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Abstract
Manipulation and encapsulation of cells in microdroplets has found many applications in various
fields such as clinical diagnostics, pharmaceutical research, and regenerative medicine. The
control over the number of cells in individual droplets in such applications is important especially
for microfluidic applications. There is a growing need for modeling approaches that enables
control over cells within individual droplets. In this study, we developed statistical models based
on negative binomial regression to determine the dependence of number of cells per droplet on
three main factors: the cell concentration in the ejection fluid, droplet size, and cell size. These
models were based on experimental data obtained by using a microdroplet generator, where the
presented statistical models estimated the number of cells encapsulated in droplets. We also
propose a stochastic model for the total volume of cells per droplet. The statistical and stochastic
models introduced in this study are adaptable to various cell types and cell encapsulation
technologies such as microfluidic and acoustic methods that require reliable control over number
of cells per droplet provided that setting or interaction of the variables is similar to ours.
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1. INTRODUCTION
Microscale droplets (microdroplets) have widespread applications in various areas, such as
inkjet printing1, colloidal research2, biology3, 4, and medicine5. Recently, cell encapsulation
in microdroplets has found new fields of applications including microfluidics6, 7,
cryobiology3, 8–11, clinical diagnostics12, cell patterning3, 13–16, tissue engineering13, 17,
high throughput drug studies for cancer15, stem cells18, 19, and pharmaceutical research20.
These applications require control over the number of cells encapsulated within individual
droplets. For example, individual cells can be encapsulated in microscale droplets as single
cell bioreactors13 to rapidly detect concentrations of secreted molecules. However, a
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stochastic model for predicting the number of cells in microdroplets with the current
encapsulation methods has not been developed.

There has been a growing interest in cell encapsulation in nano- and micro-scale droplets for
biological and genetic analysis21–25, in which the control over the number of cells in a
droplet and cell-to-cell distances are essential26. On the other hand, in bottom-up tissue
engineering approach, cell-encapsulating hydrogels are used as building blocks, where the
number of cells per building block determines the overall cell density in the resulting
constructs14, 27, 28. Cell density and cell-to-cell distance are critical, which affect the
structural and functional properties of the engineered tissues29. These applications all
require encapsulation of few cells in a small volume of fluids or microdroplets with highly
controllable density for consistent and repeatable results.

There are currently several cell encapsulation techniques at microscale, such as pneumatic
valve-based bioprinting14, 30, acoustic technologies3, 13, inkjet bioprinting31, 32, laser
bioprinting33 and microfluidic based cell manipulation34–37, and encapsulation
methods38–40. All these techniques aim to manipulate cells in microscale volumes, and
control cell density and cell-to-cell distance. However, the variability in the number of cells
per droplet due to stochastic nature of cell loading is a major barrier for effective use of
these techniques.

Previously, the number of cells per droplet was reported and the dependence on the cell
concentration in the suspension and droplet size were experimentally reported13. The data
was fit to a Poisson distribution to estimate the probability of number of cells per droplet
using a simplified model that is neither statistical nor stochastic. That is, we did not
determine the statistical relationship between the variables explicitly. In this work, we
perform this important aspect of cell encapsulation. We also include cell radius as a
predictor in one of our three models. We developed statistical models to determine the
relationship between the number of cells per droplet (denoted NCPD, henceforth), and the
following factors: (i) the cell concentration in the ejection fluid, (ii) droplet size, and (iii)
cell size in terms of radius. The models can also be used to predict and control NCPD.
Furthermore, we develop stochastic models for total volume of cells per droplet based on the
above statistical models, hence the three factors considered. This is attempted for the first
time in literature in this article. We considered the ranges of these factors as follows: the cell
concentration in the ejection fluid (1, 2, 4, 8, and 16 million cells per milliliter (mil/ml)), cell
radius (1–28 µm) and droplet radius (300–700 µm). We developed a statistical model of
NCPD by negative binomial regression as a function of these factors using generalized linear
modeling techniques appropriate for count data (i.e., data that provides the numbers or
counts of particles or units in a bounded region or time) and stochastic modeling of the
number and volume of the cells as a form of negative binomial process. The novelty here is
the statistical modeling of number of cells per droplet (as the response variable), based on
the other variables (size of droplets and cell concentration) as predictor variables. The
developed models can be used for reliable predictions and to improve the control over cell
encapsulation in droplets, offering theoretical and experimental insights into the involved
mechanisms.

2. MATERIALS AND METHODS
2.1. Cell-encapsulation in microdroplets

In this study, we used a droplet ejector to generate cell encapsulation microdroplet, which is
commercially available (solenoid microvalve ejector, model G100–150300, from TechElan,
Mountainside, NJ). We have used this ejector to eject droplets encapsulating various cell
types (e.g., smooth muscle cells (SMCs), embryonic stem cells, cancer cells) with high cell
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viability14, 15, 17, 19, 30, Figure 1. The cell encapsulation systems involve in general
formation of a breaking droplet that encapsulates cells within the contents. In this system,
NCPD was controlled by changing the droplet radius or the cell concentration in the ejection
fluid (i.e., cell suspension in a syringe before ejection). In this study, we used data based on
smooth muscle cell (SMC) printing. We used primary bladder SMCs, which were from
Sprague Dawley rat. Most cell types are generally spherical when suspended in solution. We
perform ejection when the cells are in suspension. Cell suspension was mixed by manual
pipetting before printing and the printing process took less than 1 minute, which prevented
long-term effects of cell settling in the reservoir. During printing, a droplet was taken from
the ejection fluid from the bottom of the syringe via tubing that connected syringe to the
ejector (Fig. 1). We used the same culture medium for all cell types. Moreover, in this study,
we used the same dispensing force, which was 5 psi. Images were taken under a bright-field
microscope (Nikon TE2000). The number of cells was counted manually from the obtained
4× images. Cell radius was measured as the radius of a cell in a droplet, assuming a
spherical geometry. Since a droplet radius in a three-dimensional (3D) spherical shape
before landing on the substrate surface was challenging to measure, we used the two-
dimensional (2D) radius of the droplets on the surface (i.e., droplet spread radius), which is
correlated to the 3D droplet radius. For cell concentration in the ejection fluid, we used 1, 2,
4, 8, and 16 mil/ml. We collected cell droplet data from 178 droplets at five cell
concentrations (see Table 1). There are several other factors affecting NCPD, which were
fixed in our experiments. These factors are: (i) pressure in ejection reservoir (5 psi), (ii) cell
type (rat SMCs), (iii) fluid viscosity (0.2% collagen) and (iv) droplet ejection rate (10
droplets per second). We provided the list of variables and abbreviations used in the article
in Table 2, and the ranges of the variables in Table 3.

2.2. Stochastic and statistical modeling of number of cells per droplet
We hypothesized that the number of cells per droplet (NCPD) highly depends on the droplet
radius, cell radius, and cell concentration in the cell suspension. To test this hypothesis, we
developed mathematical models to understand the stochastic processes for NCPD and the
total cell volume (per droplet). We also assessed empirically these models by fitting to the
experimental data. For count data, usually the relationship between the mean and the
variance is determined as Var(Yi) = τμi, where Yi is the count variable with mean μi and τ is
the dispersion parameter. Depending on the values of τ, two sets of models are used. If τ
equals one (i.e., not significantly different than one), a Poisson regression model (a
generalized linear model (GLM) model) with logarithm function as the canonical link
function and Poisson distributed errors41 was fit to the data. When τ is significantly different
than one, other GLMs such as the negative binomial model are more appropriate42. Our data
are consistent with the underlying assumptions for a GLM model.

In the models, we used NCPD as the response (or dependent) variable and the other variables
(see Table 3) as the predictor (or independent) variables in the GLM procedures. We applied
a model selection procedure to obtain a concise and descriptive model (with least number of
variables possible, but has high explanatory power). We started with a model containing all
the variables (called “full model”) with some non-linear terms that were added to reflect
significant relationship between NCPD and the predictor variables. The full model is then
reduced using a stepwise backward elimination procedure together with Akaike Information
Criteria (AIC)43, i.e., some insignificant variables were removed until each of the remaining
variables has a significant effect on the NCPD at α = 0.05 level.

The underlying assumptions, model selection procedure, and some of the discussion on the
model diagnostics for each model we consider are deferred to the SI file for brevity in
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presentation; additionally, they are also peripheral for the main message and results of the
article.

3. RESULTS AND DISCUSSIONS
3.1. Modeling NCPD as a function of cell concentration and droplet radius (Model D-C2)

The summary statistics (such as mean, median and first quartile) of the variables of droplet
radius, cell concentration, and NCPD are summarized in Table 4 and the corresponding
histograms are plotted in Figure 2. The histograms indicate a mild leftward skew for droplet
radii and severe rightward skew for NCPD whose mean, 63.63, is much larger than its
median, 21), while the rightward skew is reduced for log(NCPD). In particular, the standard
deviations for NCPD, droplet radius, cell concentration, and cell radius are 81.87, 91.99,
5.52, and 2.27 (Table 4). So among the variables, the variation of cell radius is much smaller
compared to those of NCPD, cell concentration and droplet radius in our setup. Here one
might be misled by the comparing the ranges (maximum minus minimum) of these variables
which is not a robust measure of spread. Hence, we first model NCPD as a function of only
cell concentration (XCC) and droplet radius (XDR) without considering the influence of cell
radius (XCR). Our experimental data (Table 4) shows that the variance of NCPD is
significantly larger than its mean: Var(NCPD) = 6734.12 and Mean(NCPD) = 63.82 with p < .
0001 based on Dean’s PB test for overdispersion44). This indicates that negative binomial
regression is more appropriate for our data compared to the more common Poisson
regression.

We start with the negative binomial GLM which models logarithm of NCPD as a function of
droplet radius and cell concentration and obtain the following model:

(1)

Since the model is log linear, we can translate these coefficients into multiplicative effects in
the predicted NCPD as

(2)

Observe that the expected value of NCPD increases as droplet radius or cell concentration
increases. For example, the expected log(NCPD) increase is 0.1890 for a one-unit increase in
cell concentration (i.e., if cell concentration increases by 1 mil/ml). That is, a one-unit
increase in cell concentration causes the expected NCPD to increase by a factor of
exp(0.1890) = 1.2081, holding XDR constant. Notice also that the effect of the cell
concentration and droplet radius are both strong in estimating NCPD, but droplet radius is
much stronger.

Based on the diagnostic plots in Figure 3, we observe that model assumptions are satisfied
for Model D-C2. Hence, when the cell radius is fixed or its variation is negligible compared
to the variation in the other variables (i.e., when the variance of cell radius is much smaller
compared to the variances of other variables), Model D-C2 can be used to estimate the NCPD
values for a given droplet radius and a cell concentration (within the variable ranges given in
Table 3). For example, with droplet radius being 500 µm and cell concentration being 5 mil/
ml, we estimate the expected NCPD to be
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The notation of the models is summarized in Table 5.

3.2. Modeling NCPD as a function of cell concentration, droplet radius, and cell radius
(Model D-C3)

Unlike Model D-C2 (Table 5), at this stage of analysis, we consider the cell radius (XCR) as
a potentially important factor in explaining or modeling the NCPD by incorporating cell
radius into the modeling procedure. That is, the response variable of interest (NCPD) is
modeled as a function of independent (predictor) variables, i.e., cell concentration (XCC),
droplet radius (XDR), and cell radius (XCR). We treat each cell related data as a single data
point, so for the cells in each droplet, NCPD values are replicated, as well as XCC and XDR
values. Hence, we have 9539 sets of XDR, XCR, NCPD and XCC values from 148 droplets at
five cell concentrations. Our experimental data showed that the variance of NCPD is
significantly larger than its mean: Var(NCPD) = 8211.90 and Mean(NCPD) = 168.74 with p
< .0001 based on Dean’s PB test for overdispersion. This indicated that negative binomial
regression is more appropriate.

We implement the negative binomial GLM that models logarithm of NCPD as a function of
droplet radius, cell radius, and cell concentration together with non-linear terms. By our
model selection procedure, the model is reduced to one that only contains XDR and XCC as
predictors. That is, in the presence of droplet radius and cell concentration, cell radius has no
significant contribution to modeling NCPD. However, this does not necessarily mean that
XCR has no impact in the modeling of NCPD. In particular, if cell radius is used as the only
predictor variable in modeling the response variable NCPD, then it is significant. We
construct models at each cell concentration value treating cell concentration as a qualitative
factor (i.e., Model D-C3). This is justifiable, because in practice, usually an experimenter
takes XCC to be any one of the 5 values specified. When many replications are taken at few
levels of a numerical variable, it is a common practice to also treat this numerical variable as
a categorical variable which sometimes provides a better fit of the model to the data at hand.
With such modeling, we observe that the cell radius is significant at some cell concentration
levels (1 and 8 mil/ml), but not at other levels (2, 4, 16 mil/ml). For example, for XCC = 1
mil/ml, we have

(3)

When these coefficients are translated into multiplicative effects in the predicted NCPD
count, we get

(4)

See Table 6 for the explicit forms of Model D-C3 for each cell concentration. Notice that
the dependence of NCPD on XCR and XDR is different at each XCC. Observe that NCPD
increases with increasing droplet radius, while NCPD tends to decrease with increasing cell
radius. For example, at XCC = 1 mil/ml, for a one-unit increase in cell radius from, say 5 to 6
µm (i.e., if cell radius value increases 1 µm at 5 µm), the expected log(NCPD) decrease is
0.0522 or expected NCPD decrease is by a factor of exp(−0.0522) = 0.9491, when XDR is
held constant. Furthermore, the droplet radius has stronger influence on NCPD compared to
cell radius.

Based on the diagnostic plots presented in Figure 3, we observe that model assumptions are
valid in this case. Hence, when the cell radius is considered, Model D-C3 is a good
alternative to estimate the NCPD values for a given droplet radius and cell radius, at cell
concentration tested in this study (1, 2, 4, 8, and 16 mil/ml). That is, if one wants to use any
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one of these particular cell concentration values in a cell encapsulation experiment, Model
D-C3 can be employed. For example, for droplet radius being 500 µm, cell concentration
being 1 mil/ml and cell radius being 15 µm, we estimate the expected NCPD to be

On the other hand, Model D-C2 is also applicable for any cell concentration value within 1–
16 mil/ml. However, for concentration values other than 1, 2, 4, 8, and 16 mil/ml, one can
also estimate NCPD values with linear interpolation. For example, at XDR = 500 µm and XCR
= 15 µm, Model D-C3 estimates NCPD value to be 45 for XCC = 4 mil/ml and 110 for XCC =
8 mil/ml. Then at the same XDR = 500 µm and XCR = 15 µm values, for XCC = 5 mil/ml, by

linear interpolation, we obtain .

3.3. Modeling NCPD as a function of cell concentration and the ratio of droplet radius to cell
radius (Model R2-C2)

We model NCPD as a function of XCC and ratio of droplet radius to cell radius for each cell,
called radius ratio and denoted XRR. Negative binomial regression is more appropriate here,
since Var(NCPD) = 6846.88 is significantly larger than the mean: Mean(NCPD) = 65.89, p < .
0001 based on Dean’s PB test for overdispersion. We have used cell droplet data on 171
droplets and 10226 cells at some concentrations. Radius values were not available for 1079
of the cells, hence removed from the analysis.

We implemented the negative binomial GLM with XRR and XCC as predictors and obtain
the following reduced model

(5)

The coefficients of the log linear model can be translated into multiplicative effects in the
predicted count as

(6)

Notice that NCPD tends to increase as XCC or XRR increases. That is, when cell
concentration increases, it is more likely to have more cells per droplet. Similarly, when
ratio of droplet radius to cell radius increases, the droplet volume tends to be much larger
than cell volumes, so it is more likely to encapsulate more cells in such droplets. For
example, the expected log(NCPD) increase is 0.0019 for a one-unit increase in radius ratio
(i.e., if radius ratio increases by 1). That is, a one-unit increase in radius ratio causes the
expected NCPD to increase by a factor of exp(0.0019) = 1.0019, holding XCC constant.
When the cell radius is fixed or its variation is negligible compared to the variation in the
other variables (i.e., when the variance of cell radius is much smaller compared to the
variances of other variables), Model R2-C2 can be used to estimate the NCPD values for a
given radius ratio and a cell concentration within the variable ranges of the variables. The
ranges for the droplet radii and cell radii in Table 3 yields the range for XRR to be 10.71–
700. For example, with radius ratio being 700 µm / 15 µm = 46.67 and cell concentration
being 1 mil/ml, we estimate the expected NCPD to be
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Furthermore, the model diagnostic plots in Figure 3 suggest that although the model
assumptions seem to be not severely violated, the quantile-quantile (QQ)-plot suggests more
severe non-normality compared to other models. Besides, the plot of the deviances indicates
a worse fit compared to other models (see Figure 3).

3.4. Comparison and discussion of the models for NCPD

The models D-C2, D-C3, and R2-C2 have AIC values 106103.6, 101160.9, and 104479.1,
respectively. Hence D-C3 with the smallest AIC value provides the best fit to the available
data. Further, comparing the above three models, we find that the inclusion of cell radius
and treating cell concentration as a categorical variable in Model D-C3 provides a
significant improvement over Model D-C2 (likelihood ratio χ2 = 4974.7, df = 16, p <
0.0001). However, the effect of cell radius is not as strong as the other variables in the
modeling of NCPD. In particular, for a thirty-fold increase in cell radius, which is roughly the
ratio of the largest cell radius to the smallest cell radius in our data, the NCPD decreases by a
factor of 0.9722 at cell concentration XCC = 1 mil/ml and increases by a factor of 1.0065 at
cell concentration XCC = 8 mil/ml. Therefore, we can conclude that the influence of cell
radius is statistically significant in modeling NCPD, but its practical significance is only
moderate. Hence, for practical purposes, Model D-C2 is better along the lines of principle of
parsimony, i.e., simple yet explanatory for estimating NCPD.

Comparing Model R2-C2 with Model D-C2, we observe that using the radius ratio instead
of droplet radius does not significantly improve the model performance in the sense that the
fit of Model R2-C2 is not better than that of Model D-C2. In fact, Model D-C2 is better in
explaining the variation in NCPD compared to Model R2-C2 (the likelihood ratio χ2 =
1624.5, df = 0, p < 0.0001).

On the other hand, comparing Model R2-C2 to Model D-C3, we see that Model D-C3 is
significantly better in explaining the variation in NCPD compared to Model R2-C2 (the
likelihood ratio χ2 = 3350.2, df=16, p < 0.0001). That is, the raw radius values for droplets
and cells are better for explaining the variation in NCPD compared to the radius ratios.
Therefore, if the cell radius is fixed or its variation is negligible, Model D-C2 can be
applied; otherwise Model D-C3 should be applied. These models explain the encapsulation
process that determines the number of cells per droplet. Further, we can perform predictions
to control the conditions that will yield designed cell encapsulation performance (i.e., NCPD
with high probability).

Furthermore, if the cell concentration and droplet radius are fixed, the dependence of NCPD
on cell radius can be determined more precisely. The cell radii can be measured by imaging
cells in suspension. It takes time for the cells to attach to a surface and spread after ejection.
We are ejecting the cells in suspension form; hence their spread sizes on the surface do not
come into play. Some cells may seem larger in cultures since they spread, however, their
sizes range within the tens of microns when they are suspended and become into spherical
form. The cell concentration can be precisely controlled, and the cell radius is dependent on
the cell type. The droplet radius is measured after the droplet lands on the substrate.
However, this does not mean that we cannot control the droplet radius. We actually control
the droplet size by controlling the valve-opening duration as now described in the methods.
The longer the microvalve stays open the larger the droplet that is ejected. Hence, to make
use of the presented models in this work in estimation or prediction, we also determine the
conditions of the experimental settings to achieve specific droplet radius values of the image
on the substrate. Therefore, for a given cell type, we can determine the required cell
concentrations and droplet radius to achieve a predetermined number of cells per droplet
with high probability. Additionally, for given cell concentration and droplet radius values,
we can estimate the expected number of cells per droplet with high probability.
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See also Table 7 for estimated values of NCPD for XDR = 500 µm, and XCR = 15 µm for each
of 1, 2, 4, 8, and 16 mil/ml XCC values. For small XCC values (i.e., for XCC =1 and 2 mil/
ml), the models agree in prediction of NCPD values. However, for larger XCC values, Model
D-C3 is more reliable at these concentration values. For higher concentration values Models
D-C2 and R2-C2 seem to be over-averaging, and hence underestimating the NCPD values.
For concentration values other than 1, 2, 4, 8, and 16 mil/ml, one can perform a linear
interpolation based on Model D-C3 as described at the end of Section 3.2.

4. Stochastic modeling of number and volume of cells per droplet
4.1. NCPD modeled as a negative binomial process

In Sections 3.1–3.3, we have presented that the volume of the droplet, i.e., droplet radius
and cell concentration are the main factors to determine the NCPD values. For a 3D region R
with a certain volume in the ejection fluid, the number of cells in R denoted N(R), can be
modeled as a negative binomial process with the following probability distribution function
(pdf):

(7)

where λ is the rate parameter with its unit chosen to be mil/ml (so λ = Xcc) and V(R) is the

volume of the region R in ml and . Since
the ejection fluid is assumed to be homogenized and droplets are taken from the fluid so that
a droplet represents a region with volume V(D). In particular, the number of cells per
droplet, NCPD, has the distribution as in Eq. (7) with V(R) being replaced by V(D).

4.2. Total volume of cells per droplet modeled as a compound spatial inhomogeneous
negative binomial process

In the cell encapsulation procedure, the cell radius may vary in a range even for a given cell
type. Furthermore, NCPD is also related with the cell radius (or volumes). Therefore, a more
complex model that incorporates the randomness in the cell radius in addition to the
negative binomial property of the number of cells is the compound homogeneous negative
binomial process. Given a droplet, let VT(D) be the total volume of the cells at a droplet and
Vi is the volume of cell i in the droplet for i = 1, 2, …,N(D) where N(D) = NCPD in the
droplet. Then

(8)

where N(D) is the homogeneous negative binomial process described in the Section 3.5.1.
In particular, using Eq. (8), we get

(9)

(10)

(11)
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In the model in Eq. (10), N(D) directly depends on cell radius, so it is a dependent type
compound negative binomial process. In model Eq. (9), N(D) only depends on droplet
radius and cell concentration. There is a very positive relationship with a very small slope
between cell radius and droplet radius (see Figure 4 (right)). So, the model in Eq. (9) can be
assumed to be a compound negative binomial process.

What remains is the distribution of the volume, Vi, of the cells that can be determined by

measuring the cell diameters and assuming a spherical cell geometry, i.e., .
Hence, it suffices to determine the distribution of the cell radii, XCR. We present the kernel
density estimates of the cell radii for the cell concentration values (only 1, 2, and 4 mil/ml
are presented) in Figure 5. The figures for the other concentrations are similar, hence not
presented. These figures support the claim that cell radii are log-normal with different
parameters at each cell concentration. The distribution of the logarithm of cell radius in our
data can be modeled as a mixture of normal distributions. Therefore, the cell radii (pooled
together in the aggregate data) as a mixture of log-normal distributions has the pdf

 where, n = 5, i stands for cell concentration 2i−1 mil/ml for i = 1,2, …,5,
ai is the proportion of cells from concentration i, and fYi(x) being the pdf of cell radii at
concentration i. That is, log(Yi) ~ N(μi,σi) (i.e., log(Yi) is distributed as normal distribution
with mean μi and standard deviation σi). In particular, we presented the distribution
parameters for each concentration in Table 8.

5. CONCLUSIONS
Our statistical models in Section 3 estimate the relationship between number and volume of
cells per droplet (NCPD) and other variables including cell concentration (XCC), droplet
radius (XDR), and cell radius (XCR) using negative binomial regression. Considering the
nature of the relationships and the structure of statistical models, we conclude that the
influential factors that affect NCPD are the cell concentration, droplet radius, and cell radius,
with the former two having more influence. Further, if cell concentration is fixed, more
subtle relationships are observed between NCPD values versus droplet and cell radiuses (see
Model D-C3). On the other hand, our stochastic models in Section 4 incorporate the
statistical models in Section 3 to describe the total volume of cells per droplet as a
compound spatial inhomogeneous negative binomial process.

In conclusion, we have developed three statistical models, namely, Models D-C2, D-C3, and
R2-C2. The models are more appropriate under different conditions (cell concentration,
droplet radius, and cell radius) so that we can optimize NCPD, i.e., estimate the optimal
conditions to encapsulate a desired number of cells within a nanoliter droplet volume. For
example, if one wants to estimate NCPD at the specific cell concentration values in Table 3,
Model D-C3 is the most appropriate choice, while if one wants to estimate for any cell
concentration value within a vicinity of 1–3 mil/ml (i.e., around small cell concentration
values relative to the ones considered), Model D-C2 could be employed. Considering
Models D-C2, D-C3, and R2-C2 (Table 5) based on our experimental data, we conclude that
each of the three variables (e.g., cell concentration, droplet radius, and cell radius) can be
optimized for a specific goal when the other two are given. For example, for given droplet
and cell radiuses, the cell concentration can be optimized to achieve a specific NCPD value.
Thus, one can design the conditions to accurately obtain the desired NCPD, based on the
models introduced here; or in a given setup, one can expect the number of cells per droplet
reliably. In particular, at the specific cell concentration values in Table 3, one might employ
Model D-C3 for estimation or prediction purposes. On the other hand, for smaller cell
concentration values (i.e., between 1–3 mil/ml), one might employ Model D-C2 as well. For
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larger cell concentration values (i.e., 3–16 mil/ml), we recommend the linear interpolation
based on Model D-C3 (see end of Section 3.2). Model R2-C2 is fit mostly for comparative
purposes, and found to perform less efficiently than the other two models in the sense that
the goodness of fit for the other models are better than Model R2-C2.

The models introduced in this paper are applicable to different cell types, other
encapsulation medium and cell encapsulation technologies, which require a reliable control
over number of cells per microdroplet. The models are usable when the experimental setup
is replicated in the current form. Additionally, the models developed in this study and steps
taken to validate the experimental and modeling results are applicable broadly to other cell
encapsulation systems, since similar parameters such as cell concentration and droplet size
analyzed here apply. For example, if the setup, e.g., dispenser does not seriously confound
the relationship between number of cells per droplet and the other variables, then the models
are applicable in that setting as well. Otherwise, the models are only instructive in forming
models of dispenser families that affect the droplet formation or number of cells per droplet
substantially different than our setup. Also, we expect viscosity to affect the overall system
when ejecting different solutions. Since the droplet is generated under constant pressure, the
viscosity will affect the droplet size with all the other conditions the same. However, we do
not expect effect of viscosity on the number of cells per droplet if the droplet sizes are the
same. The statistical and stochastic models introduced in this study are adaptable to various
cell types and cell encapsulation technologies such as microfluidic and acoustic methods
that require reliable control over number of cells per droplet provided that setting or
interaction of the variables is similar to ours. Here, by adaptability we mean that certain
parameters are common to all cell encapsulation systems, e.g., cell concentration and droplet
size. A few restrictions of the model are provided in Section S1 of the SI file as the
underlying assumptions for our models. Hence, the models developed in this study can be
used to provide reliable predictions and to improve the control over cell encapsulation in
droplets for a wide range of applications in biomedicine and biomedical research.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A) Cell encapsulation system and microdroplet generation system. B) A typical printed cell-
encapsulating collagen droplet. Arrows in the image represent the SMC cells encapsulated in
droplet.
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Figure 2.
Histograms of droplet radii (left), NCPD values (middle) and logarithm of NCPD values
(right).
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Figure 3.
Diagnostic plots for Model D-C2 (top row), Model D-C3 (middle row) and Model R2-C2
(bottom row). The deviance residuals versus predicted values (left) and the normal QQ-plot
for deviance residuals versus theoretical quantiles where the straight line passes through the
first and third quartiles (right).
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Figure 4.
A sample figure for cell pictures taken to measure the cell diameters (left). A scatter plot of
cell radius versus droplet radius values (right).
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Figure 5.
Kernel density estimates for the cell diameters (top left) and volumes (top right). Kernel
density estimates of the log of the cell radii for cell concentrations 1 mil/ml, 2 mil/ml, and 4
mil/ml, respectively (bottom row).
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Table 2

Notation (variable names and abbreviations) and its description for statistical modeling of number of cells per
droplet.

Notation Description

NCPD Number of cells per droplet

XDR Droplet radius (µm)

XCR Cell radius (µm)

XCC Cell concentration (million cells per milliliter)

XRR Radius ratio

GLM Generalized linear models

VT Total volume of the cells in a droplet (µm3)

Vi Volume of the cell i in a droplet (µm3)

α Level of significance for hypothesis testing

λ Poisson rate parameter

μ and σ2 Mean and variance

n Number of observations

Q1, Q3 First and third quartile values
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Table 3

Variables used in this study, their values and ranges.

Variable Values and ranges

Cell concentration 1, 2, 4, 8, and 16 million cells per ml

Cell radius 1–28 µm

Droplet radius 300–700 µm

Lab Chip. Author manuscript; available in PMC 2013 November 21.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ceyhan et al. Page 21

Ta
bl

e 
4

Su
m

m
ar

y 
st

at
is

tic
s 

of
 th

e 
va

ri
ab

le
s 

(d
ro

pl
et

 r
ad

iu
s,

 c
el

l c
on

ce
nt

ra
tio

n,
 N

C
PD

 f
or

 m
od

el
s 

th
at

 ig
no

re
s 

th
e 

ce
ll 

ra
di

us
 (

to
p 

th
re

e 
ro

w
s)

 a
nd

 th
e 

ce
ll 

ra
di

us
(b

ot
to

m
 r

ow
).

 T
he

 a
bb

re
vi

at
io

ns
 a

re
 a

s 
in

 T
ab

le
 2

.

n
m

ea
n

SD
m

in
Q

1
m

ed
ia

n
Q

3
m

ax

N
C

PD
17

8
63

.6
3

81
.8

7
2.

00
13

.0
0

21
.0

0
83

.7
50

30
1.

00

X
D

R
17

8
50

8.
70

91
.9

9
31

8.
52

42
8.

10
51

6.
7

58
3.

30
70

9.
3

X
C

C
17

8
6.

23
5.

52
1.

00
2.

00
4.

00
8.

00
16

.0
0

X
C

R
10

24
7

6.
28

2.
27

0.
0

4.
97

5.
61

7.
00

28
.7

5

Lab Chip. Author manuscript; available in PMC 2013 November 21.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ceyhan et al. Page 22

Table 5

Abbreviations used in the Notation of the Models which are indicated by the bold face and capitalization in the
description column. (*The MS Excel and R code of the three statistical models (i.e., D-C2, C-D3, and R2-C2)
can be provided to interested readers upon request from Umut Atakan Gurkan <uag@mit.edu> or
<uagurkan@gmail.com> and Elvan Ceyhan <elceyhan@ku.edu.tr>, respectively.)

Models* Description

Model D-C2 Modeling NCPD as a function of Droplet radius and Cell Concentration

Model D-C3 Modeling NCPD as a function of Droplet radius, Cell Concentration, and Cell radius

Model R2-C2 Modeling NCPD as a function of the ratio of droplet Radius to cell Radius and Cell Concentration
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Table 6

Model D-C3: The negative binomial model for NCPD at each cell concentration value.

Cell concentration (mil /
ml)

The model

XCC = 1

XCC = 2

XCC = 4

XCC = 8

XCC = 16
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