector pixel at u
and pu(x, E) = p(x) )", A (i(x), E) is the total x-ray linear
attenuation coefficient at a spatial location x for the energy
E. The user should be aware that Eq. (1) assumes that an in-
finitely narrow beam hits on a detector pixel. In reality, due
to the finite size of a pixel, multiple rays should be traced to
the pixel to get a more accurate result. This strategy will in-
evitably lead to an increased computation time proportional to
the number of rays used. Regarding its accuracy, it has been
discovered that the single ray approach leads to ~0.2% rela-
tive error compared to the result obtained with 1024 rays per
pixel in a typical CBCT setup.*®

In gDRR, the first integration over energy is approximated
by a discrete summation over all energy channels considered.
Within each energy channel, the evaluation of the line inte-
gral for the corresponding radiological length is needed. This
line integral is usually evaluated using Siddon’s ray-tracing
algorithm.3 However, it is known that the Siddon’s algorithm
leads to square-block like artifacts in the projection image,
especially when the voxel size is large. In gDRR, we uti-
lize a trilinear interpolation algorithm to generate more real-
istic projections.?” Specifically, we divide the x-ray path into
a set of intervals of equal length Al labeled by j and com-
pute the linear attenuation p(x ;, E) at the midpoint of each
interval using a trilinear interpolation scheme. The sum over
all intervals ) j Alu(x;, E) is considered as the radiologi-
cal length. Mathematically, it can be proven that the numer-
ical result converges to the line integral f 1 dlu(x, E) in the
limit of zero voxel size and Al — 0. To avoid over smoothing
caused by a large step size Al, gDRR sets Al to be half of the
voxel size, which have been shown to be sufficiently small
in our calculations. Yet, the users should be cautious about
this approach, as this is only a practical way of removing the
square-block artifacts in a projection image. The ultimate so-
lution should be using a voxel size smaller than the detector
pixel size.

In terms of computation, it is straightforward to im-
plement the algorithm on a GPU platform. By simply
having each GPU thread compute the projection value at
one pixel location u, considerable speedup factors can be
obtained due to the vastly available GPU threads. In our
implementation, GPU texture memory is used to store the
voxel linear attenuation coefficients to enable fast memory
access. Hardware-supported linear interpolation is also used
in the trilinear interpolation algorithm.

I1.D. Monte Carlo simulation

A GPU-based MC simulation is also developed for pho-
ton transport in the energy range from 1 keV to 150 keV.
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Specifically, multiple GPU threads are launched to transport
a group of photons simultaneously, with one thread track-
ing a photon history. Within each thread, a source photon is
first generated at the x-ray source according to the user spec-
ified energy spectrum and fluence map. The photon trans-
port process is then handled by using the Woodcock track-
ing method,*® which significantly increases the simulation
efficiency of voxel boundary crossing process. Three possi-
ble physical interactions are considered for photons in this
energy range, namely Compton, Rayleigh, and photoelectric
absorption. In an event of photoelectric effect, the photon
transport process is terminated. After Compton or Rayleigh
scattering events, the scattering angles are sampled according
to corresponding differential cross section formula using the
techniques developed in gCTD,*? a package for fast patient-
specific CT/CBCT dose calculations using MC method. The
photon is tracked until its energy is below 1 keV or it escapes
from the phantom. This process is repeatedly performed till a
preset number of photon histories are simulated. More details
regarding the MC simulations of the photon transport can be
found in our previous work.??

Two counters are designed to store the primary signal P(u)
and the scatter signal S(u) at the image detector, respectively.
Meanwhile, an indicator is carried by each photon that records
if any scattering events have taken place during the transport.
In the case when a photon exits from the phantom, a simple
geometrical calculation determines if it hits the detector. If so,
an amount of energy r(E) is recorded at a corresponding de-
tector pixel in either the primary counter or the scatter counter
depending on whether some scatter events have occurred,
where E is the photon energy before hitting the detector and
r(E) is the response curve. The user also has the option to tally
the signal of a specific type, such as the first order Compton.

One issue in the MC simulation is that the way of density
interpolation may impact on the projection image quality. In a
MC simulation, a voxelized phantom image is defined by the
user. Conventionally, it is assumed that each voxel is homo-
geneous, as no further information is given regarding the vari-
ations of material properties at a subvoxel length scale. Yet,
akin to the aforementioned Siddon’s ray-tracing algorithm
for primary signal calculation, such a configuration leads to
an apparent artifact in the simulated primary image due to
the finite voxel size. This artifact makes the primary signal
obtained from the MC simulation not compatible with the one
from the trilinear interpolation algorithm, when it comes to
the noise calibration step to be discussed later. To overcome
this problem, we employed a trilinear interpolation strategy
on the density grid used in the MC simulation. As such, when-
ever a density value is requested by a photon, it calculates
the value at the photon’s instant location using the trilinear
interpolation scheme. Note that this is a practical method
employed in gDRR to reduce artifacts. It does not represent
the reality. For instance, this interpolation will apparently blur
the boundary between organs, where the density is essentially
discontinuous. As for the scatter signals, the impacts of
this density interpolation scheme seems to be minimal, as
the scattered photons toward various directions smear out
this effect.
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ILE. Noise removal in scatter signals

Due to the randomness inherent to the MC method, noise
exists in both the scatter and the primary signals. For the scat-
ter component, it is expected that it varies smoothly along the
spatial dimension. This assumption allows us to perform some
noise removal techniques to retrieve the scatter signal from
the noise contaminated one obtained from the MC simula-
tions. We note that the a powerful noise removal algorithm is
only utilized to estimate the scatter signals based on MC sim-
ulations with a much reduced number of photons, hence im-
proving computational efficiency. The scatter signal obtained
as such cannot be fully regarded as physically accurate. In
gDRR, we develop an effective method for this purpose by
solving an optimization problem. We assume the noise signal
S’(u) at a pixel in MC simulations follows a Poisson distribu-
tion with an underlying true signal S(u), which is determined
by solving such an optimization problem

S(u) = argmingE [S]
= argminS/du(S — Slog $) + g/du|VS|2. )

There are two terms in the energy function E[S]. The first
one is a data-fidelity term that is customized for Poisson
noise,? while the second one is a penalty term that ensures
the smoothness of the recovered solution S(u). 8 is a constant
to adjust the relative weights between the two terms. Such an
energy function is convex, and hence it is sufficient to con-
sider the optimality condition to be satisfied by the solution,
namely

o—S—E— 1—§ — BV3S 3)
T 8S S pV7S.

After discretizing the Laplacian operator V? using a standard
numerical scheme, we arrive at

S, .’ .
0=|1=3CD | _gres, jy— 486, . )
SG. j)

where i and j are pixel location indices on the detector array
and XS(i, j) is a short notation for SG@ + 1, j) + S@G, j + 1)
4+ 8@ —1,)) + 8@, j — 1). We can now rearrange this equation
and design an iterative scheme as

1 1 8G. j
S ES [ES% D=3 (1 - —S<k()l(if;)>} .

where the superscript k is an index for the iteration step.
In practice, an successive over-relaxation algorithm*’ is em-
ployed to speed up the convergence, which leads to the
scheme

+ [ES @)= 7 (1 SO, )|
(6)

An empirical value of w = 0.8 is used in our implementation.
Although the solution is expected to be independent of the
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initial guess S© due to the convex nature of this problem, it is
found that the choice of S© = § leads to faster convergence
than other initialization values we considered. Such a denois-
ing technique is particularly suitable for GPU-based parallel
computation, as the component-wise multiplication and divi-
sion in Eq. (6) can be easily carried out by GPU.

II.F. Noise calibration

Noise signal is a random component in a projection. It
varies at different irradiation levels and even the same ex-
periment is performed repeatedly, the noise realization will
be very different each time. Here, we take a simple approach
that assumes that this noise component can be obtained by
removing the primary and the scatter parts from the MC sim-
ulated signals. Note that the noise signal computed in this way
will be different each time the simulation is performed. The
noise amplitude in a real CBCT scan depends on the actual
number of photons emitted by the x-ray source n,., while the
noise amplitude obtained in a MC simulation is governed by
the number of source photons in the simulation ngjy,, which
is typically much less than n,. Therefore, it is necessary to
scale the noise amplitude to yield a correct level of noise. We
would like to note that, this approach only considers the noise
generation due to the photon number fluctuation at the detec-
tor. There are other components in a real noise signal, such
as electronic noise, that are not included in this model. The
overall validity of our simulation requires further investiga-
tions, which will be the future work.

The noise component on a projection image can be esti-
mated by combining that from the primary signal and that
from the scatter signal, namely

N=Np+Ns=(P—P)+(5—09). 7

In our simulation, the primary signal given in Eq. (1) is ex-
pressed in terms of per particle and all the MC simulation re-
sults are normalized by the number of source photons. For the
noise signal obtained as such, it can be expected that the noise
amplitude at a detector pixel is approximately proportional to
1/4/n, where n is the number of photons hitting the detector
pixel. While the exact value of n is unknown for both the sim-
ulation study and real experiments, it is reasonable to expect
that it is proportional to n,e in an experiment and to ngp, in
the MC simulation. Furthermore, n, is linearly related to the
mAs level, 1, used in an experiment. In consideration all of
these factors, we propose to scale the calculated noise N as

N:aﬁ:ﬁ/”;‘“, 8)

where [ is the mAs level and ¢ is an unknown factor that can
be interpreted as the effective number of source photons at
unitary mAs from an x-ray source in an experiment. The ex-
act value of ¢ apparently depends on the specific CBCT ma-
chine used and can be determined by a calibration process as
described in the following.

In principle, the calibration process can be accomplished
by equating the noise amplitude of the calculated projection
data with that of the measurements. Let us first denote the
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noise amplitude at a pixel # on an x-ray projection of a cal-
ibration phantom as ox(u, I) in an experiment with an mAs
level of 1. Meanwhile, we can obtain the calculated noise am-
plitude in gDRR denoted by o (). If our assumption regard-
ing the noise model holds, it follows that

Nsim

¢l

ox , 1) = ox ), ©)
i.e., the function oy (u, I) /o5 (u) should be a constant value
that is independent of the coordinate # and only depends on
the mAs level [ for a given number of photons in the simula-
tion. The level of this constant linearly decreases as 1/ J1 , as
the mAs level increases, and the slope of this linear relation-
ship indicate the level of ¢.

As such, let us take the calibration of gDRR against a kV
on board imaging (OBI) system integrated in a TrueBeam
medical linear accelerator (Varian Medical System, Palo
Alto, CA) as an example. We have acquired CBCT scans
of a Catphan®600 phantom (The Phantom Laboratory, Inc.,
Salem, NY) under various mAs levels. We specifically focus
on the regions on the projection image corresponding to
the homogeneous phantom layer. For a fixed coordinate u
inside this region, the standard deviation ox (u, I) can be
estimated by using the pixel values at this coordinate in the
projections at different angles. The underlying assumption is
that the projection geometry and the phantom in this layer is
approximately rotationally symmetric, and pixel values at a
fixed coordinate in different projections can be interpreted as
results from different experimental realizations. Meanwhile,
the Catphan phantom is digitized based on its CT image and
the projection images are calculated using gDRR. The stan-
dard deviation o5 () can be determined in the same manner.
For each mAs level of the experimentally acquired data, we
compute ox (u, I) /o5 (u) and plotted this value as a function
of u. The resulting constant, independent of u, serves as a test
regarding the validity of the noise model in Eq. (8). Finally,
we plot the spatial average value of ox (u, I) /ox(u) as a
function of 1/+/1 and the data are found to be on a straight
line. A linear regression yields the slope k of this line and
hence the level of ¢ can be derived as { = ngm/k>.

II.G. Validation studies

We have performed calculations on a Catphan phantom
and a head-and-neck (HN) cancer patient to demonstrate the
feasibility of using our gDRR package for computing realis-
tic CBCT projection images. Meanwhile, the computational
efficiency is assessed by recording the computation time at
each key step. For the hardware used in this section, the GPU
is an NVIDIA GTX580 card equipped with 512 processors
and 1.5 GB GDDRS memory. A desktop computer with a
2.27 GHz Intel Xeon processor and 4 GB memory is also
used, on which EGSnrc code is executed for the purpose of
validating our MC simulations.

Our computations are conducted under a geometry resem-
bling that of the kV OBI system on a TrueBeam linear accel-
erator. The x-ray source-to-axis distance is 100 cm and the
source-to-detector distance is 150 cm. The x-ray imager reso-
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lution is 512 x 384 with a pixel size of 0.776 x 0.776 mm?.
The detector is positioned in the opposite direction to the
source, namely 6§ = 0° in Fig. 1, and the point P is at the cen-
ter of the detector for a full-fan scan setup. For the purpose of
demonstrating principles, the x-ray source energy spectrum,
the detector response, and the source photon fluence map are
chosen as those shown in Fig. 2. A Catphan phantom is used
for calibration with a size of 256 x 256 x 70 voxels, and
that for the HN patient is 512 x 512 x 100 voxels. The res-
olutions in a transverse slice are 1.0 x 1.0 mm? and 0.976
x 0.976 mm?, respectively. Both phantoms have the slice
thickness of 2.5 mm. 5 x 10® source photons are simulated
for each projection image in MC simulations, unless stated
otherwise.

lll. RESULTS
lllLA. Primary signal

The first result we present is the primary signal of the pro-
jection image for a HN patient with the CBCT source on the
left side. Figure 4(a) shows the ray-tracing result with the tri-
linear interpolation algorithm. We have also presented the pri-
mary signals computed by the MC simulation with density in-
terpolation in Fig. 4(b). These two figures are visually close
to each other, although a certain amount of noise presents
in the MC results. Artifacts caused by the finite voxel size
are still observable, especially in the zoom-in view. Figure 5
plots the profiles along the coordinate axes u# and v shown in
Fig. 2(c) of the primary signal P computed from the trilinear
ray-tracing algorithm and P from the MC simulations with
density interpolation switched on. These two signals agree
well. Taking the difference between P and P yields the noise
Np. Note that the amplitude of Np is governed by the num-
ber of photons simulated in the MC simulation, but do not
represent the real noise level in an experiment.

lll.B. Scatter signal

For the scatter signal calculations, we first show in
Figs. 6(a) and 6(b) the signals calculated for a HN patient
along the left-right projection direction with 5 x 10® and
5 x 10' source photons, respectively. There is a visible
amount of noise in Fig. 6(a). The noise level is dimin-
ishing when the source photon number becomes large in

FIG. 4. Primary signal simulated in gDRR of a HN patient by ray-tracing
method using the trilinear interpolation algorithm (a) and MC simulations
with density interpolation (b). Insets show a zoomed-in view of the area indi-
cated by the square in (a).
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FIG. 5. Intensity profiles along the u and the v axes of the primary signal P
computed from trilinear ray-tracing and P from MC simulations with den-
sity interpolation switched on. The difference between them is the unscaled
noise N, p.

Fig. 6(b), as expected. In Fig. 6(c), the scatter image
after removing the noise component from Fig. 6(a) is
presented. Visually, Figs. 6(b) and 6(c) are very close
to each other. We have also quantitatively computed
the relative difference between these two images, e.g.,
I185x100 — Ssxiosll2 / 18sx 10012, Where Ssyigu is the MC
simulated image in (b) and S5, (s is the denoised image in
(). || - Il stands for the L-2 norm, namely ||S||» = [}, S7]'/2,
where the summation is over all the entries of S. This rel-
ative difference is about 2%, indicating the effectiveness of
this denoising algorithm. The small, but finite, relative dif-
ference can be ascribed into the residual noise component in
Fig. 6(b), though it is hardly visible in the image.

We further plot the scatter image profiles along the u and
the v axes in Figs. 6(d) and 6(e), as well as the difference
between the MC result § and the denoised result S, namely
Ng=38-35. Finally, in Fig. 6(f) we depict the profiles of
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the denoised image based on simulations with a wide range
of number of photons. The image profiles from 5 x 107 to
5 x 10'° photons almost coincide on a single curve, and only
in the case with 5 x 10° photons do we observe a slight
difference.

To test the accuracy of the simulated scatter components,
we have validated our simulations against EGSnrc,” ' a com-
monly used MC package for photon transport. For this pur-
pose, the scatter image under the identical configuration as in
the above case is performed with EGSnrc. One billion source
photons are used in the simulation. Due to the different sig-
nal intensities from EGSnrc and from gDRR, we rescale the
EGSnrc result, so that its mean value equals to that of the
gDRR results. The resulting scatter signal and the correspond-
ing denoised image are shown in Figs. 7(a) and 7(b), respec-
tively. Visually, these two images are indistinguishable from
the corresponding results in gDRR, namely Figs. 6(a) and
6(c). We have also plotted the denoised image profiles along
the u axis for the two simulation packages. A good agreement
is observed in Fig. 7(c).

Finally, we calculated the relative difference of the scat-
tering signals ||Seprr — SEGSnrell2 / | SEGSnre |2 = 3.8%. This
value quantitatively indicates the accuracy of the scatter sim-
ulations in gDRR.

ll.C. Noise signal

The noise component calibration as described in Sec. II.F
is conducted. For a Catphan phantom at the homogeneous
layer as indicated in Fig. 8(a), we first calculated the quan-
tity ox(u, I)/o5(u) at a given mAs level I and plotted the re-
sults as a function of u in Fig. 8(b). Apart from the noise,
this quantity is almost a constant independent of the pixel
location u, which indicates the validity of our noise model.

- @) = ~ [
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FIG. 6. (a) and (b) are scatter signals of a HN patient simulated using gDRR with 5 x 10% and 5 x 10' source photons. (c) shows the denoised scatter image
from simulations in (a). (d) and (e) show the signal profiles along the u and the v axes, respectively. (f) is the comparisons of the denoised scatter image profiles

along the u axis with various number of photons.
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FIG. 7. (a) Scatter signal of the HN case using EGSnre. (b) Denoised result of (a). (c) A comparison of denoised scatter image profiles along the u axis between

the EGSnrc result and the gDRR result.

Moreover, we average ox(u, I)/o5(u) for a range of pixel lo-
cations u for a given level of mAs and then plot the averaged
(ox(u, IN/og(u)) as a function of 1/\/7 in Fig. 8(c). The re-
sulting data are found to be along a straight line. A linear re-
gression yields the slope k = 0.3074 and hence the level of ¢
can be derived as ¢ = ",j‘z‘" =5.2913 x 10°mAs~!. This value
enables us to convert the simulated noise signal into the realis-
tic noise signal according to the given number of photons and
the desired mAs level based on the Eq. (8). Note that detec-
tor spatial spread function is not included in our simulation.
Neglecting this realistic feature could in principle lead to over
estimation of noise levels. Yet, the calibration procedure con-
verts the simulated noise level to the measured noise level,
which may partially account for the detector spatial spread is-
sue regarding the noise signal. In practice, the detector spatial
spread could be included by a convolution process in the sim-
ulation of projection images, which will be available in our
future release of this package.

ll.D. Computation time

To assess the computational efficiency, we have recorded
the computation time of each key step in both the Catphan
phantom case and the HN patient case. The results are sum-
marized in Table I. All computation time are expressed as per
projection. 5 x 108 photons are used in MC simulations. A

_ =08 (c)
= =
S S
~ ~
= =04
é —0.2mAs >
—0.4mAs|| S
0 Q
150 250 350 0.5 1.5 2.5
pixel 1/vVmAs

FIG. 8. (a) One projection of the Catphan phantom. A dashed line indicates
the location used for noise calibration. (b) The values of oy (u, I) /o5 (u)asa
function of u at two different mAs levels. (c) (ox(u, I)/o5u)) as a function
of 1/+/mAs and the straight line is the linear fit.

Medical Physics, Vol. 39, No. 12, December 2012

polyenergetic spectrum with 92 energy channels is used in
these cases. Hence the ray-tracing calculation time is longer
than what has been previously reported in other similar re-
search works.***> The ray-tracing time of the patient case
is about two times longer than that of the Catphan phantom
due to the doubling of voxels in each axis inside a trans-
verse plane. As for the MC simulation time, the time is almost
tripled. In addition to the more voxel numbers, it can also be
ascribed to the fact that the maximum photon attenuation co-
efficient in the patient case is larger than that of the Catphan
phantom. Due to the application of Woodcock transport in
MC, this fact creates more fictitious photon interactions, re-
ducing the computational efficiency.> The computation time
for the denoising and noise calibration part is independent
of the phantoms, as both tasks operate in the projection im-
age domain. Among all of the steps in gDRR, MC simulation
is the most time-consuming. Comparing with the ray-tracing
calculations and the MC simulations, the time spent on de-
noising and noise calibration tasks is negligible. Overall, this
recorded time clearly indicate the achieved high efficiency in
gDRR. For instance, the computation time for EGSnrc is a
few CPU hours. Yet, we would like to point out that the com-
parison of the computation time with EGSnrc is not fair, as
the latter utilizes much more detailed simulation schemes to
handle photon transport.

lIl.LE. CBCT artifacts

It is well known that various artifacts can be observed in
realistic CBCT images due to various physical processes in-
volved in data acquisition. To demonstrate the feasibility of
using gDRR to compute realistic X-ray projection images, we
have simulated 360 projection images of the HN patient in an
angular range of 2w at 0.6 mAs/projection and have recon-
structed the CBCT image using an FDK algorithm. Various
artifacts are observed in the CBCT images reconstructed as

TABLE I. Computation time of each key step in gDRR. MC simulation time
for EGSnrc is also included.

MC simulation Denoising

and noise
Ray-tracing (s) gDRR (s) EGSnrc (CPU-s) calibration (s)

7.2 x 103 0.041
2.7 x 10* 0.042

Catphan 1.2 28.1
HN patient 2.3 95.3
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FI1G. 9. CBCT images reconstructed from the simulated projections. (a)
From only primary signal with a monoenergetic source. (b) From primary
signal with a polyenergetic source. (c) and (d) From all three components.
The display window is [—100, 340] HU for (a), [20, 460] HU for (b) and (c),
and [—400, 890] HU for (a). Arrows indicate various CBCT artifacts.

such. First, Figs. 9(a) and 9(b) show one slice of the CBCT
with a monoenergetic 60 keV source and a polyenergetic
100 kVp source, respectively. Only primary signals are used
in these two reconstructions. Comparing these two images, ar-
tifacts caused by beam-hardening effect are clearly observed
in (b), as indicated by the arrow. Figure 9(c) is the same CBCT
slice but reconstructed with all of the primary, the scatter, and
the noise signals. A polyenergetic 100 kVp source is used
in this case. Apart from the obvious level of noise due to
the inclusion of noise signal in the projections, scatter-caused
artifacts are also observed, which reduce the overall image
contrast, and strengthen the artifacts evidenced by the arrow.
Finally, in Fig. 9(d) we show another slice of the CBCT re-
constructed in the same simulation setup as in (c), but at a
different display window level. An obvious ring shadow ar-
tifact presents due to the interplay between the scatter signal
and the bow-tie filter. This artifact can also be observed in
Fig. 9(c).

As a validation of the noise model, we have attempted to
reconstruct the CBCT image of the Catphan phatom using
the simulated projections at various mAs levels. A square re-
gion of interest (ROI) is selected in the center of the trans-
verse CBCT slice inside the homogeneous phantom layer and
noise amplitude in the reconstructed CBCT images o gy, are
measured as the standard deviation inside the ROI. Mean-
while, such a phantom is scanned under the CBCT system
with the same mAs levels and the CBCT images are recon-
structed. Noise amplitude o, is also measured in the same
ROI. The same FDK algorithm is used to reconstruct CBCT
images in all cases for a fair comparison between the simu-
lation and the experimental studies. Figure 10 plots the noise
amplitudes oy, and o ey, as functions of 1/+/mAs. The two
function curves are in good agreement, indicating the ca-
pability of gDRR in terms of reproducing noise signals in
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FIG. 10. (a) The homogeneous layer of the Catphan phantom. The square
indicates the ROIs selected for noise comparison. (b) Comparison of the noise
amplitudes from the simulated results and from the experimental results.

the projection images and hence in the reconstructed CBCT
images.

IV. CONCLUSION AND DISCUSSIONS

In this paper, we have presented our recent progress toward
the development of a GPU-based package gDRR for the sim-
ulations of x-ray projections in CBCT with a number of re-
alistic features included, e.g., a bowtie filter, a polyenergetic
spectrum, and detector response. The input of gDRR includes
a voxelized phantom data that defines material type and den-
sity at each voxel, x-ray projection geometry, as well as source
and detector properties. gDRR then computes three compo-
nents, namely primary, scatter, and noise at the detector. The
primary signal is computed by a trilinear ray-tracing algo-
rithm. A MC simulation is then performed, yielding the pri-
mary component and the scatter component, both with noise.
A denoising process specifically designed for Poisson noise
removal is applied to generate the smooth scatter signal. The
noise component is then obtained by taking the sum of the
difference between the MC primary and the ray-tracing pri-
mary, and the difference between the MC simulated scatter
and the denoised scatter. Finally, a calibration stage converts
the calculated noise to a realistic noise by scaling its ampli-
tude according to the desired mAs levels. The calculated pro-
jections are found to be realistic, such that various artifacts in
real CBCT images can be reproduced by the simulated pro-
jections, including beam hardening, scattering, and noise lev-
els. gDRR is developed on the GPU platform with a finely
tuned structure and implementations to achieve a high com-
putational efficiency.

Although gDRR is initially developed and calibrated for
the OBI system on a TrueBeam machine, with simple modifi-
cations, it can also be applied to the simulations of x-ray pro-
jection images in other geometry, such as C-arm CBCT. Also,
each components of the package, namely the calculations of
the primary and the scatter signals, can be singled out for dif-
ferent research purposes. The scatter signals simulations can
also be configured to tally scatter photons of different types
and orders. These features greatly enable the wide applicabil-
ity of gDRR and facilitate CBCT-related research projects in
a variety of contexts. The entire package will be in public do-
main for research use, and is currently available upon request.
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FIG. 11. Primary signal simulated in gDRR of a HN patient by ray-tracing
method using the Siddon’s algorithm (a) and MC simulations without density
interpolation (b). Insets show a zoomed-in view of the area indicated by the
square in (a).

Siddon’s ray-tracing algorithm is also available in gDRR
for primary signal calculation, although it is not the default
algorithm for this purpose. A user can select this option, if the
block artifacts are not a concern and a higher computational
efficiency is more desired. Figure 11(a) shows the primary
projection signal for the same patient case as in Fig. 4. When
comparing Fig. 11(a) and Fig. 4(a), especially the insets, it is
found that the projection computed by the Siddon’s algorithm
has more apparent artifacts caused by the finite voxel size.
Using a smaller voxel size in the simulations can reduce this
artifact. On the other hand, because of the absence of trilin-
ear interpolation and hence the reduced memory access, the
Siddon’s algorithm attains a higher computational efficiency,
such that the computation time for the result in Fig. 11(a) is
1.9 s, a 17% improvement compared to the time of 2.3 s re-
ported in the Table I. Similarly, when the density interpola-
tion is switched off in the MC simulations, the finite voxel
size causes more obvious artifacts in the primary projection
image, as illustrated in Fig. 11(b). The computation time is,
however, shortened from 95.3 s to 80.7 s. The impacts of
density interpolation on the scatter signal calculation are not
observed.

Another important question is how to determine the num-
ber of photons used in a MC simulation, so that the de-
noising algorithm can produce a good scatter estimation.
Generally speaking, the photon number should be large to
provide enough photons at detector pixels, which ensures a
high signal-to-noise ratio to allow the utility of the denoise
algorithm. Whether this is satisfied depends on many factors,
such as source photon fluence map, phantom scatter process,
and detector pixel resolution, etc. For the HN case studied in
this paper, it seems that 5 x 107 source photons are sufficient.
For a general case with not too much different in phantom
composition and scanner setup, a photon number of the same
order of magnitude should also give a good scatter signal. If
the pixel resolution is different, the number should be scaled
accordingly. Of course this is a simple rule of thumb estima-
tion. One can start with this number of photons in a simula-
tion, and increase it if necessary.

Regarding the noise calculation, another possible and sim-
pler approach is to add random Poisson noise on the com-
bined primary and scatter image. There are two reasons that
we develop the noise model here. First, the noise obtained in
this model is based on the physical process of photon count-
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ing at a detector pixel. Although in general one considers that
the noise in a real projection follows a Poisson distribution,
the true distribution may be complicated, if many details are
considered, such as the polyenergetic spectrum, the energy
integration of a detector, and its response. In contrast, the di-
rect simulation in our model includes these details naturally.
Second, there is no much additional computational burden in
our model. As long as the MC and the primary ray-tracing
are conducted, the noise signal is available with little compu-
tations, as the time for denoise and noise calibration is very
minimal, see Table 1.

Note that a general assumption of gDRR is that the input
volumetric data are of a high quality, e.g., noise-free and fully
corrected from artifacts. In the validations of this paper, the
volumetric data are taken from high quality CT scans and are
assume to be free of noise and artifacts. Yet, in the case with
imperfection of the input data, the users should be aware that
the simulated results will be affected and may not truly re-
flect the reality any more, although they are still accurate with
respect to the input data.
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