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Abstract
Social experiments are powerful sources of information about the effectiveness of interventions. In
practice, initial randomization plans are almost always compromised. Multiple hypotheses are
frequently tested. “Significant” effects are often reported with p-values that do not account for
preliminary screening from a large candidate pool of possible effects. This paper develops tools
for analyzing data from experiments as they are actually implemented.

We apply these tools to analyze the influential HighScope Perry Preschool Program. The Perry
program was a social experiment that provided preschool education and home visits to
disadvantaged children during their preschool years. It was evaluated by the method of random
assignment. Both treatments and controls have been followed from age 3 through age 40.

Previous analyses of the Perry data assume that the planned randomization protocol was
implemented. In fact, as in many social experiments, the intended randomization protocol was
compromised. Accounting for compromised randomization, multiple-hypothesis testing, and small
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sample sizes, we find statistically significant and economically important program effects for both
males and females. We also examine the representativeness of the Perry study.

Keywords
Early childhood intervention; compromised randomization; social experiment; multiple-hypothesis
testing

1. Introduction
Social experiments can produce valuable information about the effectiveness of
interventions. However, many social experiments are compromised by departures from
initial randomization plans.1 Many have small sample sizes. Applications of large sample
statistical procedures may produce misleading inferences. In addition, most social
experiments have multiple outcomes. This creates the danger of selective reporting of
“significant” effects from a large pool of possible effects, biasing downward reported p-
values. This paper develops tools for analyzing the evidence from experiments with multiple
outcomes as they are implemented rather than as they are planned. We apply these tools to
reanalyze an influential social experiment.

The HighScope Perry Preschool Program, conducted in the 1960s, was an early childhood
intervention that provided preschool education to low-IQ, disadvantaged African- American
children living in Ypsilanti, Michigan. The study was evaluated by the method of random
assignment. Participants were followed through age 40 and plans are under way for an
age-50 followup. The beneficial long-term effects reported for the Perry program constitute
a cornerstone of the argument for early childhood intervention efforts throughout the world.

Many analysts discount the reliability of the Perry study. For example, Hanushek and
Lindseth (2009), among others, claim that the sample size of the study is too small to make
valid inferences about the program. Herrnstein and Murray (1994) claim that estimated
effects of the program are small and that many are not statistically significant. Others
express the concern that previous analyses selectively report statistically significant
estimates, biasing the inference about the program (Anderson (2008)).

There is a potentially more devastating critique. As happens in many social experiments, the
proposed randomization protocol for the Perry study was compromised. This compromise
casts doubt on the validity of evaluation methods that do not account for the compromised
randomization and calls into question the validity of the simple statistical procedures
previously applied to analyze the Perry study.2

In addition, there is the question of how representative the Perry population is of the general
African-American population. Those who advocate access to universal early childhood
programs often appeal to the evidence from the Perry study, even though the project only
targeted a disadvantaged segment of the population.3

1See the discussion in Heckman (1992), Hotz (1992), and Heckman, LaLonde, and Smith (1999)
2This problem is pervasive in the literature. For example, in the Abecedarian program, randomization was also compromised as some
initially enrolled in the experiment were later dropped (Campbell and Ramey (1994)). In the SIME-DIME experiment, the
randomization protocol was never clearly described. See Kurz and Spiegelman (1972). Heckman, LaLonde, and Smith (1999)
chronicle the variety of “threats to validity” encountered in many social experiments.
3See, for example, The Pew Center on the States (2009) for one statement about the benefits of universal programs.
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This paper develops and applies small-sample permutation procedures that are tailored to
test hypotheses on samples generated from the less-than-ideal randomizations conducted in
many social experiments. We apply these tools to the data from the Perry experiment. We
correct estimated treatment effects for imbalances that arose in implementing the
randomization protocol and from post-randomization reassignment. We address the potential
problem that arises from arbitrarily selecting “significant” hypotheses from a set of possible
hypotheses using recently developed stepdown multiple-hypothesis testing procedures. The
procedures we use minimize the probability of falsely rejecting any true null hypotheses.

Using these tools, this paper demonstrates the following points: (a) Statistically significant
Perry treatment effects survive analyses that account for the small sample size of the study.
(b) Correcting for the effect of selectively reporting statistically significant responses, there
are substantial impacts of the program on males and females. Results are stronger for
females at younger adult ages and for males at older adult ages. (c) Accounting for the
compromised randomization of the program strengthens the evidence for important program
effects compared to the evidence reported in the previous literature that neglects the
imbalances created by compromised randomization. (d) Perry participants are representative
of a low-ability, disadvantaged African-American population.

This paper proceeds as follows. Section 2 describes the Perry experiment. Section 3
discusses the statistical challenges confronted in analyzing the Perry experiment. Section 4
presents our methodology. Our main empirical analysis is presented in Section 5. Section 6
examines the representativeness of the Perry sample. Section 7 compares our analysis to
previous analyses of Perry. Section 8 concludes. Supplementary material is placed in the
Web Appendix.4

2. Perry: Experimental design and background
The HighScope Perry Program was conducted during the early- to mid-1960’s in the district
of the Perry Elementary School, a public school in Ypsilanti, Michigan, a town near Detroit.
The sample size was small: 123 children allocated over five entry cohorts. Data were
collected at age 3, the entry age, and through annual surveys until age 15, with additional
follow-ups conducted at ages 19, 27, and 40. Program attrition remained low through age
40, with over 91% of the original subjects interviewed. Two-thirds of the attrited were dead.
The rest were missing.5 Numerous measures were collected on economic, criminal, and
educational outcomes over this span as well as on cognition and personality. Program
intensity was low compared to that in many subsequent early childhood development
programs.6 Beginning at age 3, and lasting 2 years, treatment consisted of a 2.5-hour
educational preschool on weekdays during the school year, supplemented by weekly home
visits by teachers.7 HighScope’s innovative curriculum, developed over the course of the
Perry experiment, was based on the principle of active learning, guiding students through the
formation of key developmental factors using intensive child–teacher interactions
(Schweinhart, Barnes, and Weikart (1993, pp. 34–36), Weikart, Bond, and McNeil (1978,
pp. 5–6, 21–23)). A more complete description of the Perry programcurriculum is given
inWeb Appendix A.8

4Heckman et al. (2010c).
5There are two missing controls and two missing treatments. Five controls and two treatments are dead.
6The Abecedarian program is an example (see, e.g., Campbell, Ramey, Pungello, Sparling, and Miller-Johnson (2002)). Cunha,
Heckman, Lochner, and Masterov (2006) and Reynolds and Temple (2008) discussed a variety of these programs and compared their
intensity.
7An exception is that the first entry cohort received only 1 year of treatment, beginning at age 4.
8The website can be accessed at http://jenni.uchicago.edu/Perry/ as well as Heckman et al. (2010c).
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Eligibility criteria
The program admitted five entry cohorts in the early 1960’s, drawn from the population
surrounding the Perry Elementary School. Candidate families for the study were identified
from a survey of the families of the students attending the elementary school, by
neighborhood group referrals, and through door-to-door canvassing. The eligibility rules for
participation were that the participants should (i) be African-American; (ii) have a low IQ
(between 70 and 85) at study entry,9 and (iii) be disadvantaged as measured by parental
employment level, parental education, and housing density (persons per room). The Perry
study targeted families who were more disadvantaged than most other African-American
families in the United States but were representative of a large segment of the disadvantaged
African-American population. We discuss the issue of the representativeness of the program
compared to the general African-American population in Section6.

Among children in the Perry Elementary School neighborhood, Perry study families were
particularly disadvantaged. Table 1 shows that compared to other families with children in
the Perry School catchment area, Perry study families were younger, had lower levels of
parental education, and had fewer working mothers. Further, Perry program families had
fewer educational resources, larger families, and greater participation in welfare, compared
to the families with children in another neighborhood elementary school in Ypsilanti, the
Erickson school, situated in a predominantly middle-class white neighborhood.

We do not know whether, among eligible families in the Perry catchment, those who
volunteered to participate in the program were more motivated than other families and
whether this greater motivation would have translated into better child outcomes. However,
according to Weikart, Bond, andMcNeil (1978, p.16), “virtually all eligible children were
enrolled in the project,” so this potential concern appears to be unimportant.

Randomization protocol
The randomization protocol used in the Perry study was complex. According to Weikart,
Bond, and McNeil (1978, p.16), for each designated eligible entry cohort, children were
assigned to treatment and control groups in the following way, which is graphically
illustrated in Figure 1:

Step 1. In any entering cohort, younger siblings of previously enrolled families were
assigned the same treatment status as their older siblings.10

Step 2. Those remaining were ranked by their entry IQ scores.11 Odd- and even-ranked
subjects were assigned to two separate unlabeled groups.

Balancing on IQ produced an imbalance on family background measures. This was
corrected in a second, “balancing,” stage of the protocol.

Step 3. Some individuals initially assigned to one group were swapped between the
unlabeled groups to balance gender and mean socioeconomic (SES) status, “with Stanford–
Binet scores held more or less constant.”

Step 4. A flip of a coin (a single toss) labeled one group as “treatment” and the other as
“control.”

9Measured by the Stanford–Binet IQ test (1960s norming). The average IQ in the general population is 100 by construction. IQ range
for Perry participants is 1–2 standard deviations below the average.
10The rationale for excluding younger siblings from the randomization process was that enrolling children in the same family in
different treatment groups would weaken the observed treatment effect due to within-family spillovers.
11Ties were broken by a toss of a coin.
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Step 5. Some individuals provisionally assigned to treatment, whose mothers were employed
at the time of the assignment, were swapped with control individuals whose mothers were
not employed. The rationale for these swaps was that it was difficult for working mothers to
participate in home visits assigned to the treatment group and because of transportation
difficulties.12 A total of five children of working mothers initially assigned to treatment
were reassigned to control.

Even after the swaps at stage 3 were made, preprogram measures were still somewhat
imbalanced between treatment and control groups. See Figure 2 for IQ and Figure 3 for SES
index.

3. Statistical challenges in analyzing the Perry Program
Drawing valid inference from the Perry study requires meeting three statistical challenges:
(i) small sample size, (ii) compromise in the randomization protocol, and (iii) the large
number of outcomes and associated hypotheses, which creates the danger of selectively
reporting “significant” estimates out of a large candidate pool of estimates, thereby biasing
downward reported p-values.

Small sample size
The small sample size of the Perry study and the nonnormality of many outcome measures
call into question the validity of classical tests, such as those based on the t-, F-, and χ2-
statistics.13 Classical statistical tests rely on central limit theorems and produce inferences
based on p-values that are only asymptotically valid.

A substantial literature demonstrates that classical testing procedures can be unreliable when
sample sizes are small and the data are nonnormal.14 Both features characterize the Perry
study. There are approximately 25 observations per gender in each treatment assignment
group and the distribution of observed measures is often highly skewed.15 Our paper
addresses the problem of small sample size by using permutation-based inference
procedures that are valid in small samples.

The treatment assignment protocol
The randomization protocol implemented in the Perry study diverged from the original
design. Treatment and control statuses were reassigned for a subset of persons after an initial
random assignment. This creates two potential problems.

First, such reassignments can induce correlation between treatment assignment and baseline
characteristics of participants. If the baseline measures affect outcomes, treatment
assignment can become correlated with outcomes through an induced common dependence.
Such a relationship between outcomes and treatment assignment violates the assumption of
independence between treatment assignment and outcomes in the absence of treatment
effects. Moreover, reassignment produces an imbalance in the covariates between the treated
and the controlled, as documented in Figures 2 and 3. For example, the working status of the
mother was one basis for reassignment to the control group. Weikart, Bond, and McNeil
(1978, p.18) note that at baseline, children of working mothers had higher test scores. Not

12The following quotation from an early monograph on Perry summarizes the logic of the study planners: “Occasional exchanges of
children between groups also had to be made because of the inconvenience of half-day preschool for working mothers and the
transportation difficulties of some families. No funds were available for transportation or full-day care, and special arrangements
could not always be made” (Weikart, Bond, andMcNeil (1978, p.17)).
13Heckman (2005) raised this concern in the context of the Perry program.
14See Micceri (1989) for a survey.
15Crime measures are a case in point.
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controlling for mother’s working status would bias downward estimated treatment effects
for schooling and other ability-dependent outcomes. We control for imbalances by
conditioning on such covariates.

Second, even if treatment assignment is statistically independent of the baseline variables,
compromised randomization can still produce biased inference. A compromised
randomization protocol can generate treatment assignment distributions that differ from
those that would result from implementation of the intended randomization protocol. As a
consequence, incorrect inference can occur if the data are analyzed under the assumption
that no compromise in randomization has occurred.

More specifically, analyzing the Perry study under the assumption that a fair coin decides
the treatment assignment of each participant—as if an idealized, non-compromised
randomization had occurred—mischaracterizes the actual treatment assignment mechanism
and hence the probability of assignment to treatment. This can produce incorrect critical
values and improper control of Type-I error. Section 4.5 presents a procedure that accounts
for the compromised randomization using permutation- based inference conditioned on
baseline background measures.

Multiple hypotheses
There are numerous outcomes reported in the Perry experiment. One has to be careful in
conducting analyses to avoid selective reporting of statistically significant outcomes, as
determined by single-hypothesis tests, without correcting for the effects of such preliminary
screening on actual p-values. This practice is sometimes termed “cherry picking.”

Multiple-hypothesis testing procedures avoid bias in inference arising from selectively
reporting statistically significant results by adjusting inference to take into account the
overall set of outcomes from which the “significant” results are drawn.

The traditional approach to testing based on overall F-statistics involves testing the null
hypothesis that any element of a block of hypotheses is rejected. We test that hypothesis as
part of a general stepdown procedure, which also tests which hypotheses within the block of
hypotheses are rejected.

Simple calculations suggest that concerns about the overall statistical significance of
treatment effects for the Perry study may have been overstated. Table 2 summarizes the
inference for 715 Perry study outcomes by reporting the percentage of hypotheses rejected at
various significance levels.16 If outcomes were statistically independent and there was no
experimental treatment effect, we would expect only 1% of the hypotheses to be rejected at
the 1% level, but instead 7% are rejected overall (3% for males and 7% for females). At the
5% significance level, we obtain a 23% overall rejection rate (13% for males and 22% for
females). Far more than 10% of the hypotheses are statistically significant when the 10%
level is used. These results suggest that treatment effects are present for each gender and for
the full sample.

However, the assumption of independence among the outcomes used to make these
calculations is quite strong. In our analysis, we use modern methods for testing multiple
hypotheses that account for possible dependencies among outcomes. We use a stepdown
multiple-hypothesis testing procedure that controls for the family-wise error rate—the

16Inference is based on a permutation testing method where the t-statistic of the difference in means between treatment and control
groups is used as the test statistic.
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probability of rejecting at least one true null hypothesis among a set of hypotheses we seek
to test jointly. This procedure is discussed below in Section 4.6.

4. Methods
This section presents a framework for inference that addresses the problems raised in
Section 3, namely, small samples, compromised randomization, and cherry picking. We first
establish notation, discuss the benefits of a valid randomization, and consider the
consequences of compromised randomization. We then introduce a general framework for
representing randomized experiments. Using this framework, we develop a statistical
framework for characterizing the conditions under which permutation-based inference
produces valid small-sample inference when there is corruption of the intended
randomization protocol. Finally, we discuss the multiple-hypothesis testing procedure used
in this paper.

4.1 Randomized experiments
The standard model of program evaluation describes the observed outcome for participant i,
Yi, by Yi = DiYi,1 + (1 − Di)Yi,0, where (Yi,0, Yi,1) are potential outcomes corresponding to
control and treatment status for participant i, respectively, and Di is the assignment
indicator: Di = 1 if treatment occurs, Di = 0 otherwise.

An evaluation problem arises because either Yi,0 or Yi,1 is observed, but not both. Selection
bias can arise from participant self-selection into treatment and control groups so that
sampled distributions of Yi,0 and Yi,1 are biased estimators of the population distributions.
Properly implemented randomized experiments eliminate selection bias because they
produce independence between (Yi,0 Yi,1) and Di.17 Notationally, (Y0, Y1) ⫫ D, where Y0,
Y1, and D are vectors of variables across participants, and ⫫ denotes independence.

Selection bias can arise when experimenters fail to generate treatment groups that are
comparable on unobserved background variables that affect outcomes. A properly conducted
randomization avoids the problem of selection bias by inducing independence between
unobserved variables and treatment assignments.

Compromised randomization can invalidate the assumption that (Y0, Y1) ⫫ D. The
treatments and controls can have imbalanced covariate distributions.18 The following
notational framework helps to clarify the basis for inference under compromised
randomization that characterizes the Perry study.

4.2 Setup and notation
Denote the set of participants by ℐ = {1,…, I}, where I = 123 is the total number of Perry
study participants. We denote the random vector representing treatment assignments by D =
(Di; i ∈ ℐ). The set is the support of the vector of random assignments, namely = [0, 1] ×
⋯ × [0, 1], 123 times, so = [0, 1]123. Define the preprogram variables used in the
randomization protocol by X = (Xi;i ∈ ℐ). For the Perry study, baseline variables X consist

17Web Appendix B discusses this point in greater detail.
18Heckman and Smith (1995), Heckman, LaLonde, and Smith (1999), and Heckman and Vytlacil (2007) discussed randomization
bias and substitution bias. The Perry study does not appear to be subject to these biases. Randomization bias occurs when random
assignment causes the type of person participating in a program to differ from the type that would participate in the program as it
normally operates based on participant decisions. The description of Weikart, Bond, and McNeil (1978) suggests that because of
universal participation of eligibles, this is not an issue for Perry. Substitution bias arises when members of an experimental control
group gain access to close substitutes for the experimental treatment. During the pre-Head Start era of the early 1960’s, there were few
alternative programs to Perry, so the problem of substitution bias is unimportant for the analysis of the Perry study.
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of data on the following measures: IQ, enrollment cohort, socioeconomic status (SES) index,
family structure, gender, and maternal employment status, all measured at study entry.

Assignment to treatment is characterized by a function M. The arguments of M are variables
that affect treatment assignment. Define R as a random vector that describes the outcome of
a randomization device (e.g., a flip of a coin to assign treatment status). Prior to determining
the realization of R, two groups are formed on the basis of preprogram variables X. Then R
is realized and its value is used to assign treatment status. R does not depend on the
composition of the two groups. After the initial treatment assignment, individuals are
swapped across assigned treatment groups based on some observed background
characteristics X (e.g., mother’s working status). M captures all three aspects of the
treatment assignment mechanism. The following assumptions formalize the treatment
assignment protocol:

Assumption A-1. D ~ M(R, X) :supp(R) × supp(X)→ R ⫫ X, where supp(D) =  and supp
denotes support

Let Vi represent the unobserved variables that affect outcomes for participant i. The vector
of unobserved variables is V = (Vi;i ∈ ℐ). The assumption that unobserved variables are
independent of the randomization device R is critical for guaranteeing that randomization
produces independence between unobserved variables and treatment assignments, and can
be stated as follows:

Assumption A-2. R ⫫ V.

Remark 4.1. The random variables R used to generate the randomization and the unobserved
variables V are assumed to be independent. However, if initial randomization is
compromised by reassignment based on X, the assignment mechanism depends on X. Thus,
substantial correlation between final treatment assignments D and unobserved variables V
can exist through the common dependence between X and V.

As noted in Section 2, some participants whose mothers were employed had their initial
treatment status reassigned in an effort to lower program costs. One way to interpret the
protocol as implemented is that the selection of reassigned participants occurred at random
given working status. In this case, the assignment mechanism is based on observed variables
and can be represented by M as defined in Assumption A-1. In particular, conditioning on
maternal working status (and other variables used to assign persons to treatment) provides a
valid representation of the treatment assignment mechanism and avoids selection bias. This
is the working hypothesis of our paper.

Given that many of the outcomes we study are measured some 30 years after random
assignment, and a variety of post-randomization period shocks generate these outcomes, the
correlation between V and the outcomes may be weak. For example, there is evidence that
earnings are generated in part by a random walk with drift (see, e.g., Meghir and Pistaferri
(2004)). If this is so, the correlation between the errors in the earnings equation and the
errors in the assignment to treatment equation may be weak. By the proximity theorem
(Fisher (1966)), the bias arising from V correlated with outcomes may be negligible.19

19However, if reassignment of initial treatment status was not random within the group of working mothers (say favoring those who
had children with less favorable outcomes), conditioning on working status may not be sufficient to eliminate selection bias. In a
companion paper, Heckman, Pinto, Shaikh, and Yavitz (2009) develop and apply a more conservative approach to bounding inference
about the null hypothesis of no treatment effect where selection into treatment is based on unobserved variables correlated with
outcomes, so that the assignment mechanism is described by D ~ M(R,X,V). Bounding is the best that they can do because the exact
rules of reassignment are unknown and they cannot condition on V. From documentation on the Perry randomization protocol, they
have a set of restrictions used to make reassignments that produce informative bounds.
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Each element i in the outcome vector Y takes value Yi,0 or Yi,1. The vectors of
counterfactual outcomes are defined by Yd = (Yi,d; i ∈ ℐ); d ∈ {0, 1}, i ∈ ℐ. Without loss of
generality, Assumption A-3 postulates that outcomes Yi,d, where d ∈ {0, 1}, i ∈ ℐ, are
generated by a function f:

Assumption A-3. Yi,d ≡ f(d, Xi, Vi); d ∈ {0, 1}, ∀i ∈ ℐ.20

Assumptions A-1, A-2, and A-3 formally characterize the Perry randomization protocol.

The benefits of randomization
The major benefit of randomization comes from avoiding the problem of selection bias. This
benefit is a direct consequence of Assumptions A-1, A-2, and A-3, and can be stated as a
lemma:

Lemma L-1. Under Assumptions A-1, A-2, and A-3, (Y1,Y0) ⫫ D|X.

Proof. Conditional on X, the argument that determines Yi,d for d ∈ {0, 1} is V, which is
independent of R by Assumption A-2. Thus, R is independent of (Y0, Y1). Therefore, any
function of R and X is also independent of (Y0, Y1) conditional on X. In particular,
Assumption A-1 states that conditional on X, treatment assignments depend only on R, so
(Y0, Y1) ⫫ D|X.

Remark 4.2. Regardless of the particular type of compromise to the initial randomization
protocol, Lemma L-1 is valid whenever the randomization protocol is based on observed
variables X, but not on V. Assumption A-2 is a consequence of randomization. Under it,
randomization provides a solution to the problem of biased selection.21

Remark 4.3. Lemma L-1 justifies matching as a method to correct for irregularities in the
randomization protocol.

The method of matching is often criticized because the appropriate conditioning set that
guarantees conditional independence is generally not known, and there is no algorithm for
choosing the conditioning variables without invoking additional assumptions (e.g.,
exogeneity).22 For the Perry experiment, the conditioning variables X that determine the
assignment to treatment are documented, even though the exact treatment assignment rule is
unknown (see Weikart, Bond, andMcNeil (1978)).

When samples are small and the dimensionality of covariates is large, it becomes
impractical to match on all covariates. This is the “curse of dimensionality” in matching
(Westat (1981)). To overcome this problem, Rosenbaum and Rubin (1983) propose
propensity score matching, in which matches are made based on a propensity score, that is,

20At the cost of adding new notation, we could distinguish a subset of X, Z, which does not determine M but does determine Y. In
this case, we write an amended assumption:
Assumption A-3′. Yi,d = f(d,Xi,Zi,Vi); d ∈ {0, 1}, ∀i ∈ ℐ,
In addition, Assumption A-2 is strengthened to the following statement:
Assumption A-2′. R ⫫ (V, Z)
In practice, conditioning on Z can be important for controlling imbalances in variables that are not used to assign treatment but that
affect outcomes. For example, birth weight (a variable not used in the Perry randomization protocol) may, on average, be lower in the
control group and higher in the treatment group, and birth weight may affect outcomes. In this case, a spurious treatment effect could
arise in any sample due to this imbalance, and not because of the treatment itself. Such imbalance may arise from compromises in the
randomization protocol. To economize on notation, we do not explicitly distinguish Z, but instead treat it as a subset of X.
21Biased selection can occur in the context of a randomized experiment if treatment assignment uses information that is not available
to the program evaluator and is statistically related to the potential outcomes. For example, suppose that the protocol M is based in
part on an unobserved (by the economist) variable V that impacts Y through the f(·) in Assumption A-3:
Assumption A-1′. M(R,X,V) :supp(R) × supp(X) × supp(V )→
22See Heckman and Navarro (2004), Heckman and Vytlacil (2007), and Heckman (forthcoming).
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the probability of being treated conditional on observed covariates. This is a one-
dimensional object that reduces the dimensionality of the matching problem at the cost of
having to estimate the propensity score, which creates problems of its own.23 Zhao (2004)
shows that when sample sizes are small, as they are in the Perry data, propensity score
matching performs poorly when compared with other matching estimators. Instead of
matching on the propensity score, we directly condition on the matching variables using a
partially linear model. A fully nonparametric approach to modeling the conditioning set is
impractical in the Perry sample.

4.3 Testing the null hypothesis of no treatment effect
Our aim is to test the null hypothesis of no treatment effect. This hypothesis is equivalent to
the statement that the control and treated outcome vectors share the same distribution:

Hypothesis H-1.  denotes equality in distribution

The hypothesis of no treatment effect can be restated in an equivalent form. Under Lemma
L-1, Hypothesis H-1 is equivalent to the following statement:

Hypothesis H-1′. Y ⫫ D|X.

The equivalence is demonstrated by the following argument. Let AJ denote a set in the
support of a random variable J. Then

Pr((D,Y) ∈ (AD, AY )|X)

= E(1[D ∈ AD] ⊙ 1[Y ∈ AY ]|X)

(where ⊙ denotes a Hadamard product24)

= E(1[Y ∈AY ]|D ∈AD, X) Pr(D ∈AD|X)

= E(1[(Y1 ⊙D + Y0 ⊙(1 − D)) ∈ AY]|D ∈ AD, X) Pr(D ∈ AD|X)

= E(1[Y0 ∈AY]|D ∈AD, X) Pr(D ∈ AD|X) by Hypothesis H-1

= E(1[Y0 ∈ AY]|X) Pr(D ∈ AD|X) by Lemma L-1

= Pr(Y ∈ AY|X)Pr(D ∈ AD|X).

We refer to Hypotheses H-1 and H-1′ interchangeably throughout this paper. If the
randomization protocol is fully known, then the randomization method implies a known
distribution for the treatment assignments. In this case, we can proceed in the following
manner:

Step 1. From knowledge of the treatment assignment rules, one can generate the distribution
of D|X.

Step 2. Select a statistic T(Y, D,X) with the property that larger values of the statistic
provide evidence against the null hypothesis, Hypothesis H-1 (e.g., t-statistics, χ2, etc.).

Step 3. Create confidence intervals for the random variable T(Y, D, X)|X at significance
level α based on the known distribution of D|X.

23See Heckman, Ichimura, Smith, and Todd (1998).
24A Hadamard product is an element-wise product.
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Step 4. Reject the null hypothesis if the value of T(Y, D,X) calculated from the data does not
belong to the confidence interval.

Implementing these procedures requires solving certain problems. To produce the
distribution of D|X requires precise knowledge of the ingredients of the assignment rules,
which are only partially known. Alternatively, the analyst could use the asymptotic
distribution of the chosen test statistic. However, given the size of the Perry sample, it seems
unlikely that the distribution of T(Y, D,X) is accurately characterized by large-sample
distribution theory. We address these problems by using permutation-based inference that
addresses the problem of small sample size in a way that allows us to simultaneously
account for compromised randomization when Assumptions A-1–A-3 and Hypothesis H-1
are valid. Our inference is based on an exchangeability property that remains valid under
compromised randomization.

4.4 Exchangeability and the permutation-based tests
The main result of this subsection is that, under the null hypothesis, the joint distribution of
outcome and treatment assignments is invariant for certain classes of permutations. We rely
on this property to construct a permutation test that remains valid under compromised
randomization. Permutation-based inference is often termed data-dependent because the
computed p-values are conditional on the observed data. These tests are also distribution-
free because they do not rely on assumptions about the parametric distribution from which
the data are sampled. Because permutation tests give accurate p-values even when the
sampling distribution is skewed, they are often used when sample sizes are small and sample
statistics are unlikely to be normal. Hayes (1996) shows the advantage of permutation tests
over the classical approaches for the analysis of small samples and nonnormal data.

Permutation-based tests make inferences about Hypothesis H-1 by exploring the invariance
of the joint distribution of (Y, D) under permutations that swap the elements of the vector of
treatment indicators D. We use g to index a permutation function π, where the permutation
of elements of D according to πg is represented by gD. Notationally, gD is defined as

where πg is a permutation function (i.e., πg : ℐ → ℐ is a bijection).

Lemma L-2. Let the permutation function πg : ℐ → ℐ within each stratum of X, such that

Xi = Xπg(i) ∀i ∈ ℐ. Then, under Assumption A-1, .

Proof. gD ~ M(R, gX) by construction, but gX = X by definition, so gD ~ M(R, X).

Remark 4.4. An important feature of the exchangeability property used in Lemma L-2 is that
it relies on limited information on the randomization protocol. It is valid under compromised
randomization and there is no need for a full specification of the distribution D or the
assignment mechanism M.

Let X be the set of all permutations that permute elements only within each stratum of X.25

Formally,

25See Web Appendix C.3 for a formal description of restricted permutation groups.
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A corollary of Lemma L-2 is

(1)

We now state and prove the following theorem.

Theorem 4.1. Let treatment assignment be characterized by Assumptions A-1–A-3. Under
Hypothesis H-1, the joint distribution of outcomes Y and treatment assignments D is
invariant under permutations g ∈ X of treatment assignments within strata formed by

values of covariates X, that is .

Proof. By Lemma L-2, . But Y ⫫ D|X by Hypothesis H-1. Thus

.

Theorem 4.1 is called the Randomization Hypothesis.26 We use it to test whether Y ⫫ D|X.
Intuitively, Theorem 4.1 states that if the randomization protocol is such that (Y, D) is
invariant over the strata of X, then the absence of a treatment effect implies that the joint
distribution of (Y, D) is invariant with respect to permutations of D that are restricted within
strata of X.27 Theorem 4.1 is a useful tool for inference about treatment effects. For
example, suppose that, conditional on X (which we keep implicit), we have a test statistic
T(Y, D) with the property that larger values of the statistic provide evidence against
Hypothesis H-1 and an associated critical value c, such that whenever T(Y, D) >c, we reject
the null hypothesis. The goal of our test is to control for a Type-I error at significance level
α, that is,

Pr(reject Hypothesis H-1|Hypothesis H-1 is true)

= Pr(T(Y, D) > c|Hypothesis H-1 is true) ≤ α.

A critical value can be computed by using the fact that as g varies in X under the null
hypothesis of no treatment effect, conditional on the sample, T(Y, gD) is uniformly
distributed.28 Thus, under the null, a critical value can be computed by taking the α quantile
of the set {T(Y, gD) : g ∈ X}. In practice, permutation tests compare a test statistic
computed on the original (unpermuted) data with a distribution of test statistics computed on
resamplings of that data. The measure of evidence against the randomization hypothesis, the
p-value, is computed as the fraction of resampled data which yields a test statistic greater
than that yielded by the original data. In the case of the Perry study, these resampled data
sets consist of the original data with treatment and control labels permuted across
observations. As discussed below in Section 4.5, we use permutations that account for the
compromised randomization, and our test statistic is the coefficient on treatment status
estimated using a regression procedure due to Freedman and Lane (1983), which controls
for covariate imbalances and is designed for application to permutation inference.

26See Lehmann and Romano (2005, Chap.9).
27Web Appendix C discusses our permutation methodology.
28See Lehmann and Romano (2005, Theorem 15.2.2).
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We use this procedure and report one-sided mid-p-values, which are averages between the
one-sided p-values defined using strict and nonstrict inequalities. As a concrete example of
this procedure, suppose that we use a permutation test with J + 1 permutations gj, where the
first J are drawn at random from the permutation group X and gJ+1 is the identity
permutation (corresponding to using the original sample).

Our source statistic Δ is a function of an outcome Y and permuted treatment labels gjD. For
each permutation, we compute a set of source statistics Δj = Δ(Y, gjD). From these, we
compute the rank statistic Tj associated with each source statistic Δj:29

(2)

.

Without loss of generality, we assume that higher values of the source statistics are evidence
against the null hypothesis. Working with ranks of the source statistic effectively standarizes
the scale of the statistic and is an alternative to studentization (i.e., standardizing by the
standard error). This procedure is called prepivoting in the literature.30 The mid-p-value is
computed as the average of the fraction of permutation test statistics strictly greater than the
unpermuted test statistic and the fraction greater than or equal to the unpermuted test
statistic:

(3)

Web Appendix C.5. shows how to use mid-p-values to control for Type-I error.

4.5 Accounting for compromised randomization
This paper solves the problem of compromised randomization under the assumption of
conditional exchangeability of assignments given X. A by-product of this approach is that
we correct for imbalance in covariates between treatments and controls.

Conditional inference is implemented using a permutation-based test that relies on restricted
classes of permutations, denoted by X. We partition the sample into subsets, where each
subset consists of participants with common background measures. Such subsets are termed
orbits or blocks. Under the null hypothesis of no treatment effect, treatment and control
outcomes have the same distributions within an orbit.32 Equivalently, treatment assignments
D are exchangeable (therefore permutable) with respect to the outcome Y for participants

29Although this step can be skipped without affecting any results for single-hypothesis testing (i.e., Δj may be used directly in
calculating p-value), the use of rank statistics Tj is recommended by Romano and Wolf (2005) for the comparison of statistics in
multiple-hypothesis testing.
30See Beran (1988a, 1988b). Prepivoting is defined by the transformation of a test statistic into its cumulative distribution function
(cdf). The distribution is summarized by the relative ranking of the source statistics. Therefore, it is invariant to any monotonic
transformation of the source statistic. Romano and Wolf (2005) note that prepivoting is useful in constructing multiple-hypothesis
tests. The procedure generates a distribution of test statistics that is balanced in the sense that each prepivoting statistic has roughly the
same power against alternatives. More specifically, suppose that there are no ties. After prepivoting, the marginal distribution of each
rank statistic in this vector is a discrete distribution that is uniform[0, 1]. The power of the joint test of hypotheses depends only on the
correlation among the prepivoting statistics, and not on their original scale (i.e., the scale of the source). The question of optimality in
the choice of test statistics is only relevant to the extent that different choices change the relative ranking of the statistics. An example
relevant to this paper is that the choice between tests based on difference in means across control and treatment groups or the t-statistic
associated with the difference in means is irrelevant for permutation tests in randomized trials as both statistics produce the same rank
statistics across permutations. (See Good (2000), for a discussion.)
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who share common preprogram values X. Thus, the valid permutations g ∈ X swap labels
within conditioning orbits.

We modify standard permutation methods to account for the explicit Perry randomization
protocol. Features of the randomization protocol, such as identical treatment assignments for
siblings, generate a distribution of treatment assignments that cannot be described (or
replicated) by simple random assignment.33

Conditional inference in small samples
Invoking conditional exchangeability decreases the number of valid permutations within X
strata. The small Perry sample size prohibits very fine partitions of the available
conditioning variables. In general, nonparametric conditioning in small samples introduces
the serious practical problem of small or even empty permutation orbits. To circumvent this
problem and obtain restricted permutation orbits of reasonable size, we assume a linear
relationship between some of the baseline measures in X and the outcomes Y. We partition
the data into orbits on the basis of variables that are not assumed to have a linear relationship
with outcome measures. Removing the effects of some conditioning variables, we are left
with larger subsets within which permutation-based inference is feasible.

More precisely, we divide the vector X into two parts: those variables X[L], which are
assumed to have a linear relationship with Y, and variables X[N], whose relationship with Y
is allowed to be nonparametric, X = [X[L],X[N]].34 Linearity enters into our framework by
replacing Assumption A-3 with the following assumption:

Assumption A-4. .

Under Hypothesis H-1, δ1 = δ0 = δ and Ỹ ≡ Y − δX[L] = f(X[N], V). Using Assumption A-4,
we can rework the arguments of Section 4.4 to prove that, under the null, Ỹ ⫫ D|X[N]. Under
Hypothesis A-4 and the knowledge of δ, our randomization hypothesis becomes

 such that g ∈ X[N], where X[N] is the set of permutations that swap the
participants who share the same values of covariates X[N]. We purge the influence of X[L]

on Y by subtracting δX[L] and can construct valid permutation tests of the null hypothesis of
no treatment effect by conditioning on X[N]. Conditioning nonparametrically on X[N], a
smaller set of variables than X, we are able to create restricted permutation orbits that
contain substantially larger numbers of observations than when we condition more finely on
all of the X. In an extreme case, one could assume that all conditioning variables enter
linearly, eliminate their effect on the outcome, and conduct permutations using the resulting
residuals without any need to form orbits based on X.

If δ were known, we could control for the effect of X[L] by permuting Ỹ = Y − δX[L] within
the groups of participants that share the same preprogram variables X[N]. However, δ is
rarely known. We address this problem by using a regression procedure due to Freedman
and Lane (1983). Under the null hypothesis, D is not an argument in the function
determining Y. Our permutation approach addresses the problem raised by estimating δ by
permuting the residuals from a regression of Y on X[L] in orbits that share the same values
of X[N], leaving D fixed. The method regresses Y on X[L], then permutes the residuals from

32The baseline variables can affect outcomes, but may (or may not) affect the distribution of assignments produced by the
compromised randomization.
33Web Appendix C provides relevant theoretical background, as well as operational details, about implementing the permutation
framework.
34Linearity is not strictly required, but we use it in our empirical work. In place of linearity, we could use a more general parametric
functional form.
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this regression according to X[N]. D is adjusted to remove the influence of X[L]. The
method then regresses the permuted residuals on adjusted D.

More precisely, define Bg as a permutation matrix associated with the permutation g ∈
X[N].35 The Freedman and Lane regression coefficient for permutation g is

(4)

where k is the outcome index, the matrix QX is defined as QX ≡ (I−PX), I is the identity
matrix, and

PX is a linear projection in the space generated by the columns of X[L], and QX is the
projection into the orthogonal space generated by X[L]. We use this regression coefficient as
the input source statistic (Δj) to form the rank statistic (2) and to compute p-values via (3).

Expression (4) corrects for the effect of X[L] on both D and Y. (For notational simplicity, we
henceforth suppress the k superscript.) The term QXY estimates Ỹ. If δ were known, Ỹ could
be computed exactly. The term D′QX corrects for the imbalance of X[L] across treatment
and control groups. Without loss of generality, we can arrange the rows of (Y, D,X) so that
participants that share the same values of covariates X[N] are adjacent. Writing the data in
this fashion, Bg is a block-diagonal matrix, whose elements are themselves permutation
matrices that swap elements within each stratum defined by values of X[N]. For notational
clarity, suppose that there are S of these strata indexed by s ∈ S ≡ {1, …, S}. Let the
participant index set ℐ be partitioned according to these strata into S disjoint set {ℐs; s ∈ S}
so that each participant in ℐs has the same value of pre-program variables X[N].
Permutations are applied within each stratum s associated with a value of X[N]. The
permutations within each stratum are conducted independently of the permutations for other
strata. All within-strata permutations are generated by Bg to form equation (4). That

equation aggregates data across the strata to form . The same permutation structure is

applied to all outcomes k in order to construct valid joint tests of multiple hypotheses. 
plays the role of Δj in (2) to create our test statistic.

In a series of Monte Carlo studies, Anderson and Legendre (1999) show that the Freedman–
Lane procedure generally gives the best results in terms of Type-I error and power among a
number of similar permutation-based approximation methods. In another paper, Anderson
and Robinson (2001) compare an exact permutation method (where δ is known) with a
variety of permutation-based methods. They find that in samples of the size of Perry, the
Freedman–Lane procedure generates test statistics that are distributed most like those
generated by the exact method, and are in close agreement with the p-values from the true
distribution when regression coefficients are known. Thus, for the Freedman–Lane
approach, estimation error appears to create negligible problems for inference.

35A permutation matrix B of dimension L is a square matrix B = (bi,j); i, j = 1, …, L, where each row and each column has a single

element equal to 1 and all other elements equal to 0 within the same row or column, so  for all i, j.
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Interpreting our test statistic
To recapitulate, permutations are conducted within each stratum defined by X[N] for the S
strata indexed by s ∈ S ≡ {1, …, S}. Let D(s) be the treatment assignment vector for the
subset ℐs defined by D(s) ≡ (Di;i ∈ ℐs). Let Ỹ (s) ≡ (Ỹi;i ∈ ℐs) be the adjusted outcome

vector for the subset ℐs. Finally, let  be the collection of all permutations that act on the
|ℐs| elements of the set ℐs of stratum s.

Note that one consequence of the conditional exchangeability property  for g
∈ X[N] is that the distribution of a statistic within each stratum, T(s) : (supp(Ỹ (s)) ×

supp(D(s)))→ℝ, is the same under permutations g ∈  of the treatment assignment D(s).
Formally, within each stratum s ∈ S,

(5)

The distribution of any statistic T(s) = T(Ỹ (s), D(s)) (conditional on the sample) is uniform

across all the values Tg(s) = T(Ỹ (s), gD(s)), where g varies in .36

The Freedman–Lane statistic aggregates tests across the strata. To understand how it does
this, consider an approach that combines the independent statistics across strata to form an
aggregate statistic,

(6)

where the weight w(s) could be, for example, (1/σ(s)) where σ(s) is the standard error of
T(s). Tests of the null hypothesis could be based on T.

To relate this statistic to the one based on equation (4), consider the special case where there
are no X[L] variables besides the constant term so there is no need to estimate δ. Define
Di(s) as the value of D for person i in stratum s, i = 1,…, |ℐs|. Likewise, Ỹi(s) is the value of
Ỹ for person i in stratum s. Define

We can define corresponding statistics for the permuted data.

In this special case where, in addition, the variance of Ỹ (s) is the same within each stratum
(σ(s) = σ) and w(s) = |ℐs|/σ|ℐ| (i.e., w(s) is the proportion of sample observations in stratum
s), test statistic (6) generates the same inference as the Freedman–Lane regression
coefficient (4) used as the source statistic for our testing procedure.

In the more general case analyzed in this paper, the Freedman–Lane procedure (4) adjusts
the Y and D to remove the influence of X[L]. Test statistic (6) would be invalid, even if we

36See Lehmann and Romano (2005, Chap. 15) for a formal proof.
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use Ỹ instead of Y because it does not control for the effect of X[L] on D.37 The Freedman–
Lane procedure adjusts for the effect of theX[L], which may differ across strata.38

4.6 Multiple-hypothesis testing: The stepdown algorithm
Thus far, we have considered testing a single null hypothesis. Yet there are more than 715
outcomes measured in the Perry data. We now consider the null hypothesis of no treatment
effect for a set of K outcomes jointly. The complement of the joint null hypothesis is the
hypothesis that there exists at least one hypothesis out of K that we reject.

Formally, let P be the distribution of the observed data, (Y, D)|X ~ P. We test the |  set of
single null hypotheses indexed by = {1, …, K} and defined by the rule

The hypothesis we test is defined as follows:

Hypothesis H-2. H  : P ∈ ∩k∈  k

The alternative hypothesis is the complement of Hypothesis H-2. Let the unknown subset of
true null hypotheses be denoted by P ⊂  such that k ∈ P ⇔ P ∈ k. Likewise we
define H

P
 :P ∈ ∩k∈ P 1D4AB;k. Our goal is to test the family of null Hypotheses H-2 in

a way that controls the family-wise error rate (FWER) at level α. FWER is the probability of
rejecting any true null hypothesis contained in H P out of the set of hypotheses H .
FWER at level α is

(7)

A multiple-hypothesis testing method is said to have strong control for FWER when
equation (7) holds for any configuration of the set of true null hypotheses P.

To generate inference using evidence from the Perry study in a robust and defensible way,
we use a stepdown algorithm for multiple-hypothesis testing. The procedure begins with the
null hypothesis associated with the most statistically significant statistic and then “steps
down” to the null hypotheses associated with less significant statistics. The validity of this
procedure follows from the analysis of Romano and Wolf (2005), who provide general
results on the use of stepdown multiple-hypothesis testing procedures.

The stepdown algorithm
Stepdown begins by considering a set of null hypotheses, where ≡ {1, …, K}. Each
hypothesis postulates no treatment effect of a specific outcome, that is, Hk : Yk ⫫ D|X; k ∈

 The set of null hypotheses is associated with a block of outcomes. We adopt the mid-p-
value pk as the test statistic associated with each hypothesis Hk. Smaller values of the test
statistic provide evidence against each null hypothesis. The first step of the stepdown

37Anderson and Robinson (2001) discuss the poor performance of permutation tests that do not control for the influence of X[L].
38The Freedman–Lane statistic is based on an OLS estimator. In the case of heteroscedasticity arising from differences in the
variances of Y(s) across strata, OLS is unbiased and consistent for the treatment effect, but the conventional standard errors for OLS
are biased. Asymptotic p-values generated using normal approximations may be misleading. Our permutation test generates valid
inference by permuting data within strata and pooling the permuted data across strata via (4). Under the null hypothesis of no
treatment effect we obtain the exact distribution of the OLS parameter conditional on the data. Thus we compute tests with the correct
size. If we permuted across strata, we would lose this property. Whether other statistics, such as a GLS version of the Freedman–Lane
statistic, would improve statistical power is still an open question. The Freedman–Lane equation (4) is an example of a combining
function in permutation statistics (Pesarin and Salmaso (2010)) applied to combine tests across strata.
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procedure is a joint test of all null hypotheses in  To this end, the method uses the
maximum of the set of statistics associated with hypotheses Hk, k ∈ 

The next step of the stepdown procedure compares the computed test statistic with the α-
quantile of its distribution and determines whether the joint hypothesis is rejected or not. If
we fail to reject the joint null hypothesis, then the algorithm stops. If we reject the null
hypothesis, then we iterate and consider the joint null hypothesis that excludes the most
individually statistically significant outcome—the one that is most likely to contribute to
rejection of the joint null. The method steps down and is applied to a set of K−1 null
hypotheses that excludes the set of hypotheses previously rejected. In each successive step,
the most individually significant hypothesis —the one most likely to contribute to the
significance of the joint null hypothesis— is dropped from the joint null hypothesis, and the
joint test is performed on the reduced set of hypotheses. The process iterates until only one
hypothesis remains.39

Summarizing, we first construct single-hypothesis p-values for each outcome in each block.
We then jointly test the null hypothesis of no treatment effect for all K outcomes. After
testing for this joint hypothesis, a stepdown algorithm is performed for a smaller set of K − 1
hypotheses, which excludes the most significant hypothesis among the K outcomes. The
process continues for K steps. The stepdown method provides K adjusted p-values that
correct each single-hypothesis p-value for the effect of multiple-hypothesis testing.

Benefits of the stepdown procedure
Similar to traditional multiple-hypothesis testing procedures, such as the Bonferroni or
Holm procedures (see, e.g., Lehmann and Romano (2005), for a discussion of these
procedures), the stepdown algorithm of Romano and Wolf (2005) exhibits strong FWER
control, in contrast with the classical tests like the F or χ2.40 The procedure generates as
many p-values as there are hypotheses. Thus it provides a way to determine which
hypotheses are rejected. In contrast with traditional multiple-hypothesis testing procedures,
the stepdown procedure is less conservative. The gain in power comes from accounting for
statistical dependencies among the test statistics associated with each individual hypothesis.
Lehmann and Romano (2005) and Romano and Wolf (2005) discuss the stepdown
procedure in depth. Web Appendix D summarizes the literature on multiple hypothesis
testing and provides a detailed description of the stepdown procedure.

4.7 The selection of the set of joint hypotheses
There is some arbitrariness in defining the blocks of hypotheses that are jointly tested in a
multiple-hypothesis testing procedure. The Perry study collects information on a variety of
diverse outcomes. Associated with each outcome is a single null hypothesis. A potential
weakness of the multiple-hypothesis testing approach is that certain blocks of outcomes may
lack interpretability. For example, one could test all hypotheses in the Perry program in a
single block.41 However, it is not clear if the hypothesis “did the experiment affect any
outcome, no matter how minor” is interesting. To avoid arbitrariness in selecting blocks of
hypotheses, we group hypotheses into economically and substantively meaningful categories
by age of participants. Income by age, education by age, health by age, test scores by age,
and behavioral indices by age are treated as separate blocks. Each block is of independent
interest and would be selected by economists on a priori grounds, drawing on information

39See Web Appendix D for details on how we implement stepdown as well as a more general and formal description of the procedure.
40For further discussion of stepdown and its alternatives, see Westfall and Young (1993), Benjamini and Hochberg (1995), Romano
and Shaikh (2004, 2006), Romano and Wolf (2005), and Benjamini, Krieger, and Yekutieli (2006).
41In addition, using large categories of closely related variables, which are statistically insignificant, increases the probability of not
rejecting the null.
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from previous studies on the aspect of participant behavior represented by that block. We
test outcomes by age and detect pronounced life cycle effects by gender.42

5. Empirical results
We now apply our machinery to analyze the Perry data. We find large gender differences in
treatment effects for different outcomes at different ages (Heckman (2005), Schweinhart et
al. (2005)). We find statistically significant treatment effects for both males and females on
many outcomes. These effects persist after controlling for compromised randomization and
multiple-hypothesis testing.

Tables 3–6 summarize the estimated effects of the Perry program on outcomes grouped by
type and age of measurement.43 Tables 3 and 4 report results for females, while Tables 5
and 6 are for males. The third column of each table shows the control group means for the
indicated outcomes. The next three columns are the treatment effect sizes. The unconditional
effect (“uncond.”) is the difference in means between the treatment group and the control
group. The conditional (full) effect is the coefficient on the treatment assignment variable in
linear regressions. Specifically, we regress outcomes on a treatment assignment indicator
and four other covariates: maternal employment, paternal presence, socioeconomic status
(SES) index, and Stanford–Binet IQ, all measured at the age of study entry. The conditional
(partial) effect is the estimated treatment effect from a procedure using nonparametric
conditioning on a variable indicating whether SES is above or below the sample median and
linear conditioning for the other three covariates. This specification is used to generate the
stepdown p-values reported in this paper. The next four columns are p-values, based on
different procedures explained below, for testing the null hypothesis of no treatment effect
for the indicated outcome. The second-to-last column, “Gender Difference-in-Difference,”
tests the null hypothesis of no difference in mean treatment effects between males and
females. The final column gives the available observations for the indicated outcome. Small
p-values associated with rejections of the null are bolded.

Outcomes in each block are placed in ascending order of the partially linear Freedman–Lane
p-value, which is described below. This is the order in which the outcomes would be
discarded from the joint null hypothesis in the stepdown multiple-hypothesis testing
algorithm.44 The ordering of outcomes differs in the tables for males and females.
Additionally, some outcomes are reported for only one gender when insufficient
observations were available for reliable testing of the hypothesis for the other gender.

Single p-values
Tables 3–6 show four varieties of p-values for testing the null hypothesis of no treatment
effect. The first such value, labeled “Naïve,” is based on a simple permutation test of the
hypothesis of no difference in means between treatment and control groups. This test uses
no conditioning, imposes no restrictions on the permutation group, and does not account for
imbalances or the compromised Perry randomization. These naive p-values are very close to
their asymptotic versions. For evidence on this point, see Web Appendix E.

The next three p-values are based on variants of a procedure due to Freedman and Lane
(1983) for combining regression with permutation testing for admissible permutation

42An alternative to multiple-hypothesis testing is to assign a monetary metric to gauge the success or failure of the program. This is
done in the rate of return analysis of Heckman, Moon, Pinto, Savelyev, and Yavitz (2010a).
43Perry follow-ups were conducted at ages 19, 27, and 40. We group the outcomes by age whenever they have strong age patterns, for
example, in the case of employment or income.
44For more on the stepdown algorithm, see Section 4.6 and Web Appendix D.
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groups. The first Freedman–Lane p-value, labeled “Full Linearity,” tests the significance of
the treatment effect by adjusting outcomes using linear regression with four covariates:
maternal employment, paternal presence, SES, and Stanford–Binet IQ, all measured at study
entry.45 The second Freedman–Lane p-value, labeled “Partial Linearity,” allows for a
nonparametric relationship between the SES index and outcomes while continuing to
assume a linear relationship for the other three covariates. This nonparametric conditioning
on SES is achieved by restricting the orbits of the permutations used in the test.
Exchangeability of treatment assignments between observations is assumed only on
subsamples with similar values of the SES index (specifically, whether subjects fall above or
below the sample median). In addition, the permutation distribution for the partially linear p-
values permute siblings as a block. Admissible permutations do not assign different siblings
to different treatment and control statuses. These two modifications account for the
compromised randomization of the Perry study.46 The third p-value for the Freedman–Lane
procedure incorporates an adjustment for multiple-hypothesis testing using the stepdown
algorithm described below.

Stepdown p-values and multiple-hypothesis testing
We divide outcomes into blocks for multiple-hypothesis testing by type of outcome,
similarities on the type of measure, and age if there is an obvious age pattern.47 In Tables 3–
6, these blocks are delineated by horizontal lines. Within each block, the “Partially Linear
(Adjusted)” p-value is the set of p-values obtained from the partially linear model adjusted
for multiple-hypothesis testing using the stepdown algorithm. The adjusted p-value in each
row corresponds to a joint hypothesis test of the indicated outcome and the outcomes within
each block.

The first row of each block constitutes a joint test of the null hypothesis of no treatment
effect for any of the outcomes in that block. Each successive row eliminates one outcome
from the joint null hypothesis. This stepwise ordering is the reason why we report outcomes
placed in ascending order of their p-values. The stepdown-adjusted p-values are based on
these values, and the most individually significant remaining outcome is removed from the
joint null hypothesis at each successive step.

Statistics

We use the mid-p-value statistics based on the Freedman–Lane coefficient  for treatment
status D. All p-values are computed using 30, 000 draws under the relevant permutation
procedure. All inference is based on one-sided p-values under the assumption that treatment
is not harmful. An exception is the test for differences in treatment effects by gender, which
are based on two-sided p-values.

Main results
Tables 3–6 show many statistically significant treatment effects and gender differences that
survive multiple-hypothesis testing. In summary, females show strong effects for
educational outcomes, early employment, and other early economic outcomes, as well as
reduced numbers of arrests. Males show strong effects on a number of outcomes,
demonstrating a substantially reduced number of arrests and lower probability of

45Note that these are the same four used to produce the conditional effect size previously described.
46Partial linearity is a valid assumption if full linearity is a valid assumption, although the converse need not necessarily hold since a
nonparametric approach is less restrictive than a linear parametric approach.
47Education, health, family composition, criminal behavior, employment status, earnings, and general economic activities are the
categories of variables on which blocks are selected on a priori grounds.
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imprisonment, as well as strong effects on earnings at age 27, employment at age 40, and
other economic outcomes recorded at age 40.

A principal contribution of this paper is to simultaneously tackle the statistical challenges
posed by the problems of small sample size, imbalance in the covariates, and compromised
randomization. In doing so, we find substantial differences in inference between the testing
procedures that use naive p-values versus the Freedman–Lane p-values which correct for the
compromised nature of the randomization protocol. The rejection rate when correcting for
these problems is often higher compared with what is obtained from procedures that do not
make such corrections, sharpening the evidence for treatment effects from the Perry
program. This pattern is largely found in the p-values for males. This is evidenced by
increasing statistical significance of treatment effects moving from “Naïve” to “Full
Linearity” and from “Full Linearity” to “Partial Linearity.” In several cases, outcomes that
are statistically insignificant at a 10% level using naive p-values are shown to be statistically
significant using p-values derived from the partially linear Freedman–Lane model. For
example, consider the p-values for “Current Employment” at age 40 for males or
“Nonjuvenile Arrests” at age 27 for females.

Schooling
Within the group of hypotheses for education, the only statistically significant treatment
effect for males is the effect associated with being classified as mentally impaired through
age 19 (Table 5). We fail to reject the overall joint null hypotheses for both school
achievement and for lifetime educational outcomes. However, as Table 3 shows, there are
strong treatment effects for females on high school GPA, graduation, highest grade
completed, mental impairment, learning disabilities, and so on. The hypothesis of no
difference between sexes in schooling outcomes is rejected for the outcomes of highest
grade completed, GPA, high school graduation, and the presence of a learning disability.
The unimpressive education results for males, however, do not necessarily mean that the
pattern would be reproduced if the program were replicated today. We discuss this point in
Section 6.48 We discuss the effects of the intervention on cognitive test scores in Web
Appendix G. Heckman, Malofeeva, Pinto, and Savelyev (2010b) discuss the impact of the
Perry program on noncognitive skills. They decompose treatments effects into effects due to
cognitive and noncognitive enhancements of the program.

Employment and earnings
Results for employment and earnings are displayed in Table 4 for females and Table 6 for
males. The treatment effects in these outcomes exhibit gender differences and a distinctive
age pattern. For females, we observe statistically significant employment effects in the
overall joint null hypotheses at ages 19 and 27. Only one outcome does not survive
stepdown adjustment: “Jobless Months in Past 2 Years” at age 27. At age 40, however, there
are no statistically significant earnings effects for females considered as individual outcomes
or in sets of joint null hypotheses by age. For males, we observe no significant employment
effects at age 19. We reject the overall joint null hypotheses of no difference in employment
outcomes at ages 27 and 40. We also reject the null hypotheses of no treatment effect on
age-40 employment outcomes individually. When male earnings outcomes alone are
considered, we reject only the overall joint null hypothesis at age 27. However, when
earnings are considered together with employment, we reject both the overall age-27 and
age-40 joint null hypotheses.

48We present a more extensive discussion of this point in Web Appendix I.
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Economic activity
Tests for other economic outcomes, shown in Tables 4 and 6, reinforce the conclusions
drawn from the analysis of employment outcomes above. Both treated males and females
are generally more likely to have savings accounts and own cars at the same ages that they
are more likely to be employed. The effects on welfare dependence are strong for males
when considered through age 40, but weak when considered only through age 27; the
converse is true for females.

Criminal activity
Tables 3 and 5 show strong treatment effects on criminal activities for both genders. Males
are arrested far more frequently than females and, on average, male crimes tend to be more
serious. There are no statistically significant gender differences in treatment effects for
comparable crime outcomes. By age 27, control females were arrested 1.88 times on average
during adulthood, including 0.27 felony arrests, while the corresponding figures for control
males are 5.36 and 2.33.49 In addition, treated males are significantly less likely to be in
prison at age 40 than their control counterparts.50 Figure 4 shows cumulative distribution
functions for charges cited at all arrests through age 40 for the male subsample. Figure 4(a)
includes all types of charges, while Figure 4(b) includes only charges with nonzero victim
costs. The latter category of charges is relevant because the costs of criminal victimization
resulting from crimes committed by the Perry subjects play a key role in determining the
economic return to the Perry Preschool Program. This is reflected in the statistical
significance of estimated differences in total crime costs between treated and untreated
groups at the 10% level based on the Freedman–Lane procedure using the partially linear
model for both males and females. Total crime costs include victimization, police, justice,
and incarceration costs. Victimizations are estimated from arrest records for each type of
crime using data from urban areas of the Midwest. Police and court costs are based on
historical Michigan unit costs, and the victimization cost of fatal crime takes into account
the statistical value of life.51 We reject the overall joint null hypotheses for the number of
arrests for both males and females at age 27 and 40.

Sensitivity analysis
Our calculations, which are based on the Freedman–Lane procedure under the assumption of
partial linearity, rely on linear parametric approximations and on a particular choice of SES
quantiles to define permutation orbits. Other choices are possible. Any or all of the four
covariates that we use in the Freedman–Lane procedure under full linearity could have been
used as conditioning variables to define restricted permutation orbits under a partial linearity
assumption. We choose the SES index for nonparametric conditioning, since family
background is known to be a powerful determinant of adult outcomes (see Cunha et al.
(2006)). Specifically, we use a dummy variable for whether the SES index is above or below
the sample median.

It is informative to conduct a sensitivity analysis on the effects of the choice of conditioning
strata, which correspond to the covariates whose relationship with the outcome is assumed
to be nonlinear rather than linear. To test the sensitivity of our results to the choice of

49Statistics for female felony arrests are not shown in the table due to their low reliability: the small sample size and the low incidence
of felony arrests.
50The set of crime hypotheses is different for males and females due to small sample sizes: we cannot reliably measure the probability
of incarceration for females for Perry sample.
51Heckman et al. (2010a) present a detailed analysis of total crime cost and its contributions to the economic return to the Perry
program.
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stratum, we run a series of partially linear Freedman–Lane procedures with varying
assumptions regarding the set of which covariates enter linearly.

The four preprogram covariates in question can be used either as Freedman–Lane regressors,
which assume a linear relationship with outcomes, or as conditioning variables that limit the
orbits of permutations to their selected quantiles, which allows for a nonlinear relationship.
In Web Appendix F, we perform two types of sensitivity analyses. The first shows that the
results reported in Tables 3–6 are robust to variations in the choice of SES index quantiles
used to generate the strata on which permutations are restricted: median, tercile, or quartile.
The second shows that our results are robust to the choice of which covariates enter the
outcome model linearly.

Additional evidence on the effectiveness of the Perry Program
In related work (Heckman et al. (2010a)), we calculate rates of return to determine the
private and public returns to the Perry Preschool Program. We avoid the multiple
hypothesis-testing problem by focusing on a single economically significant summary of the
program. We use the conditioning approach adopted in this paper to control for
compromised randomization. We find statistically significant rates of return for both males
and females in the range of 6–10% per annum. This supports the evidence of substantial
treatment effects presented in the current paper.

Understanding treatment effects
While this paper tests for the existence of treatment effects due to the Perry Preschool
Program, other recent work examines channels through which these beneficial effects are
produced. Heckman et al. (2010a) estimate a model of latent cognitive and noncognitive
traits. In the early years during and after the program, the IQ scores of treatment group
participants surged, but by almost age 8, the treatment effect on IQ becomes nonexistent for
males and relatively small for females. Their research shows that the effects of the Perry
program arise primarily from boosts in noncognitive traits.

6. The representativeness of the Perry study
We next examine the representativeness of the Perry sample and characterize the target
population within the overall African-American population. We construct a comparison
group using the 1979 National Longitudinal Survey of Youth (NLSY79), a widely used,
nationally representative longitudinal data set. The NLSY79 has panel data on wages,
schooling, and employment for a cohort of young adults who were 14–22 at their first
interview in 1979. This cohort has been followed ever since. For our purposes, an important
feature is that the NLSY79 contains information on cognitive test scores as well as on
noncognitive measures. It also contains rich information on family background. This survey
is a particularly good choice for such a comparison as the birth years of its subjects (1957–
1964) include those of the Perry sample (1957–1962). The NLSY79 also oversamples
African Americans.

The matching procedure
We use a matching procedure to create NLSY79 comparison groups for Perry control groups
by simulating the application of the Perry eligibility criteria to the full NLSY79 sample.
Specifically, we use the Perry eligibility criteria to construct samples in the NLSY79. Thus,
the comparison group corresponds to the subset of NLSY79 participants who would likely
be eligible for the Perry program if it were a nationwide intervention.
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We do not have identical information on the NLSY79 respondents and the Perry entry
cohorts, so we approximate a Perry-eligible NLSY79 comparison sample. In the absence of
IQ scores in the NLSY79, we use Armed Forces Qualification Test (AFQT) scores as a
proxy for IQ. We also construct a pseudo-SES index for each NLSY79 respondent using the
available information.52

We use two different subsets of the NLSY79 sample to draw inferences about the
representativeness of the Perry sample. For an initial comparison group, we use the full
African-American subsample in NLSY79. We then apply the approximate Perry eligibility
criteria to create a second comparison group based on a restricted subsample of the NLSY79
data.

The U. S. population in 1960 was 180 million people, of which 10.6% (19 million) were
African-American.53 According to the NLSY79, the black cohort born in 1957–1964 is
composed of 2.2 million males and 2.3 million females. We estimate that 17% of the male
cohort and 15% of the female cohort would be eligible for the Perry program if it were
applied nationwide. This translates into a population estimate of 712, 000 persons out of the
4.5 million black cohort, who resemble the Perry population in terms of our measures of
disadvantage.54 For further information on the comparison groups and their construction,
see Web Appendix H and Tables H.1 and H.2 for details.

How representative is the Perry sample of the overall African-American population of the
United States?

Compared to the unrestricted African-AmericanNLSY79 subsample, Perry program
participants are more disadvantaged in their family backgrounds. This is not surprising,
given that the Perry program targeted disadvantaged children. Further, Perry participants
experience less favorable outcomes later in life, including lower high school graduation
rates, employment rates, and earnings. However, if we impose restrictions on the NLSY79
subsample that mimic the sample selection criteria of the Perry program, we obtain a
roughly comparable group. Figure 5 demonstrates this comparability for parental highest
grade completed at the time children are enrolled in the program. Web Appendix Figures H.
1–H.5 report similar plots for other outcomes, including mother’s age at birth, earnings at
age 27, and earnings at 40.55 Tables H.1 and H.2 present additional details. The Perry
sample is representative of disadvantaged African-American populations.

In Web Appendix I, we consider another aspect of the representativeness of the Perry
experiment. Perry participants were caught up in the boom and bust of the Michigan auto
industry and its effects on related industries. In the 1970’s, as Perry participants entered the
workforce, the male-friendly manufacturing sector was booming. Employees did not need
high school diplomas to get good entry-level jobs in manufacturing, and men were much
more likely to be employed in the manufacturing sector than women. The industry began to
decline as Perry participants entered their late 20’s.

This pattern may explain the gender patterns for treatment effects found in the Perry
experiment. Neither treatments nor controls needed high school diplomas to get good jobs.
As the manufacturing sector collapsed, neither group fared well. However, as noted in Web
Appendix I, male treatment group members were some what more likely to adjust to

52For details, see the Web Appendix (Heckman et al. (2010c)).
53See http://www.census.gov/population/www/documentation/twps0056/twps0056.html for more details.
54When a subsample of the NLSY79 is formed using three criteria that characterize the Perry sample—low values of a proxy for the
Perry socioeconomic status (SES) index, low achievement test (AFQT) score, and non-firstborn status—this subsample represents
713, 725 people in the United States. See Web Appendix H and Tables H.1 and H.2 for details.
55One exception to this pattern is that Perry treatment and control earnings are worse off than their matched sample counterparts.
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economic adversity by migrating than were male controls, which may account for their
greater economic success at age 40. The history of the Michigan economy helps to explain
the age pattern of observed treatment effects for males, thereby diminishing the external
validity of the study.

7. Relationship of this study to previous research
Schweinhart et al. (2005) analyze the Perry data through age 40 using large-sample
statistical tests. They show substantial effects of the program for both males and females.
They do not account for the compromised randomization of the experiment or the
multiplicity of hypotheses tested. Heckman (2005) discusses the problems of the small-
sample size, the need to use small sample-inference to analyze the Perry data, and the
appropriate way to combine inference across hypotheses.

Anderson (2008) addresses the problem of multiple-hypothesis testing in the Perry data. He
reanalyzes the Perry data (and data on other early childhood programs) using a stepdown
multiple-hypothesis testing procedure due to Westfall and Young (1993). That procedure
requires “subset pivotality,” that is, that the multivariate distribution of any subvector of p-
values is unaffected by the truth or falsity of hypotheses corresponding to p-values not
included in the subvector. This is a strong condition.56 Our method for testing multiple
hypotheses is based on the stepdown procedure of Romano and Wolf (2005), which uses an
assumption about monotonicity of the test statistics. Romano and Wolf (2005) show that
their monotonicity assumption is weaker than the subset pivotality assumption.

Anderson applies permutation inference to avoid relying on asymptotically justified test
statistics. We confirm his finding that even in the small Perry sample, asymptotic statistics
are valid, so concerns about the use of large-sample inference to analyze the Perry samples
are misplaced. However, in constructing his tests, Anderson assumes that a simple
randomization was conducted in the Perry experiment. He does not address the problem of
compromised randomization; neither does he correct for covariate imbalances between
treatments and controls.

Anderson reports no statistically significant effects of the Perry program for males. We find
that the Perry program improved the status of both genders on a variety of measures. One
explanation for the difference between Anderson’s conclusions and ours about the
effectiveness of the program for males is that we adjust for covariate imbalances and
compromised randomization while Anderson does not. As displayed in Tables 5 and 6, these
adjustments sharpen the inference for males and lead to more rejections of the null
hypothesis.

Another explanation for the contrast between our conclusions is differences in the blocks of
variables used as the basis for the stepdown multiple-hypothesis testing procedures. To
reduce the dimensionality of the testing problem, Anderson creates linear indices of
outcomes at three stages of the life cycle. The outcomes used to create each index are quite
diverse and group a variety of very different outcomes (e.g., crime, employment, education).
It is difficult to interpret his indices. Moreover, the components of his indices change with
age. We conduct inference for interpretable blocks of hypotheses defined at different stages
of the life cycle that are based on comparable outcomes (crime as one block, employment as
another block, etc.).

56In Web Appendix D.3, we present an example, due to Westfall and Young (1993), where the subset pivotality condition is satisfied
for testing hypotheses about means of a normal model but not for testing hypotheses about correlations.
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8. Summary and conclusions
Most social experiments are compromised by practical difficulties in implementing the
intended randomization protocol. They also have a variety of outcome measures. This paper
develops and applies a methodology for analyzing experiments as implemented and for
generating valid tests of multiple hypotheses.

We apply our methods to analyze data from the Perry Preschool experiment. Evidence from
the HighScope Perry Preschool Program is widely cited to support early childhood
interventions. The consequences of imperfect randomization for inference are neglected by
previous analysts of these data. This paper shows how to account for compromised
randomization to produce valid test statistics.

Proper analysis of the Perry experiment also requires application of methods for small-
sample inference and accounting for the large numbers of outcomes of the study. It is
important to avoid the danger of artificially lowering p-values by selecting statistically
significant outcomes that are “cherry picked” from a larger set of unreported hypothesis tests
that do not reject the null.

We propose and implement a combination of methods to simultaneously address these
problems. We account for compromises in the randomization protocol by conditioning on
background variables to control for the violations of the initial randomization protocol and
imbalanced background variables. We use small-sample permutation methods and estimate
family-wise error rates that account for the multiplicity of experimental outcomes. The
methods developed and applied here have applications to social experiments with small
samples when there is imbalance in covariates between treatments and controls,
reassignment after randomization, and multiple hypotheses.

The pattern of treatment response by gender varies with age. Males exhibit statistically
significant treatment effects for criminal activity, later life income, and employment (ages
27 and 40), whereas female treatment effects are strongest for education and early
employment (ages 19 and 27). There is, however, a strong effect of the program on female
crime at age 40. The general pattern is one of strong early results for females, with males
catching up later in life.

Our analysis of the representativeness of this program shows that Perry study families are
disadvantaged compared to the general African-American population. However, application
of the Perry eligibility rules to the NLSY79 yields a substantial population of comparable
individuals. Based on the NLSY79 data, we estimate that the program targeted about 16% of
the African-American population born during 1957–1964, which includes the birth years of
the Perry participants.

We present some suggestive evidence that the limited effect of the Perry program on the
education of males was due to the peculiarities of the Michigan economy. High school
degrees were not required to work in well-paying manufacturing jobs. Perry treatment males
appear to have adjusted to the decline in manufacturing that occurred in Michigan better
than the controls. This accounts for the statistically significant treatment effects in
employment and earnings found formales at age 40.

Few social experiments perfectly implement planned treatment assignment protocols. A
proper analysis of such experiments requires recognizing the sampling plan as implemented.
Our analysis shows that properly accounting for experiments as implemented can produce
sharper results than analyses that proceed as if an ideal experiment was implemented.57
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Figure 1.
Perry randomization protocol. This figure is a visual representation of the Perry
Randomization Protocol. T and C refer to treatment and control groups respectively. Shaded
circles represent males. Light circles represent females. G1 and G2 are unlabeled groups of
participants.
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Figure 2.
IQ at entry by entry cohort and treatment status. Stanford–Binet IQ at study entry (age 3)
was used to measure the baseline IQ.
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Figure 3.
SES index by gender and treatment status. The socioeconomic status (SES) index is a
weighted linear combination of three variables: (a) average highest grade completed by
whichever parent(s) was present, with a coefficient 0.5; (b) father’s employment status (or
mother’s, if the father was absent): 3 for skilled, 2 for semiskilled, and 1 for unskilled or
none, all with a coefficient 2; (c) number of rooms in the house divided by number of people
living in the household, with a coefficient 2. The skill level of the parent’s job is rated by the
study coordinators and is not clearly defined. An SES index of 11 or lower was the intended
requirement for entry into the study (Weikart, Bond, and McNeil (1978, p.14)). This
criterion was not always adhered to: out of the full sample, 7 individuals had an SES index
above the cutoff (6 out of 7were in the treatment group, and 6 out of 7 were in the last two
waves).
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Figure 4.
CDF of lifetime charges: Males. (a) Includes all charges cited at arrests through age 40. (b)
Includes all charges with nonzero victim costs cited at arrests through age 40.
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Figure 5.
Perry versus NLSY79: Mean parental highest grade completed. Unrestricted NLSY79 is the
full African-American subsample. Restricted NLSY79 is the African-American subsample
limited to those satisfying the approximate Perry eligibility criteria: at least one elder
sibling, Socioeconomic Status (SES) index at most 11, and 1979 AFQT score less than the
African-American median. The reported “t” test is for the difference in means between the
two populations.
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Table 1

Comparing families of participants with other families with children in the Perry Elementary School
catchment and a nearby school in Ypsilanti, Michigan.

Perry School
(Overall)a

Perry
Preschoolb

Erickson
Schoolc

Mother

   Average Age 35 31 32

   Mean Years of Education 10.1   9.2 12.4

   % Working 60% 20% 15%

   Mean Occupational Leveld   1.4   1.0   2.8

   % Born in South 77% 80% 22%

   % Educated in South 53% 48% 17%

Father

   % Fathers Living in the Home 63% 48% 100%

   Mean Age 40 35 35

   Mean Years of Education   9.4   8.3 13.4

   Mean Occupational Leveld   1.6   1.1 3.3

Family & Home

   Mean SESe 11.5   4.2 16.4

   Mean # of Children   3.9   4.5 3.1

   Mean # of Rooms 5.9 4.8 6.9

   Mean # of Others in Home 0.4 0.3 0.1

   % on Welfare 30% 58% 0%

   % Home Ownership 33% 5% 85%

   % Car Ownership 64% 39% 98%

   % Members of Libraryf 25% 10% 35%

   % With Dictionary in Home 65% 24% 91%

   % With Magazines in Home 51% 43% 86%

   % With Major Health Problems 16% 13% 9%

   % Who Had Visited a Museum 20% 2% 42%

   % Who Had Visited a Zoo 49% 26% 72%

N 277 45 148

Source: Weikart, Bond, and McNeil (1978).

a
These are data on parents who attended parent–teacher meetings at the Perry school or who were tracked down at their homes by Perry personnel

(Weikart, Bond, and McNeil (1978, pp. 12–15)).

b
The Perry Preschool subsample consists of the full sample (treatment and control) from the first two waves.

c
The Erickson School was an “all-white school located in a middle-class residential section of the Ypsilanti public school district” (Weikart, Bond,

and McNeil (1978, p.14)).

d
Occupation level: 1 = unskilled; 2 = semiskilled; 3 = skilled; 4 = professional.

e
See the notes at the base ofFigure 3 for the definition of socioeconomic status (SES) index.

f
Any member of the family.
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Table 2

Percentage of test statistics exceeding various significance levels.a

All Data Male Subsample Female Subsample

Percentage of p-values smaller than 1% 7% 3% 7%

Percentage of p-values smaller than 5% 23% 13% 22%

Percentage of p-values smaller than 10% 34% 21% 31%

a
Based on 715 outcomes in the Perry study. (See Schweinhart, Montie, Xiang, Barnett, Belfield, and Nores (2005) for a description of the data.)

269 outcomes are from the period before the age-19 interview; 269 are from the age-19 interview; 95 are outcomes from the age-27 interview; 55
are outcomes from the age-40 interview.

Quant Econom. Author manuscript; available in PMC 2012 December 17.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Heckman et al. Page 37

Ta
bl

e 
3

M
ai

n 
ou

tc
om

es
: F

em
al

es
, p

ar
t 1

.a

E
ff

ec
t

p-
V

al
ue

s

O
ut

co
m

e
A

ge
C

tl
.

M
ea

n
U

nc
on

d.
b

C
on

d.
(F

ul
l)

c
C

on
d.

(P
ar

t.
)d

N
aï

ve
e

F
ul

l
L

in
.f

P
ar

ti
al

L
in

.g
P

ar
t.

 L
in

.
(a

dj
.)

h
G

en
de

r
D

-i
n-

D
i

A
va

ila
bl

e
O

bs
er

va
ti

on
s

E
du

ca
tio

n

   
M

en
ta

lly
 I

m
pa

ir
ed

?
≤1

9
0.

36
−

0.
28

−
0.

29
−

0.
31

0.
00

8
0.

00
9

0.
00

5
0.

01
7

0.
33

7
46

   
L

ea
rn

in
g 

D
is

ab
le

d?
≤1

9
0.

14
−

0.
14

−
0.

15
−

0.
16

0.
00

9
0.

01
6

0.
00

9
0.

02
5

0.
02

9
46

   
Y

rs
. o

f 
Sp

ec
ia

l S
er

vi
ce

s
≤1

4
0.

46
−

0.
26

−
0.

29
−

0.
34

0.
03

6
0.

01
3

0.
01

3
0.

02
5

0.
15

3
51

   
Y

rs
. i

n 
D

is
ci

pl
in

ar
y 

Pr
og

ra
m

≤1
9

0.
36

−
0.

24
−

0.
19

−
0.

27
0.

08
9

0.
12

7
0.

07
4

0.
07

4
0.

94
5

46

   
H

ig
h 

Sc
ho

ol
 G

ra
du

at
io

n
19

0.
23

0.
61

0.
49

0.
56

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

3
51

   
G

ra
de

 P
oi

nt
 A

ve
ra

ge
19

1.
53

0.
89

0.
88

0.
95

0.
00

0
0.

00
1

0.
00

0
0.

00
1

0.
00

9
30

   
H

ig
he

st
 G

ra
de

 C
om

pl
et

ed
19

10
.7

5
1.

01
0.

94
1.

19
0.

00
7

0.
00

8
0.

00
2

0.
00

6
0.

05
2

49

   
# 

Y
ea

rs
 H

el
d 

B
ac

k
≤1

9
0.

41
−

0.
20

−
0.

14
−

0.
21

0.
06

7
0.

13
5

0.
09

7
0.

17
8

0.
10

6
46

   
V

oc
at

io
na

l T
ra

in
in

g 
C

er
tif

ic
at

e
≤4

0
0.

08
0.

16
0.

13
0.

16
0.

07
0

0.
10

6
0.

10
7

0.
10

7
0.

50
0

51

H
ea

lth

   
N

o 
H

ea
lth

 P
ro

bl
em

s
19

0.
83

0.
05

0.
12

0.
07

0.
26

5
0.

10
7

0.
13

7
0.

57
6

0.
30

8
49

   
A

liv
e

40
0.

92
0.

04
0.

04
0.

06
0.

27
3

0.
24

9
0.

19
7

0.
67

5
0.

90
9

51

   
N

o 
T

re
at

. f
or

 I
lln

es
s,

 P
as

t 5
 Y

rs
.

27
0.

59
0.

05
0.

14
0.

10
0.

36
9

0.
18

8
0.

24
1

0.
69

0
0.

80
6

47

   
N

o 
N

on
-R

ou
tin

e 
C

ar
e,

 P
as

t Y
r.

27
0.

00
0.

04
0.

02
0.

03
0.

48
4

0.
43

9
0.

48
8

0.
89

6
0.

54
9

44

   
N

o 
Si

ck
 D

ay
s 

in
 B

ed
, P

as
t Y

r.
27

0.
45

−
0.

05
−

0.
04

0.
06

0.
62

3
0.

59
7

0.
52

9
0.

78
1

0.
41

2
47

   
N

o 
D

oc
to

rs
 f

or
 I

lln
es

s,
 P

as
t Y

r.
19

0.
54

−
0.

02
−

0.
01

−
0.

05
0.

55
9

0.
53

9
0.

54
9

0.
54

9
0.

60
9

49

   
N

o 
T

ob
ac

co
 U

se
27

0.
41

0.
11

0.
08

0.
08

0.
20

8
0.

34
8

0.
29

8
0.

59
8

0.
96

5
47

   
In

fr
eq

ue
nt

 A
lc

oh
ol

 U
se

27
0.

67
0.

17
0.

07
0.

12
0.

10
3

0.
33

6
0.

37
4

0.
58

7
0.

92
4

45

   
R

ou
tin

e 
A

nn
ua

l H
ea

lth
 E

xa
m

27
0.

86
−

0.
06

−
0.

09
−

0.
05

0.
68

4
0.

75
1

0.
72

7
0.

72
7

0.
86

7
47

Fa
m

ily

   
H

as
 A

ny
 C

hi
ld

re
n

≤1
9

0.
52

−
0.

12
−

0.
05

−
0.

07
0.

21
8

0.
41

9
0.

32
8

0.
60

1
—

48

   
# 

O
ut

-o
f-

W
ed

lo
ck

 B
ir

th
s

≤4
0

2.
52

−
0.

29
0.

51
0.

05
0.

65
2

0.
25

7
0.

40
2

0.
40

2
—

42

C
ri

m
e

Quant Econom. Author manuscript; available in PMC 2012 December 17.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Heckman et al. Page 38

E
ff

ec
t

p-
V

al
ue

s

O
ut

co
m

e
A

ge
C

tl
.

M
ea

n
U

nc
on

d.
b

C
on

d.
(F

ul
l)

c
C

on
d.

(P
ar

t.
)d

N
aï

ve
e

F
ul

l
L

in
.f

P
ar

ti
al

L
in

.g
P

ar
t.

 L
in

.
(a

dj
.)

h
G

en
de

r
D

-i
n-

D
i

A
va

ila
bl

e
O

bs
er

va
ti

on
s

   
# 

N
on

-J
uv

. A
rr

es
ts

≤2
7

1.
88

−
1.

60
−

2.
22

−
2.

14
0.

01
6

0.
00

3
0.

00
3

0.
00

5
0.

57
1

51

   
A

ny
 N

on
-J

uv
. A

rr
es

ts
≤2

7
0.

35
−

0.
15

−
0.

18
−

0.
14

0.
14

8
0.

12
2

0.
12

5
0.

12
5

0.
44

0
51

   
# 

T
ot

al
 A

rr
es

ts
≤4

0
4.

85
−

2.
65

−
2.

88
−

2.
77

0.
02

8
0.

03
7

0.
04

1
0.

08
8

0.
56

6
51

   
# 

T
ot

al
 C

ha
rg

es
≤4

0
4.

92
2.

68
2.

81
2.

81
0.

03
0

0.
03

7
0.

04
2

0.
08

8
0.

63
7

51

   
# 

N
on

-J
uv

. A
rr

es
ts

≤4
0

4.
42

−
2.

26
−

2.
62

−
2.

45
0.

04
4

0.
04

6
0.

05
1

0.
10

2
0.

45
8

51

   
# 

M
is

d.
 A

rr
es

ts
≤4

0
4.

00
−

1.
88

−
2.

19
−

2.
02

0.
07

8
0.

07
8

0.
08

5
0.

16
0

0.
54

9
51

   
T

ot
al

 C
ri

m
e 

C
os

tj
≤4

0
29

3.
50

−
27

1.
33

−
38

1.
03

−
38

1.
03

0.
01

3
0.

10
8

0.
09

0
0.

09
0

0.
85

8
51

   
A

ny
 A

rr
es

ts
≤4

0
0.

65
−

0.
09

−
0.

11
−

0.
13

0.
18

1
0.

28
0

0.
23

9
0.

31
0

0.
82

4
51

   
A

ny
 C

ha
rg

es
≤4

0
0.

65
0.

09
0.

13
0.

13
0.

18
1

0.
28

0
0.

23
9

0.
31

0
0.

79
9

51

   
A

ny
 N

on
-J

uv
. A

rr
es

ts
≤4

0
0.

54
−

0.
02

−
0.

02
−

0.
02

0.
35

1
0.

54
1

0.
52

0
0.

52
0

0.
46

3
51

   
A

ny
 M

is
d.

 A
rr

es
ts

≤4
0

0.
54

−
0.

02
−

0.
02

−
0.

02
0.

35
1

0.
54

1
0.

52
0

0.
52

0
0.

51
9

51

a M
on

et
ar

y 
va

lu
es

 a
dj

us
te

d 
to

 th
ou

sa
nd

s 
of

 y
ea

r-
20

06
 d

ol
la

rs
 u

si
ng

 a
nn

ua
l n

at
io

na
l C

PI
. p

-v
al

ue
s 

be
lo

w
 0

.1
 a

re
 in

 b
ol

d.

b U
nc

on
di

tio
na

l d
if

fe
re

nc
e 

in
 m

ea
ns

 b
et

w
ee

n 
th

e 
tr

ea
tm

en
t a

nd
 c

on
tr

ol
 g

ro
up

s.

c C
on

di
tio

na
l t

re
at

m
en

t e
ff

ec
t w

ith
 li

ne
ar

 c
ov

ar
ia

te
s 

St
an

fo
rd

–B
in

et
 I

Q
, S

oc
io

ec
on

om
ic

 S
ta

tu
s 

in
de

x 
(S

E
S)

, m
at

er
na

l e
m

pl
oy

m
en

t, 
fa

th
er

’s
 p

re
se

nc
e 

at
 s

tu
dy

 e
nt

ry
—

th
is

 is
 a

ls
o 

th
e 

ef
fe

ct
 f

or
 th

e 
Fr

ee
dm

an
–

L
an

e 
pr

oc
ed

ur
e 

un
de

r 
a 

fu
ll 

lin
ea

ri
ty

 a
ss

um
pt

io
n,

 w
ho

se
 r

es
pe

ct
iv

e 
p-

va
lu

e 
is

 c
om

pu
te

d 
in

 c
ol

um
n 

“F
ul

l L
in

.”

d C
on

di
tio

na
l t

re
at

m
en

t e
ff

ec
t a

s 
in

 th
e 

pr
ev

io
us

 c
ol

um
n 

ex
ce

pt
 th

at
 S

E
S 

is
 r

ep
la

ce
d 

w
ith

 a
n 

in
di

ca
to

r 
fo

r 
SE

S 
ab

ov
e/

be
lo

w
 th

e 
m

ed
ia

n,
 s

o 
th

at
 th

e 
co

rr
es

po
nd

in
g 

p-
va

lu
e 

is
 c

om
pu

te
d 

in
 th

e 
co

lu
m

n 
“P

ar
tia

l
L

in
.”

 T
hi

s 
sp

ec
if

ic
at

io
n 

ge
ne

ra
te

s 
p-

va
lu

es
 u

se
d 

in
 th

e 
st

ep
do

w
n 

pr
oc

ed
ur

e.

e O
ne

-s
id

ed
 p

-v
al

ue
s 

fo
r 

th
e 

hy
po

th
es

is
 o

f 
no

 tr
ea

tm
en

t e
ff

ec
t b

as
ed

 o
n 

co
nd

iti
on

al
 p

er
m

ut
at

io
n 

in
fe

re
nc

e,
 w

ith
ou

t o
rb

it 
re

st
ri

ct
io

ns
 o

r 
lin

ea
r 

co
va

ri
at

es
—

es
tim

at
ed

 e
ff

ec
t s

iz
e 

in
 th

e 
“U

nc
on

d.
” 

co
lu

m
n.

f O
ne

-s
id

ed
 p

-v
al

ue
s 

fo
r 

th
e 

hy
po

th
es

is
 o

f 
no

 tr
ea

tm
en

t e
ff

ec
t b

as
ed

 o
n 

th
e 

Fr
ee

dm
an

–L
an

e 
pr

oc
ed

ur
e,

 w
ith

ou
t r

es
tr

ic
tin

g 
pe

rm
ut

at
io

n 
or

bi
ts

 a
nd

 a
ss

um
in

g 
lin

ea
ri

ty
 in

 a
ll 

co
va

ri
at

es
 (

m
at

er
na

l e
m

pl
oy

m
en

t,
pa

te
rn

al
 p

re
se

nc
e,

 S
oc

io
ec

on
om

ic
 S

ta
tu

s 
in

de
x 

(S
E

S)
, a

nd
 S

ta
nf

or
d–

B
in

et
 I

Q
)—

es
tim

at
ed

 e
ff

ec
t s

iz
e 

in
 th

e 
“c

on
di

tio
na

l e
ff

ec
t”

 c
ol

um
n.

g O
ne

-s
id

ed
 p

-v
al

ue
s 

fo
r 

th
e 

hy
po

th
es

is
 o

f 
no

 tr
ea

tm
en

t e
ff

ec
t b

as
ed

 o
n 

th
e 

Fr
ee

dm
an

–L
an

e 
pr

oc
ed

ur
e,

 u
si

ng
 th

e 
lin

ea
r 

co
va

ri
at

es
 m

at
er

na
l e

m
pl

oy
m

en
t, 

pa
te

rn
al

 p
re

se
nc

e,
 a

nd
 S

ta
nf

or
d–

B
in

et
 I

Q
, a

nd
re

st
ri

ct
in

g 
pe

rm
ut

at
io

n 
or

bi
ts

 w
ith

in
 s

tr
at

a 
fo

rm
ed

 b
y 

So
ci

oe
co

no
m

ic
 S

ta
tu

s 
in

de
x 

(S
E

S)
 b

ei
ng

 a
bo

ve
 o

r 
be

lo
w

 th
e 

sa
m

pl
e 

m
ed

ia
n 

an
d 

pe
rm

ut
in

g 
si

bl
in

gs
 a

s 
a 

bl
oc

k.

h p-
va

lu
es

 f
ro

m
 th

e 
pr

ev
io

us
 c

ol
um

n,
 a

dj
us

te
d 

fo
r 

m
ul

tip
le

 in
fe

re
nc

e 
us

in
g 

th
e 

st
ep

do
w

n 
pr

oc
ed

ur
e.

i T
w

o-
si

de
d 

p-
va

lu
e 

fo
r 

th
e 

nu
ll 

hy
po

th
es

is
 o

f 
no

 g
en

de
r 

di
ff

er
en

ce
 in

 m
ea

n 
tr

ea
tm

en
t e

ff
ec

ts
, t

es
te

d 
us

in
g 

m
ea

n 
di

ff
er

en
ce

s 
be

tw
ee

n 
tr

ea
tm

en
ts

 a
nd

 c
on

tr
ol

s 
us

in
g 

th
e 

co
nd

iti
on

in
g 

an
d 

or
bi

t r
es

tr
ic

tio
n 

se
tu

p
de

sc
ri

be
d 

in
 f

oo
tn

ot
e 

f.

j T
ot

al
 c

ri
m

e 
co

st
s 

in
cl

ud
e 

vi
ct

im
iz

at
io

n,
 p

ol
ic

e,
 ju

st
ic

e,
 a

nd
 in

ca
rc

er
at

io
n 

co
st

s,
 w

he
re

 v
ic

tim
iz

at
io

ns
 a

re
 e

st
im

at
ed

 f
ro

m
 a

rr
es

t r
ec

or
ds

 f
or

 e
ac

h 
ty

pe
 o

f 
cr

im
e 

us
in

g 
da

ta
 f

ro
m

 u
rb

an
 a

re
as

 o
f 

th
e 

M
id

w
es

t,
po

lic
e 

an
d 

co
ur

t c
os

ts
 a

re
 b

as
ed

 o
n 

hi
st

or
ic

al
 M

ic
hi

ga
n 

un
it 

co
st

s,
 a

nd
 th

e 
vi

ct
im

iz
at

io
n 

co
st

 o
f 

fa
ta

l c
ri

m
e 

ta
ke

s 
in

to
 a

cc
ou

nt
 th

e 
st

at
is

tic
al

 v
al

ue
 o

f 
lif

e 
(s

ee
 H

ec
km

an
 e

t a
l. 

(2
01

0a
) 

fo
r 

de
ta

ils
).

Quant Econom. Author manuscript; available in PMC 2012 December 17.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Heckman et al. Page 39

Ta
bl

e 
4

M
ai

n 
ou

tc
om

es
: F

em
al

es
, p

ar
t 2

.a

E
ff

ec
t

p-
V

al
ue

s

O
ut

co
m

e
A

ge
C

tl
.

M
ea

n
U

nc
on

d.
b

C
on

d.
(F

ul
l)

c
C

on
d.

(P
ar

t.
)d

N
aï

ve
e

F
ul

l
L

in
.f

P
ar

ti
al

L
in

.g
P

ar
t.

 L
in

.
(a

dj
.)

h
G

en
de

r
D

-i
n-

D
i

A
va

ila
bl

e
O

bs
er

va
ti

on
s

E
m

pl
oy

m
en

t

   
N

o 
Jo

b 
in

 P
as

t Y
ea

r
19

0.
58

−
0.

34
−

0.
37

−
0.

38
0.

00
6

0.
00

7
0.

00
3

0.
00

7
0.

00
9

51

   
Jo

bl
es

s 
M

on
th

s 
in

 P
as

t 2
 Y

rs
.

19
10

.4
2

−
5.

20
−

5.
47

−
6.

82
0.

05
4

0.
09

9
0.

02
0

0.
03

6
0.

10
2

42

   
C

ur
re

nt
 E

m
pl

oy
m

en
t

19
0.

15
0.

29
0.

23
0.

27
0.

02
3

0.
04

5
0.

03
2

0.
03

2
0.

37
3

51

   
N

o 
Jo

b 
in

 P
as

t Y
ea

r
27

0.
54

−
0.

29
−

0.
25

−
0.

30
0.

01
7

0.
05

8
0.

03
7

0.
07

1
0.

15
7

48

   
C

ur
re

nt
 E

m
pl

oy
m

en
t

27
0.

55
0.

25
0.

18
0.

28
0.

03
6

0.
09

6
0.

04
2

0.
06

3
0.

22
0

47

   
Jo

bl
es

s 
M

on
th

s 
in

 P
as

t 2
 Y

rs
.

27
10

.4
5

−
4.

21
−

2.
14

−
4.

23
0.

07
7

0.
28

5
0.

16
5

0.
16

5
0.

90
8

47

   
N

o 
Jo

b 
in

 P
as

t Y
ea

r
40

0.
41

−
0.

25
−

0.
22

−
0.

24
0.

03
2

0.
09

2
0.

05
6

0.
11

1
0.

46
4

47

   
Jo

bl
es

s 
M

on
th

s 
in

 P
as

t 2
 Y

rs
.

40
5.

05
−

1.
05

1.
05

−
0.

60
0.

34
3

0.
65

4
0.

52
8

0.
62

7
0.

57
3

46

   
C

ur
re

nt
 E

m
pl

oy
m

en
t

40
0.

82
0.

02
−

0.
08

−
0.

01
0.

41
9

0.
72

7
0.

61
5

0.
61

5
0.

39
5

46

E
ar

ni
ng

sj

   
M

on
th

ly
 E

ar
n.

, C
ur

re
nt

 J
ob

19
2.

08
−

0.
61

−
0.

47
−

0.
51

0.
75

0
0.

70
1

0.
72

5
–

0.
67

7
15

   
M

on
th

ly
 E

ar
n.

, C
ur

re
nt

 J
ob

27
1.

13
0.

69
0.

48
0.

64
0.

05
0

0.
14

4
0.

10
9

0.
13

9
0.

75
2

47

   
Y

ea
rl

y 
E

ar
n.

, C
ur

re
nt

 J
ob

27
15

.4
5

4.
60

2.
18

4.
00

0.
16

9
0.

33
9

0.
27

7
0.

27
7

0.
87

3
47

   
Y

ea
rl

y 
E

ar
n.

, C
ur

re
nt

 J
ob

40
19

.8
5

4.
35

4.
46

5.
27

0.
25

1
0.

27
2

0.
22

4
0.

27
4

0.
75

5
46

   
M

on
th

ly
 E

ar
n.

, C
ur

re
nt

 J
ob

40
1.

85
0.

21
0.

27
0.

38
0.

32
8

0.
31

6
0.

26
1

0.
26

1
0.

70
8

46

E
ar

ni
ng

s 
&

 E
m

pl
oy

m
en

tj

   
N

o 
Jo

b 
in

 P
as

t Y
ea

r
19

0.
58

−
0.

34
−

0.
37

−
0.

38
0.

00
6

0.
00

7
0.

00
3

0.
01

0
0.

00
9

51

   
Jo

bl
es

s 
M

on
th

s 
in

 P
as

t 2
 Y

rs
.

19
10

.4
2

−
5.

20
−

5.
47

−
6.

82
0.

05
4

0.
09

9
0.

02
0

0.
05

6
0.

10
2

42

   
C

ur
re

nt
 E

m
pl

oy
m

en
t

19
0.

15
0.

29
0.

23
0.

27
0.

02
3

0.
04

5
0.

03
2

0.
06

4
0.

37
3

51

   
M

on
th

ly
 E

ar
n.

, C
ur

re
nt

 J
ob

19
2.

08
−

0.
61

−
0.

47
−

0.
51

0.
75

0
0.

70
1

0.
72

5
0.

72
5

0.
67

7
15

   
N

o 
Jo

b 
in

 P
as

t Y
ea

r
27

0.
54

−
0.

29
−

0.
25

−
0.

30
0.

01
7

0.
05

8
0.

03
7

0.
09

4
0.

15
7

48

   
C

ur
re

nt
 E

m
pl

oy
m

en
t

27
0.

55
0.

25
0.

18
0.

28
0.

03
6

0.
09

6
0.

04
2

0.
09

4
0.

22
0

47

Quant Econom. Author manuscript; available in PMC 2012 December 17.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Heckman et al. Page 40

E
ff

ec
t

p-
V

al
ue

s

O
ut

co
m

e
A

ge
C

tl
.

M
ea

n
U

nc
on

d.
b

C
on

d.
(F

ul
l)

c
C

on
d.

(P
ar

t.
)d

N
aï

ve
e

F
ul

l
L

in
.f

P
ar

ti
al

L
in

.g
P

ar
t.

 L
in

.
(a

dj
.)

h
G

en
de

r
D

-i
n-

D
i

A
va

ila
bl

e
O

bs
er

va
ti

on
s

   
M

on
th

ly
 E

ar
n.

, C
ur

re
nt

 J
ob

27
1.

13
0.

69
0.

48
0.

64
0.

05
0

0.
14

4
0.

10
9

0.
18

8
0.

75
2

47

   
Jo

bl
es

s 
M

on
th

s 
in

 P
as

t 2
 Y

rs
.

27
10

.4
5

−
4.

21
−

2.
14

−
4.

23
0.

07
7

0.
28

5
0.

16
5

0.
24

1
0.

90
8

47

   
Y

ea
rl

y 
E

ar
n.

, C
ur

re
nt

 J
ob

27
15

.4
5

4.
60

2.
18

4.
00

0.
16

9
0.

33
9

0.
27

7
0.

27
7

0.
87

3
47

   
N

o 
Jo

b 
in

 P
as

t Y
ea

r
40

0.
41

−
0.

25
−

0.
22

−
0.

24
0.

03
2

0.
09

2
0.

05
6

0.
15

6
0.

46
4

47

   
Y

ea
rl

y 
E

ar
n.

, C
ur

re
nt

 J
ob

40
19

.8
5

4.
35

4.
46

5.
27

0.
25

1
0.

27
2

0.
22

4
0.

42
3

0.
75

5
46

   
M

on
th

ly
 E

ar
n.

, C
ur

re
nt

 J
ob

40
1.

85
0.

21
0.

27
0.

38
0.

32
8

0.
31

6
0.

26
1

0.
44

0
0.

70
8

46

   
Jo

bl
es

s 
M

on
th

s 
in

 P
as

t 2
 Y

rs
.

40
5.

05
−

1.
05

1.
05

−
0.

60
0.

34
3

0.
65

4
0.

52
8

0.
62

7
0.

57
3

46

   
C

ur
re

nt
 E

m
pl

oy
m

en
t

40
0.

82
0.

02
−

0.
08

−
0.

01
0.

41
9

0.
72

7
0.

61
5

0.
61

5
0.

39
5

46

E
co

no
m

ic

   
Sa

vi
ng

s 
A

cc
ou

nt
27

0.
45

0.
27

0.
23

0.
26

0.
03

6
0.

08
7

0.
05

1
0.

13
2

0.
12

8
47

   
C

ar
 O

w
ne

rs
hi

p
27

0.
59

0.
13

0.
12

0.
18

0.
16

4
0.

22
1

0.
14

7
0.

25
0

0.
88

7
47

   
C

he
ck

in
g 

A
cc

ou
nt

27
0.

27
0.

01
−

0.
03

0.
00

0.
47

2
0.

58
6

0.
47

2
0.

47
2

0.
77

7
47

   
C

re
di

t C
ar

d
40

0.
50

0.
04

0.
06

0.
11

0.
42

5
0.

35
5

0.
23

3
0.

48
3

0.
73

7
46

   
C

he
ck

in
g 

A
cc

ou
nt

40
0.

50
0.

08
0.

04
0.

12
0.

32
1

0.
41

3
0.

23
7

0.
45

0
0.

67
5

46

   
C

ar
 O

w
ne

rs
hi

p
40

0.
77

0.
06

0.
03

0.
11

0.
28

0
0.

40
9

0.
25

7
0.

39
4

0.
15

7
46

   
Sa

vi
ng

s 
A

cc
ou

nt
40

0.
73

0.
06

−
0.

08
0.

05
0.

30
9

0.
72

2
0.

51
6

0.
51

6
0.

07
1

46

   
E

ve
r 

on
 W

el
fa

re
18

–2
7

0.
82

−
0.

34
−

0.
21

−
0.

27
0.

00
9

0.
08

4
0.

04
9

0.
15

4
0.

07
4

47

   
>

30
 M

os
. o

n 
W

el
fa

re
18

–2
7

0.
55

−
0.

27
−

0.
18

−
0.

25
0.

03
6

0.
15

2
0.

07
2

0.
18

7
0.

08
7

47

   
# 

M
on

th
s 

on
 W

el
fa

re
18

–2
7

51
.2

3
−

21
.5

1
−

11
.3

9
−

21
.5

8
0.

06
0

0.
24

1
0.

12
0

0.
26

5
0.

12
2

47

   
N

ev
er

 o
n 

W
el

fa
re

16
–4

0
0.

92
−

0.
16

−
0.

13
−

0.
12

0.
11

0
0.

12
9

0.
13

2
0.

22
1

0.
97

0
51

   
N

ev
er

 o
n 

W
el

fa
re

 (
Se

lf
 R

ep
.)

26
–4

0
0.

41
0.

09
0.

14
0.

06
0.

75
9

0.
78

7
0.

66
4

0.
66

4
0.

11
8

46

a M
on

et
ar

y 
va

lu
es

 a
dj

us
te

d 
to

 th
ou

sa
nd

s 
of

 y
ea

r-
20

06
 d

ol
la

rs
 u

si
ng

 a
nn

ua
l n

at
io

na
l C

PI
. p

-v
al

ue
s 

be
lo

w
 0

.1
 a

re
 in

 b
ol

d.

b U
nc

on
di

tio
na

l d
if

fe
re

nc
e 

in
 m

ea
ns

 b
et

w
ee

n 
th

e 
tr

ea
tm

en
t a

nd
 c

on
tr

ol
 g

ro
up

s.

c C
on

di
tio

na
l t

re
at

m
en

t e
ff

ec
t w

ith
 li

ne
ar

 c
ov

ar
ia

te
s 

St
an

fo
rd

–B
in

et
 I

Q
, S

oc
io

ec
on

om
ic

 S
ta

tu
s 

in
de

x 
(S

E
S)

, m
at

er
na

l e
m

pl
oy

m
en

t, 
fa

th
er

’s
 p

re
se

nc
e 

at
 s

tu
dy

 e
nt

ry
—

th
is

 is
 a

ls
o 

th
e 

ef
fe

ct
 f

or
 th

e 
Fr

ee
dm

an
–

L
an

e 
pr

oc
ed

ur
e 

un
de

r 
a 

fu
ll 

lin
ea

ri
ty

 a
ss

um
pt

io
n,

 w
ho

se
 r

es
pe

ct
iv

e 
p-

va
lu

e 
is

 c
om

pu
te

d 
in

 c
ol

um
n 

“F
ul

l L
in

.”

d C
on

di
tio

na
l t

re
at

m
en

t e
ff

ec
t a

s 
in

 th
e 

pr
ev

io
us

 c
ol

um
n 

ex
ce

pt
 th

at
 S

E
S 

is
 r

ep
la

ce
d 

w
ith

 a
n 

in
di

ca
to

r 
fo

r 
SE

S 
ab

ov
e/

be
lo

w
 th

e 
m

ed
ia

n,
 s

o 
th

at
 th

e 
co

rr
es

po
nd

in
g 

p-
va

lu
e 

is
 c

om
pu

te
d 

in
 th

e 
co

lu
m

n 
“P

ar
tia

l
L

in
.”

 T
hi

s 
sp

ec
if

ic
at

io
n 

ge
ne

ra
te

s 
p-

va
lu

es
 u

se
d 

in
 th

e 
st

ep
do

w
n 

pr
oc

ed
ur

e.

Quant Econom. Author manuscript; available in PMC 2012 December 17.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Heckman et al. Page 41
e O

ne
-s

id
ed

 p
-v

al
ue

s 
fo

r 
th

e 
hy

po
th

es
is

 o
f 

no
 tr

ea
tm

en
t e

ff
ec

t b
as

ed
 o

n 
co

nd
iti

on
al

 p
er

m
ut

at
io

n 
in

fe
re

nc
e,

 w
ith

ou
t o

rb
it 

re
st

ri
ct

io
ns

 o
r 

lin
ea

r 
co

va
ri

at
es

—
es

tim
at

ed
 e

ff
ec

t s
iz

e 
in

 th
e 

“U
nc

on
d.

” 
co

lu
m

n.

f O
ne

-s
id

ed
 p

-v
al

ue
s 

fo
r 

th
e 

hy
po

th
es

is
 o

f 
no

 tr
ea

tm
en

t e
ff

ec
t b

as
ed

 o
n 

th
e 

Fr
ee

dm
an

–L
an

e 
pr

oc
ed

ur
e,

 w
ith

ou
t r

es
tr

ic
tin

g 
pe

rm
ut

at
io

n 
or

bi
ts

 a
nd

 a
ss

um
in

g 
lin

ea
ri

ty
 in

 a
ll 

co
va

ri
at

es
 (

m
at

er
na

l e
m

pl
oy

m
en

t,
pa

te
rn

al
 p

re
se

nc
e,

 S
oc

io
ec

on
om

ic
 S

ta
tu

s 
in

de
x 

(S
E

S)
, a

nd
 S

ta
nf

or
d–

B
in

et
 I

Q
)—

es
tim

at
ed

 e
ff

ec
t s

iz
e 

in
 th

e 
“c

on
di

tio
na

l e
ff

ec
t”

 c
ol

um
n.

g O
ne

-s
id

ed
 p

-v
al

ue
s 

fo
r 

th
e 

hy
po

th
es

is
 o

f 
no

 tr
ea

tm
en

t e
ff

ec
t b

as
ed

 o
n 

th
e 

Fr
ee

dm
an

–L
an

e 
pr

oc
ed

ur
e,

 u
si

ng
 th

e 
lin

ea
r 

co
va

ri
at

es
 m

at
er

na
l e

m
pl

oy
m

en
t, 

pa
te

rn
al

 p
re

se
nc

e,
 a

nd
 S

ta
nf

or
d–

B
in

et
 I

Q
, a

nd
re

st
ri

ct
in

g 
pe

rm
ut

at
io

n 
or

bi
ts

 w
ith

in
 s

tr
at

a 
fo

rm
ed

 b
y 

So
ci

oe
co

no
m

ic
 S

ta
tu

s 
in

de
x 

(S
E

S)
 b

ei
ng

 a
bo

ve
 o

r 
be

lo
w

 th
e 

sa
m

pl
e 

m
ed

ia
n 

an
d 

pe
rm

ut
in

g 
si

bl
in

gs
 a

s 
a 

bl
oc

k.

h p-
va

lu
es

 f
ro

m
 th

e 
pr

ev
io

us
 c

ol
um

n,
 a

dj
us

te
d 

fo
r 

m
ul

tip
le

 in
fe

re
nc

e 
us

in
g 

th
e 

st
ep

do
w

n 
pr

oc
ed

ur
e.

i T
w

o-
si

de
d 

p-
va

lu
e 

fo
r 

th
e 

nu
ll 

hy
po

th
es

is
 o

f 
no

 g
en

de
r 

di
ff

er
en

ce
 in

 m
ea

n 
tr

ea
tm

en
t e

ff
ec

ts
, t

es
te

d 
us

in
g 

m
ea

n 
di

ff
er

en
ce

s 
be

tw
ee

n 
tr

ea
tm

en
ts

 a
nd

 c
on

tr
ol

s 
us

in
g 

th
e 

co
nd

iti
on

in
g 

an
d 

or
bi

t r
es

tr
ic

tio
n 

se
tu

p
de

sc
ri

be
d 

in
 f

oo
tn

ot
e 

f.

j A
ge

-1
9 

m
ea

su
re

s 
ar

e 
co

nd
iti

on
al

 o
n 

at
 le

as
t s

om
e 

ea
rn

in
gs

 d
ur

in
g 

th
e 

pe
ri

od
 s

pe
ci

fi
ed

—
ob

se
rv

at
io

ns
 w

ith
 z

er
o 

ea
rn

in
gs

 a
re

 o
m

itt
ed

 in
 c

om
pu

tin
g 

m
ea

ns
 a

nd
 r

eg
re

ss
io

ns
.

Quant Econom. Author manuscript; available in PMC 2012 December 17.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Heckman et al. Page 42

Ta
bl

e 
5

M
ai

n 
ou

tc
om

es
: M

al
es

, p
ar

t 1
.a

E
ff

ec
t

p-
V

al
ue

s

O
ut

co
m

e
A

ge
C

tl
.

M
ea

n
U

nc
on

d.
b

C
on

d.
(F

ul
l)

c
C

on
d.

(P
ar

t.
)d

N
aï

ve
e

F
ul

l
L

in
.f

P
ar

ti
al

L
in

.g
P

ar
t.

 L
in

.
(a

dj
.)

h
G

en
de

r
D

-i
n-

D
i

A
va

ila
bl

e
O

bs
er

va
ti

on
s

E
du

ca
tio

n

   
M

en
ta

lly
 I

m
pa

ir
ed

?
≤1

9
0.

33
−

0.
13

−
0.

19
−

0.
17

0.
10

6
0.

07
2

0.
05

7
0.

19
0

0.
33

7
66

   
Y

rs
. i

n 
D

is
ci

pl
in

ar
y 

Pr
og

ra
m

≤1
9

0.
42

−
0.

12
−

0.
26

−
0.

24
0.

31
3

0.
15

3
0.

13
4

0.
33

4
0.

94
5

66

   
Y

rs
. o

f 
Sp

ec
ia

l S
er

vi
ce

s
≤1

4
0.

46
−

0.
04

−
0.

10
−

0.
09

0.
45

8
0.

25
6

0.
20

5
0.

34
9

0.
15

3
72

   
L

ea
rn

in
g 

D
is

ab
le

d?
≤1

9
0.

08
0.

08
0.

08
0.

07
0.

84
0

0.
84

1
0.

76
6

0.
76

6
0.

02
9

66

   
H

ig
he

st
 G

ra
de

 C
om

pl
et

ed
19

11
.2

8
0.

08
−

0.
01

0.
15

0.
42

9
0.

38
3

0.
31

2
0.

71
8

0.
05

2
72

   
G

ra
de

 P
oi

nt
 A

ve
ra

ge
19

1.
79

0.
02

−
0.

01
0.

07
0.

46
4

0.
51

7
0.

33
3

0.
71

6
0.

00
9

47

   
V

oc
at

io
na

l T
ra

in
in

g 
C

er
tif

ic
at

e
≤4

0
0.

33
0.

06
0.

06
0.

03
0.

23
1

0.
30

4
0.

40
6

0.
72

9
0.

50
0

72

   
H

ig
h 

Sc
ho

ol
 G

ra
du

at
io

n
19

0.
51

−
0.

03
0.

00
0.

02
0.

63
3

0.
51

0
0.

41
6

0.
58

3
0.

00
3

72

   
# 

Y
ea

rs
 H

el
d 

B
ac

k
≤1

9
0.

39
0.

08
0.

12
0.

09
0.

74
0

0.
85

2
0.

74
5

0.
74

5
0.

10
6

66

H
ea

lth

   
A

liv
e

40
0.

92
0.

05
0.

05
0.

06
0.

16
0

0.
17

4
0.

14
6

0.
60

4
0.

90
9

72

   
N

o 
Si

ck
 D

ay
s 

in
 B

ed
, P

as
t Y

r.
27

0.
38

0.
10

0.
14

0.
12

0.
20

8
0.

13
5

0.
16

2
0.

58
2

0.
41

2
70

   
N

o 
T

re
at

. f
or

 I
lln

es
s,

 P
as

t 5
 Y

rs
.

27
0.

64
0.

00
0.

01
0.

03
0.

46
5

0.
41

7
0.

37
5

0.
82

6
0.

80
6

70

   
N

o 
D

oc
to

rs
 f

or
 I

lln
es

s,
 P

as
t Y

r.
19

0.
56

0.
07

0.
02

0.
02

0.
21

0
0.

43
5

0.
45

3
0.

83
5

0.
60

9
72

   
N

o 
N

on
-R

ou
tin

e 
C

ar
e,

 P
as

t Y
r.

27
0.

17
−

0.
03

−
0.

02
−

0.
01

0.
60

0
0.

54
8

0.
54

8
0.

82
3

0.
54

9
63

   
N

o 
H

ea
lth

 P
ro

bl
em

s
19

0.
95

−
0.

07
−

0.
08

−
0.

08
0.

84
9

0.
84

3
0.

86
2

0.
86

2
0.

30
8

72

   
In

fr
eq

ue
nt

 A
lc

oh
ol

 U
se

27
0.

58
0.

18
0.

21
0.

20
0.

07
2

0.
02

4
0.

05
2

0.
13

9
0.

92
4

66

   
N

o 
T

ob
ac

co
 U

se
27

0.
46

0.
12

0.
10

0.
09

0.
14

3
0.

22
0

0.
26

0
0.

43
6

0.
96

5
70

   
R

ou
tin

e 
A

nn
ua

l H
ea

lth
 E

xa
m

27
0.

74
−

0.
04

0.
01

0.
01

0.
62

2
0.

39
7

0.
45

1
0.

45
1

0.
86

7
68

C
ri

m
e

   
# 

N
on

-J
uv

. A
rr

es
ts

≤2
7

5.
36

−
2.

33
−

2.
64

−
2.

71
0.

02
9

0.
02

8
0.

01
7

0.
02

4
0.

57
1

72

   
# 

Fe
l. 

A
rr

es
ts

≤2
7

2.
33

−
1.

12
−

1.
07

−
1.

15
0.

04
6

0.
08

1
0.

04
3

0.
10

1
—

72

   
A

ny
 N

on
-J

uv
. A

rr
es

ts
≤2

7
0.

72
−

0.
02

−
0.

05
−

0.
05

0.
50

1
0.

42
2

0.
29

1
0.

41
8

0.
44

0
72

Quant Econom. Author manuscript; available in PMC 2012 December 17.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Heckman et al. Page 43

E
ff

ec
t

p-
V

al
ue

s

O
ut

co
m

e
A

ge
C

tl
.

M
ea

n
U

nc
on

d.
b

C
on

d.
(F

ul
l)

c
C

on
d.

(P
ar

t.
)d

N
aï

ve
e

F
ul

l
L

in
.f

P
ar

ti
al

L
in

.g
P

ar
t.

 L
in

.
(a

dj
.)

h
G

en
de

r
D

-i
n-

D
i

A
va

ila
bl

e
O

bs
er

va
ti

on
s

   
A

ny
 F

el
. A

rr
es

ts
≤2

7
0.

49
0.

00
−

0.
01

−
0.

01
0.

49
4

0.
57

5
0.

44
2

0.
44

2
—

72

   
A

ny
 N

on
-J

uv
. A

rr
es

ts
≤4

0
0.

92
−

0.
14

−
0.

12
−

0.
12

0.
09

0
0.

12
4

0.
07

8
0.

19
2

0.
46

3
72

   
A

ny
 F

el
. A

rr
es

ts
≤4

0
0.

44
−

0.
16

−
0.

15
−

0.
16

0.
04

7
0.

13
3

0.
08

3
0.

19
1

—
72

   
A

ny
 A

rr
es

ts
≤4

0
0.

95
−

0.
13

−
0.

11
−

0.
09

0.
07

2
0.

14
2

0.
12

3
0.

18
1

0.
82

4
72

   
A

ny
 M

is
d.

 A
rr

es
ts

≤4
0

0.
87

−
0.

11
−

0.
08

−
0.

07
0.

16
6

0.
28

1
0.

19
1

0.
19

1
0.

51
9

72

   
# 

M
is

d.
 A

rr
es

ts
≤4

0
8.

46
−

3.
13

−
3.

42
−

3.
64

0.
03

7
0.

04
3

0.
02

1
0.

03
9

0.
54

9
72

   
# 

N
on

-J
uv

. A
rr

es
ts

≤4
0

11
.7

2
−

4.
26

−
4.

45
−

4.
85

0.
03

9
0.

05
3

0.
02

5
0.

04
1

0.
45

8
72

   
# 

T
ot

al
 A

rr
es

ts
≤4

0
12

.4
1

−
4.

20
−

4.
44

−
4.

88
0.

05
6

0.
07

3
0.

03
6

0.
05

3
0.

56
6

72

   
# 

Fe
l. 

A
rr

es
ts

≤4
0

3.
26

−
1.

14
−

1.
03

−
1.

20
0.

11
2

0.
17

3
0.

09
2

0.
09

2
—

72

   
# 

N
on

-V
ic

tim
le

ss
 C

ha
rg

es
j

≤4
0

3.
08

1.
59

1.
65

1.
65

0.
02

9
0.

04
8

0.
02

7
0.

06
1

0.
17

5
72

   
# 

T
ot

al
 C

ha
rg

es
≤4

0
13

.3
8

4.
38

5.
08

5.
08

0.
06

3
0.

08
1

0.
04

1
0.

07
5

0.
63

7
72

   
T

ot
al

 C
ri

m
e 

C
os

tk
≤4

0
77

5.
90

−
35

1.
22

−
51

5.
10

−
51

5.
10

0.
15

3
0.

10
8

0.
07

0
0.

07
0

0.
85

8
72

   
A

ny
 N

on
-V

ic
tim

le
ss

 C
ha

rg
es

j
≤4

0
0.

62
0.

16
0.

15
0.

15
0.

10
5

0.
17

9
0.

11
2

0.
25

9
0.

95
7

72

   
E

ve
r 

In
ca

rc
er

at
ed

≤4
0

0.
23

−
0.

08
−

0.
11

−
0.

12
0.

26
0

0.
15

9
0.

11
4

0.
20

2
0.

56
3

72

   
A

ny
 C

ha
rg

es
≤4

0
0.

95
0.

13
0.

09
0.

09
0.

07
2

0.
14

2
0.

12
5

0.
12

5
0.

79
9

72

a M
on

et
ar

y 
va

lu
es

 a
dj

us
te

d 
to

 th
ou

sa
nd

s 
of

 y
ea

r-
20

06
 d

ol
la

rs
 u

si
ng

 a
nn

ua
l n

at
io

na
l C

PI
. p

-v
al

ue
s 

be
lo

w
 0

.1
 a

re
 in

 b
ol

d.

b U
nc

on
di

tio
na

l d
if

fe
re

nc
e 

in
 m

ea
ns

 b
et

w
ee

n 
th

e 
tr

ea
tm

en
t a

nd
 c

on
tr

ol
 g

ro
up

s.

c C
on

di
tio

na
l t

re
at

m
en

t e
ff

ec
t w

ith
 li

ne
ar

 c
ov

ar
ia

te
s 

St
an

fo
rd

–B
in

et
 I

Q
, S

oc
io

ec
on

om
ic

 S
ta

tu
s 

in
de

x 
(S

E
S)

, m
at

er
na

l e
m

pl
oy

m
en

t, 
fa

th
er

’s
 p

re
se

nc
e 

at
 s

tu
dy

 e
nt

ry
—

th
is

 is
 a

ls
o 

th
e 

ef
fe

ct
 f

or
 th

e 
Fr

ee
dm

an
–

L
an

e 
pr

oc
ed

ur
e 

un
de

r 
a 

fu
ll 

lin
ea

ri
ty

 a
ss

um
pt

io
n,

 w
ho

se
 r

es
pe

ct
iv

e 
p-

va
lu

e 
is

 c
om

pu
te

d 
in

 c
ol

um
n 

“F
ul

l L
in

.”

d C
on

di
tio

na
l t

re
at

m
en

t e
ff

ec
t a

s 
in

 th
e 

pr
ev

io
us

 c
ol

um
n 

ex
ce

pt
 th

at
 S

E
S 

is
 r

ep
la

ce
d 

w
ith

 a
n 

in
di

ca
to

r 
fo

r 
SE

S 
ab

ov
e/

be
lo

w
 th

e 
m

ed
ia

n,
 s

o 
th

at
 th

e 
co

rr
es

po
nd

in
g 

p-
va

lu
e 

is
 c

om
pu

te
d 

in
 th

e 
co

lu
m

n 
“P

ar
tia

l
L

in
.”

 T
hi

s 
sp

ec
if

ic
at

io
n 

ge
ne

ra
te

s 
p-

va
lu

es
 u

se
d 

in
 th

e 
st

ep
do

w
n 

pr
oc

ed
ur

e.

e O
ne

-s
id

ed
 p

-v
al

ue
s 

fo
r 

th
e 

hy
po

th
es

is
 o

f 
no

 tr
ea

tm
en

t e
ff

ec
t b

as
ed

 o
n 

co
nd

iti
on

al
 p

er
m

ut
at

io
n 

in
fe

re
nc

e,
 w

ith
ou

t o
rb

it 
re

st
ri

ct
io

ns
 o

r 
lin

ea
r 

co
va

ri
at

es
—

es
tim

at
ed

 e
ff

ec
t s

iz
e 

in
 th

e 
“U

nc
on

d.
” 

co
lu

m
n.

f O
ne

-s
id

ed
 p

-v
al

ue
s 

fo
r 

th
e 

hy
po

th
es

is
 o

f 
no

 tr
ea

tm
en

t e
ff

ec
t b

as
ed

 o
n 

th
e 

Fr
ee

dm
an

–L
an

e 
pr

oc
ed

ur
e,

 w
ith

ou
t r

es
tr

ic
tin

g 
pe

rm
ut

at
io

n 
or

bi
ts

 a
nd

 a
ss

um
in

g 
lin

ea
ri

ty
 in

 a
ll 

co
va

ri
at

es
 (

m
at

er
na

l e
m

pl
oy

m
en

t,
pa

te
rn

al
 p

re
se

nc
e,

 S
oc

io
ec

on
om

ic
 S

ta
tu

s 
in

de
x 

(S
E

S)
, a

nd
 S

ta
nf

or
d–

B
in

et
 I

Q
)—

es
tim

at
ed

 e
ff

ec
t s

iz
e 

in
 th

e 
“c

on
di

tio
na

l e
ff

ec
t”

 c
ol

um
n.

g O
ne

-s
id

ed
 p

-v
al

ue
s 

fo
r 

th
e 

hy
po

th
es

is
 o

f 
no

 tr
ea

tm
en

t e
ff

ec
t b

as
ed

 o
n 

th
e 

Fr
ee

dm
an

–L
an

e 
pr

oc
ed

ur
e,

 u
si

ng
 th

e 
lin

ea
r 

co
va

ri
at

es
 m

at
er

na
l e

m
pl

oy
m

en
t, 

pa
te

rn
al

 p
re

se
nc

e,
 a

nd
 S

ta
nf

or
d–

B
in

et
 I

Q
, a

nd
re

st
ri

ct
in

g 
pe

rm
ut

at
io

n 
or

bi
ts

 w
ith

in
 s

tr
at

a 
fo

rm
ed

 b
y 

So
ci

oe
co

no
m

ic
 S

ta
tu

s 
in

de
x 

(S
E

S)
 b

ei
ng

 a
bo

ve
 o

r 
be

lo
w

 th
e 

sa
m

pl
e 

m
ed

ia
n 

an
d 

pe
rm

ut
in

g 
si

bl
in

gs
 a

s 
a 

bl
oc

k.

Quant Econom. Author manuscript; available in PMC 2012 December 17.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Heckman et al. Page 44
h p-

va
lu

es
 f

ro
m

 th
e 

pr
ev

io
us

 c
ol

um
n,

 a
dj

us
te

d 
fo

r 
m

ul
tip

le
 in

fe
re

nc
e 

us
in

g 
th

e 
st

ep
do

w
n 

pr
oc

ed
ur

e.

i T
w

o-
si

de
d 

p-
va

lu
e 

fo
r 

th
e 

nu
ll 

hy
po

th
es

is
 o

f 
no

 g
en

de
r 

di
ff

er
en

ce
 in

 m
ea

n 
tr

ea
tm

en
t e

ff
ec

ts
, t

es
te

d 
us

in
g 

m
ea

n 
di

ff
er

en
ce

s 
be

tw
ee

n 
tr

ea
tm

en
ts

 a
nd

 c
on

tr
ol

s 
us

in
g 

th
e 

co
nd

iti
on

in
g 

an
d 

or
bi

t r
es

tr
ic

tio
n 

se
tu

p
de

sc
ri

be
d 

in
 f

oo
tn

ot
e 

f.

j N
on

-v
ic

tim
le

ss
 c

ri
m

es
 a

re
 th

os
e 

as
so

ci
at

ed
 w

ith
 v

ic
tim

iz
at

io
n 

co
st

s:
 m

ur
de

r,
 r

ap
e,

 r
ob

be
ry

, a
ss

au
lt,

 b
ur

gl
ar

y,
 la

rc
en

y,
 a

nd
 m

ot
or

 v
eh

ic
le

 th
ef

t (
se

e 
H

ec
km

an
 e

t a
l. 

(2
01

0a
) 

fo
r 

de
ta

ils
)

k T
ot

al
 c

ri
m

e 
co

st
s 

in
cl

ud
e 

vi
ct

im
iz

at
io

n,
 p

ol
ic

e,
 ju

st
ic

e,
 a

nd
 in

ca
rc

er
at

io
n 

co
st

s,
 w

he
re

 v
ic

tim
iz

at
io

ns
 a

re
 e

st
im

at
ed

 f
ro

m
 a

rr
es

t r
ec

or
ds

 f
or

 e
ac

h 
ty

pe
 o

f 
cr

im
e 

us
in

g 
da

ta
 f

ro
m

 u
rb

an
 a

re
as

 o
f 

th
e 

M
id

w
es

t,
po

lic
e 

an
d 

co
ur

t c
os

ts
 a

re
 b

as
ed

 o
n 

hi
st

or
ic

al
 M

ic
hi

ga
n 

un
it 

co
st

s,
 a

nd
 th

e 
vi

ct
im

iz
at

io
n 

co
st

 o
f 

fa
ta

l c
ri

m
e 

ta
ke

s 
in

to
 a

cc
ou

nt
 th

e 
st

at
is

tic
al

 v
al

ue
 o

f 
lif

e 
(s

ee
 H

ec
km

an
 e

t a
l. 

(2
01

0a
) 

fo
r 

de
ta

ils
).

Quant Econom. Author manuscript; available in PMC 2012 December 17.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Heckman et al. Page 45

Ta
bl

e 
6

M
ai

n 
ou

tc
om

es
: M

al
es

, p
ar

t 2
.a

E
ff

ec
t

p-
V

al
ue

s

O
ut

co
m

e
A

ge
C

tl
.

M
ea

n
U

nc
on

d.
b

C
on

d.
(F

ul
l)

c
C

on
d.

(P
ar

t.
)d

N
aï

ve
e

F
ul

l
L

in
.f

P
ar

ti
al

L
in

.g
P

ar
t.

 L
in

.
(a

dj
.)

h
G

en
de

r
D

-i
n-

D
i

A
va

ila
bl

e
O

bs
er

va
ti

on
s

E
m

pl
oy

m
en

t

   
C

ur
re

nt
 E

m
pl

oy
m

en
t

19
0.

41
0.

14
0.

13
0.

16
0.

10
1

0.
14

4
0.

10
3

0.
19

6
0.

37
3

72

   
Jo

bl
es

s 
M

on
th

s 
in

 P
as

t 2
 Y

rs
.

19
3.

82
1.

47
1.

31
1.

50
0.

78
4

0.
76

3
0.

78
1

0.
84

1
0.

10
2

70

   
N

o 
Jo

b 
in

 P
as

t Y
ea

r
19

0.
13

0.
11

0.
09

0.
10

0.
92

4
0.

82
7

0.
85

7
0.

85
7

0.
00

9
72

   
Jo

bl
es

s 
M

on
th

s 
in

 P
as

t 2
 Y

rs
.

27
8.

79
−

3.
66

−
4.

09
−

4.
50

0.
05

9
0.

05
7

0.
03

3
0.

06
5

0.
90

8
69

   
N

o 
Jo

b 
in

 P
as

t Y
ea

r
27

0.
31

−
0.

07
−

0.
07

−
0.

09
0.

26
0

0.
29

5
0.

19
2

0.
29

4
0.

15
7

72

   
C

ur
re

nt
 E

m
pl

oy
m

en
t

27
0.

56
0.

04
0.

09
0.

10
0.

36
7

0.
25

1
0.

21
9

0.
21

9
0.

22
0

69

   
C

ur
re

nt
 E

m
pl

oy
m

en
t

40
0.

50
0.

20
0.

29
0.

29
0.

05
9

0.
01

1
0.

01
1

0.
02

4
0.

39
5

66

   
Jo

bl
es

s 
M

on
th

s 
in

 P
as

t 2
 Y

rs
.

40
10

.7
5

−
3.

52
−

4.
59

−
5.

17
0.

08
2

0.
04

0
0.

01
8

0.
02

6
0.

57
3

66

  N
o 

Jo
b 

in
 P

as
t Y

ea
r

40
0.

46
−

0.
10

−
0.

15
−

0.
17

0.
24

9
0.

12
3

0.
06

8
0.

06
8

0.
46

4
72

E
ar

ni
ng

sj

   
M

on
th

ly
 E

ar
n.

, C
ur

re
nt

 J
ob

19
2.

74
−

0.
16

0.
09

0.
13

0.
59

1
0.

40
8

0.
44

2
—

0.
67

7
30

   
M

on
th

ly
 E

ar
n.

, C
ur

re
nt

 J
ob

27
1.

43
0.

88
0.

99
1.

01
0.

01
7

0.
01

4
0.

01
1

0.
01

8
0.

75
2

68

   
Y

ea
rl

y 
E

ar
n.

, C
ur

re
nt

 J
ob

27
21

.5
1

3.
50

3.
67

4.
38

0.
22

7
0.

24
8

0.
18

6
0.

18
6

0.
87

3
66

   
Y

ea
rl

y 
E

ar
n.

, C
ur

re
nt

 J
ob

40
24

.2
3

7.
17

4.
62

7.
02

0.
14

7
0.

27
0

0.
15

0
0.

20
3

0.
75

5
66

   
M

on
th

ly
 E

ar
n.

, C
ur

re
nt

 J
ob

40
2.

11
0.

50
0.

44
0.

55
0.

22
4

0.
27

7
0.

19
5

0.
19

5
0.

70
8

66

E
ar

ni
ng

s 
&

 E
m

pl
oy

m
en

tj

   
C

ur
re

nt
 E

m
pl

oy
m

en
t

19
0.

41
0.

14
0.

13
0.

16
0.

10
1

0.
14

4
0.

10
3

0.
27

9
0.

37
3

72

   
M

on
th

ly
 E

ar
n.

, C
ur

re
nt

 J
ob

19
2.

74
−

0.
16

0.
09

0.
13

0.
59

1
0.

40
8

0.
44

2
0.

73
6

0.
67

7
30

   
Jo

bl
es

s 
M

on
th

s 
in

 P
as

t 2
 Y

rs
.

19
3.

82
1.

47
1.

31
1.

50
0.

78
4

0.
76

3
0.

78
1

0.
84

1
0.

10
2

70

   
N

o 
Jo

b 
in

 P
as

t Y
ea

r
19

0.
13

0.
11

0.
09

0.
10

0.
92

4
0.

82
7

0.
85

7
0.

85
7

0.
00

9
72

   
M

on
th

ly
 E

ar
n.

, C
ur

re
nt

 J
ob

27
1.

43
0.

88
0.

99
1.

01
0.

01
7

0.
01

4
0.

01
1

0.
03

7
0.

75
2

68

   
Jo

bl
es

s 
M

on
th

s 
in

 P
as

t 2
 Y

rs
.

27
8.

79
−

3.
66

−
4.

09
−

4.
50

0.
05

9
0.

05
7

0.
03

3
0.

08
4

0.
90

8
69

Quant Econom. Author manuscript; available in PMC 2012 December 17.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Heckman et al. Page 46

E
ff

ec
t

p-
V

al
ue

s

O
ut

co
m

e
A

ge
C

tl
.

M
ea

n
U

nc
on

d.
b

C
on

d.
(F

ul
l)

c
C

on
d.

(P
ar

t.
)d

N
aï

ve
e

F
ul

l
L

in
.f

P
ar

ti
al

L
in

.g
P

ar
t.

 L
in

.
(a

dj
.)

h
G

en
de

r
D

-i
n-

D
i

A
va

ila
bl

e
O

bs
er

va
ti

on
s

   
Y

ea
rl

y 
E

ar
n.

, C
ur

re
nt

 J
ob

27
21

.5
1

3.
50

3.
67

4 
38

0.
22

7
0.

24
8

0.
18

6
0.

36
0

0.
87

3
66

   
N

o 
Jo

b 
in

 P
as

t Y
ea

r
27

0.
31

−
0.

07
−

0.
07

−
0.

09
0.

26
0

0.
29

5
0.

19
2

0.
29

4
0.

15
7

72

   
C

ur
re

nt
 E

m
pl

oy
m

en
t

27
0.

56
0.

04
0.

09
0.

10
0.

36
7

0.
25

1
0.

21
9

0.
21

9
0.

22
0

69

   
C

ur
re

nt
 E

m
pl

oy
m

en
t

40
0.

50
0.

20
0.

29
0.

29
0.

05
9

0.
01

1
0.

01
1

0.
03

5
0.

39
5

66

   
Jo

bl
es

s 
M

on
th

s 
in

 P
as

t 2
 Y

rs
.

40
10

.7
5

−
3.

52
−

4.
59

−
5.

17
0.

08
2

0.
04

0
0.

01
8

0.
04

5
0.

57
3

66

   
N

o 
Jo

b 
in

 P
as

t Y
ea

r
40

0.
46

−
0.

10
−

0.
15

−
0.

17
0.

24
9

0.
12

3
0.

06
8

0.
13

7
0.

46
4

72

   
Y

ea
rl

y 
E

ar
n.

, C
ur

re
nt

 J
ob

40
24

.2
3

7.
17

4.
62

7.
02

0.
14

7
0.

27
0

0.
15

0
0.

20
3

0.
75

5
66

   
M

on
th

ly
 E

ar
n.

, C
ur

re
nt

 J
ob

40
2.

11
0.

50
0.

44
0.

55
0.

22
4

0.
27

7
0.

19
5

0.
19

5
0.

70
8

66

E
co

no
m

ic

   
C

ar
 O

w
ne

rs
hi

p
27

0.
59

0.
15

0.
18

0.
19

0.
08

9
0.

07
2

0.
05

9
0.

15
2

0.
88

7
70

   
Sa

vi
ng

s 
A

cc
ou

nt
27

0.
46

−
0.

01
0.

03
0.

04
0.

55
5

0.
42

5
0.

39
7

0.
61

0
0.

12
8

70

   
C

he
ck

in
g 

A
cc

ou
nt

27
0.

23
−

0.
04

−
0.

02
−

0.
02

0.
59

1
0.

61
0

0.
57

5
0.

57
5

0.
77

7
70

   
Sa

vi
ng

s 
A

cc
ou

nt
40

0.
36

0.
37

0.
36

0.
38

0.
00

2
0.

00
2

0.
00

1
0.

00
3

0.
07

1
66

   
C

ar
 O

w
ne

rs
hi

p
40

0.
50

0.
30

0.
32

0.
35

0.
00

4
0.

00
3

0.
00

2
0.

00
4

0.
15

7
66

   
C

re
di

t C
ar

d
40

0.
36

0.
11

0.
08

0.
10

0.
18

0
0.

27
9

0.
20

6
0.

32
7

0.
73

7
66

   
C

he
ck

in
g 

A
cc

ou
nt

40
0.

39
0.

01
−

0.
01

0.
01

0.
46

3
0.

55
8

0.
49

1
0.

49
1

0.
67

5
66

   
N

ev
er

 o
n 

W
el

fa
re

16
–4

0
0.

82
−

0.
15

−
0.

17
−

0.
19

0.
10

1
0.

08
6

0.
02

8
0.

10
4

0.
97

0
72

   
N

ev
er

 o
n 

W
el

fa
re

 (
Se

lf
 R

ep
.)

26
–4

0
0.

38
−

0.
18

−
0.

18
−

0.
20

0.
05

8
0.

07
5

0.
05

1
0.

14
7

0.
11

8
64

   
>

30
 M

os
. o

n 
W

el
fa

re
18

–2
7

0.
08

−
0.

01
−

0.
02

−
0.

01
0.

57
1

0.
48

2
0.

43
0

0.
61

9
0.

08
7

66

   
# 

M
on

th
s 

on
 W

el
fa

re
18

–2
7

6.
84

0.
59

−
0.

14
0.

37
0.

56
3

0.
56

6
0.

51
7

0.
64

6
0.

12
2

66

   
E

ve
r 

on
 W

el
fa

re
18

–2
7

0.
26

0.
06

0.
02

0.
03

0.
69

7
0.

63
5

0.
59

0
0.

59
0

0.
07

4
66

a M
on

et
ar

y 
va

lu
es

 a
dj

us
te

d 
to

 th
ou

sa
nd

s 
of

 y
ea

r-
20

06
 d

ol
la

rs
 u

si
ng

 a
nn

ua
l n

at
io

na
l C

PI
. p

-v
al

ue
s 

be
lo

w
 0

.1
 a

re
 in

 b
ol

d.

b U
nc

on
di

tio
na

l d
if

fe
re

nc
e 

in
 m

ea
ns

 b
et

w
ee

n 
th

e 
tr

ea
tm

en
t a

nd
 c

on
tr

ol
 g

ro
up

s.

c C
on

di
tio

na
l t

re
at

m
en

t e
ff

ec
t w

ith
 li

ne
ar

 c
ov

ar
ia

te
s 

St
an

fo
rd

–B
in

et
 I

Q
, S

oc
io

ec
on

om
ic

 S
ta

tu
s 

in
de

x 
(S

E
S)

, m
at

er
na

l e
m

pl
oy

m
en

t, 
fa

th
er

’s
 p

re
se

nc
e 

at
 s

tu
dy

 e
nt

ry
—

th
is

 is
 a

ls
o 

th
e 

ef
fe

ct
 f

or
 th

e 
Fr

ee
dm

an
–

L
an

e 
pr

oc
ed

ur
e 

un
de

r 
a 

fu
ll 

lin
ea

ri
ty

 a
ss

um
pt

io
n,

 w
ho

se
 r

es
pe

ct
iv

e 
p-

va
lu

e 
is

 c
om

pu
te

d 
in

 c
ol

um
n 

“F
ul

l L
in

.”

d C
on

di
tio

na
l t

re
at

m
en

t e
ff

ec
t a

s 
in

 th
e 

pr
ev

io
us

 c
ol

um
n 

ex
ce

pt
 th

at
 S

E
S 

is
 r

ep
la

ce
d 

w
ith

 a
n 

in
di

ca
to

r 
fo

r 
SE

S 
ab

ov
e/

be
lo

w
 th

e 
m

ed
ia

n,
 s

o 
th

at
 th

e 
co

rr
es

po
nd

in
g 

p-
va

lu
e 

is
 c

om
pu

te
d 

in
 th

e 
co

lu
m

n 
“P

ar
tia

l
L

in
.”

 T
hi

s 
sp

ec
if

ic
at

io
n 

ge
ne

ra
te

s 
p-

va
lu

es
 u

se
d 

in
 th

e 
st

ep
do

w
n 

pr
oc

ed
ur

e.

Quant Econom. Author manuscript; available in PMC 2012 December 17.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Heckman et al. Page 47
e O

ne
-s

id
ed

 p
-v

al
ue

s 
fo

r 
th

e 
hy

po
th

es
is

 o
f 

no
 tr

ea
tm

en
t e

ff
ec

t b
as

ed
 o

n 
co

nd
iti

on
al

 p
er

m
ut

at
io

n 
in

fe
re

nc
e,

 w
ith

ou
t o

rb
it 

re
st

ri
ct

io
ns

 o
r 

lin
ea

r 
co

va
ri

at
es

—
es

tim
at

ed
 e

ff
ec

t s
iz

e 
in

 th
e 

“U
nc

on
d.

” 
co

lu
m

n.

f O
ne

-s
id

ed
 p

-v
al

ue
s 

fo
r 

th
e 

hy
po

th
es

is
 o

f 
no

 tr
ea

tm
en

t e
ff

ec
t b

as
ed

 o
n 

th
e 

Fr
ee

dm
an

–L
an

e 
pr

oc
ed

ur
e,

 w
ith

ou
t r

es
tr

ic
tin

g 
pe

rm
ut

at
io

n 
or

bi
ts

 a
nd

 a
ss

um
in

g 
lin

ea
ri

ty
 in

 a
ll 

co
va

ri
at

es
 (

m
at

er
na

l e
m

pl
oy

m
en

t,
pa

te
rn

al
 p

re
se

nc
e,

 S
oc

io
ec

on
om

ic
 S

ta
tu

s 
in

de
x 

(S
E

S)
, a

nd
 S

ta
nf

or
d–

B
in

et
 I

Q
)—

es
tim

at
ed

 e
ff

ec
t s

iz
e 

in
 th

e 
“c

on
di

tio
na

l e
ff

ec
t”

 c
ol

um
n.

g O
ne

-s
id

ed
 p

-v
al

ue
s 

fo
r 

th
e 

hy
po

th
es

is
 o

f 
no

 tr
ea

tm
en

t e
ff

ec
t b

as
ed

 o
n 

th
e 

Fr
ee

dm
an

–L
an

e 
pr

oc
ed

ur
e,

 u
si

ng
 th

e 
lin

ea
r 

co
va

ri
at

es
 m

at
er

na
l e

m
pl

oy
m

en
t, 

pa
te

rn
al

 p
re

se
nc

e,
 a

nd
 S

ta
nf

or
d–

B
in

et
 I

Q
, a

nd
re

st
ri

ct
in

g 
pe

rm
ut

at
io

n 
or

bi
ts

 w
ith

in
 s

tr
at

a 
fo

rm
ed

 b
y 

So
ci

oe
co

no
m

ic
 S

ta
tu

s 
in

de
x 

(S
E

S)
 b

ei
ng

 a
bo

ve
 o

r 
be

lo
w

 th
e 

sa
m

pl
e 

m
ed

ia
n 

an
d 

pe
rm

ut
in

g 
si

bl
in

gs
 a

s 
a 

bl
oc

k.

h p-
va

lu
es

 f
ro

m
 th

e 
pr

ev
io

us
 c

ol
um

n,
 a

dj
us

te
d 

fo
r 

m
ul

tip
le

 in
fe

re
nc

e 
us

in
g 

th
e 

st
ep

do
w

n 
pr

oc
ed

ur
e.

i T
w

o-
si

de
d 

p-
va

lu
e 

fo
r 

th
e 

nu
ll 

hy
po

th
es

is
 o

f 
no

 g
en

de
r 

di
ff

er
en

ce
 in

 m
ea

n 
tr

ea
tm

en
t e

ff
ec

ts
, t

es
te

d 
us

in
g 

m
ea

n 
di

ff
er

en
ce

s 
be

tw
ee

n 
tr

ea
tm

en
ts

 a
nd

 c
on

tr
ol

s 
us

in
g 

th
e 

co
nd

iti
on

in
g 

an
d 

or
bi

t r
es

tr
ic

tio
n 

se
tu

p
de

sc
ri

be
d 

in
 f

oo
tn

ot
e 

f.

j A
ge

-1
9 

m
ea

su
re

s 
ar

e 
co

nd
iti

on
al

 o
n 

at
 le

as
t s

om
e 

ea
rn

in
gs

 d
ur

in
g 

th
e 

pe
ri

od
 s

pe
ci

fi
ed

—
ob

se
rv

at
io

ns
 w

ith
 z

er
o 

ea
rn

in
gs

 a
re

 o
m

itt
ed

 in
 c

om
pu

tin
g 

m
ea

ns
 a

nd
 r

eg
re

ss
io

ns
.

Quant Econom. Author manuscript; available in PMC 2012 December 17.


