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Abstract
Objective—To identify Common Data Elements (CDEs) in eligibility criteria of multiple clinical
trials studying the same disease using a human-computer collaborative approach.

Design—A set of free-text eligibility criteria from clinical trials on two representative diseases,
breast cancer and cardiovascular diseases, was sampled to identify disease-specific eligibility
criteria CDEs. In this proposed approach, a semantic annotator is used to recognize Unified
Medical Language Systems (UMLS) terms within the eligibility criteria text. The Apriori
algorithm is applied to mine frequent disease-specific UMLS terms, which are then filtered by a
list of preferred UMLS semantic types, grouped by similarity based on the Dice coefficient, and,
finally, manually reviewed.

Measurements—Standard precision, recall, and F-score of the CDEs recommended by the
proposed approach were measured with respect to manually identified CDEs.

Results—Average precision and recall of the recommended CDEs for the two diseases were
0.823 and 0.797, respectively, leading to an average F-score of 0.810. In addition, the machine-
powered CDEs covered 80% of the cardiovascular CDEs published by The American Heart
Association and assigned by human experts.

Conclusion—It is feasible and effort saving to use a human-computer collaborative approach to
augment domain experts for identifying disease-specific CDEs from free-text clinical trial
eligibility criteria.

Keywords
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Knowledge Management; Human-Computer Collaboration; Text Mining

1 Introduction
Patient recruitment is essential to successful clinical and translational research [1]. For this
reason, researchers in the biomedical informatics community developed electronic screening
methods that could increase the efficiency of patient recruitment [2, 3]. These methods
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match patients (i.e., prospective research volunteers) to the eligibility criteria for clinical
trials (e.g., see the following systems: caMatch [4], Trialx [5], ResearchMatch [6]). In
common nomenclature, eligibility criteria describe the demographic and medical
characteristics that a research volunteer must possess to participate in a clinical trial, such as
“body mass index <= 45 kg/m2” or “patients with insulin therapy for more than 1 week
within the 3 months prior to screening”. However, due to complexities in eligibility criteria
[7], this process often returns a set of clinical trials too numerous for patients to identify
those for which they are eligible. For example, at the time of writing, 1,091 hypertension
and 1,021 diabetes trials are actively looking for research volunteers. Merely knowing that a
person has hypertension or diabetes is insufficient to include that patient in, or exclude that
patient from a trial. In addition, the trial descriptions are generally provided in the form of
unstructured free text. For example, ClinicalTrials.gov [8] defines only a small number of
fields (e.g., “sponsor”, “study type”, “protocol location”) for registering trials using semi-
structured summaries; the “Eligibility Criteria” section also remains largely unstructured1.
Most of the existing clinical trial search engines often ask questions that are simple and
limited in number (e.g., “medical conditions”, “age”, “geographic area”), a limitation that
greatly reduces their specificity and thus their ability to retrieve a short list of trials that are
manageable to review. Therefore, fine-grained indexing methods for clinical trial eligibility
criteria are required in order to enable accurate and specific clinical trial searches [1, 9, 10].

Clinical trials studying a particular disease often employ common variables to determine
patient eligibility. For example, most diabetes trials define inclusion criteria around “blood
glucose level” or “hemoglobin A1c” (i.e., HbA1c), while hypertension trials typically only
specify a range of values for the blood pressure. We will refer to this kind of variable as a
Common Data Element (CDE). The benefits of using CDEs for clinical trial eligibility
criteria in trial search are well recognized. In fact, CDEs allow users to improve the
specificity of search results and minimize their need for human review. For example, in
Niland’s presentation at the 2007 AMIA Annual Fall Symposium [11], a user retrieved 28
studies using the criterion “having breast cancer” alone. When breast cancer eligibility
criteria CDEs were added to the query, such as “estrogen receptor status”, “progesterone
receptor status”, and “cancer stage”, and a user was allowed to specify the threshold value
for these variables, the number of trials retrieved decreased to seven. Other potential benefits
of CDEs include their support for knowledge reuse and sharing of clinical trial eligibility
criteria among investigators [12], as well as simplification of trial meta-analysis [13, 14].

CDEs for research data collection have been developed in various disease domains [15-19].
Niland et al., in collaboration with CDISC, have been using an expert-driven approach to
define fine-grained eligibility criteria CDEs, which enable highly specific searches of cancer
trials [11]. However, such manual approaches for CDE identification generally require time-
consuming discussions among experts and work for only one disease at a time [16, 19, 20].
At the time of writing, there are 116,728 trials for more than 5,000 diseases on
ClinicalTrials.gov, making it impossible to manually review all the studies to identify their
eligibility criteria CDEs. Therefore, the human-expert driven approach is not scalable to the
large amounts of data available on this huge repository.

As a consequence, scalable approaches for eligibility criteria CDE identification are greatly
needed, even if it is impossible to fully automate the task with the current technology. On
the other hand, according to Friedman [21], informatics tools should augment human
reasoning rather than replacing domain experts. With this design principle in mind, this
article presents a semi-automated framework based on text mining that favors human-
computer collaboration and assists users in the identification and refinement of eligibility

1http://prsinfo.clinicaltrials.gov/definitions.html
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criteria CDEs. To the best of our knowledge, this is the first study exploiting text mining in
the task of CDE discovery from free-text clinical trial eligibility criteria. In biomedical
research, text mining has been already used to support knowledge representation and
ontology generation [22]; nevertheless, current studies in these fields (e.g., the “Ontology
for Biomedical Investigations (OBI) [23]”, the “Ontology for Clinical Research (OCRe)”
[24]) still mostly rely on manual effort for knowledge acquisition. Conversely, the proposed
machine-powered solution exploits text-based knowledge acquisition and hence could
potentially improve the efficiency of these projects (e.g., CDE recommendation for expert
driven ontology development).

In the following, Sections 2 and 3 present the structure of the proposed approach and the
experimental results, respectively. The benefits introduced by our method for eligibility
criteria CDE identification and current limitations are discussed in Section 4. Lastly, Section
5 proposes future directions for the work.

2 A Semi-Automatic Approach to Derive Eligibility Criteria CDEs
Figure 1 illustrates the proposed approach to derive the eligibility criteria CDEs of any
specific disease from unstructured text, which specifically refers to the free-text eligibility
criteria available on ClinicalTrials.gov. As can be seen, eligibility criteria are first processed
to recognize the Unified Medical Language Systems (UMLS) entities, which are then
analyzed by an association-rule learning algorithm; the latter mines the CDEs, e.g.,
“HbA1C” associated with “diabetes” trials. These concepts are later filtered according to
preferred UMLS semantic types, grouped by string similarity, and then manually reviewed
as CDE candidates. Currently, the approach only identifies CDEs composed by single
UMLS terms.

This study focuses on two diseases only, yet the approach is general enough to be used for
any disease. In particular, we used a random sample of 1,559 breast cancer trials, with a total
of 43,084 eligibility criteria, and 2,238 cardiovascular disease trials, with a total of 36,716
criteria2. We chose these diseases because there is a large amount of data available online at
Clinicaltrials.gov as well as for the possibility of performing additional comparisons with
manually annotated data (see Section 3.3 for more details).

The following sections present the components of the framework in all the most relevant
details.

2.1 Semantic Annotation
The semantic annotation component tags each free-text eligibility criterion as a set of
UMLS-recognizable terms. When multiple UMLS terms can be matched, the one that works
best in the context of clinical trials is selected as the preferred match in order to reduce the
semantic variety of the criterion itself and to favor its automatic processing. The annotator
was previously described in [25] and, besides tagging the terms using an UMLS-based
dictionary, it also applies a set of semantic preference rules to eliminate the inherent
ambiguity in standard UMLS semantic type assignment. As an example, the UMLS term
“MRI Scan” was assigned only to the semantic type “Diagnostic Procedure” (CUI-
C0024485), which is more commonly used in clinical trials, discarding other available
options, such as “Quantitative Concept” (CUI-C0917711). The results reported in [25]

2The data were obtained from Clinicaltrials.org in January 2012 using the “condition” field to filter the studies targeting these two
diseases. Among all the trials, we generally retained only those containing a relevant number of eligibility criteria (e.g., we discarded
the trials with zero or one criterion). In addition, preliminary results not reported here for brevity showed that the machine-powered
approach needs between 1,000 and 3,000 trials to mine relevant CDEs. For this reason, we set the size of each disease corpus by
sampling a number of trials falling within this interval.
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shows how this approach achieves results that are at least as good as those of other solutions,
such as MetaMap [26], in the context of clinical trial eligibility criteria.

2.2 Mining the CDEs
The set of UMLS terms from the sample eligibility criteria were processed by an association
rule-learning algorithm to discover the CDEs associated with each specific disease. An
association rule between a head X and a body Y is defined as an implication of the form
X⇒Y. In our domain, X is the set of terms, i.e., X = {x1, x2, ..., xn}, that represents the
patient characteristics in disease Y trials. For example, if X = {insulin, dose} and Y =
{diabetes}, then “insulin” and “dosage of insulin” are defined as CDEs for the diabetes
trials. In this domain, the support of X, i.e., S(X), is defined as the number of clinical trials
containing the set X (i.e., the probability that X is present in the trials of Y). Therefore, the
support is calculated by dividing the frequency of X in disease Y trials, by the total number
of such trials.

In order to derive common association rules in the proposed approach, we used the Apriori
algorithm [27], which has been already successfully employed to extract patterns within
clinical variables [28-31]. The algorithm is based on a bottom-up approach where frequent
patterns are extended one item at a time and groups of candidates are tested against the data.
The algorithm terminates when no further successful extensions are found. Implementation
is based on breadth-first search and hash tree structure to count candidate patterns
efficiently. The output is a set of rules (CDEs in this domain) that reports how often CDEs
are present.

The classic version of the Apriori algorithm reduces the rule search space by exploiting the
downward closure property of the support [27]. In eligibility criteria, this means that if a set
of patient variables is infrequent at a specific step, then any superset built upon this set is
also considered infrequent. The frequency of a set is related to the support previously
defined. In our implementation, we tuned the minimum support, expressed as a probability,
equal to 0.001, which implies that in the experimental sample mentioned above, a set of
variables would be kept for further consideration only if the frequency was no less than three
(i.e., any set occurring in less than three trials was ignored in subsequent iterations). This
setup allowed us to increase the number and the diversity of the CDEs while reducing the
number of false negatives (i.e., to reduce the number of true CDEs not correctly recognized).
In addition, we saw empirically that a low threshold value fits the distribution of eligibility
criteria, which is generally a long tail (i.e., a small number of CDEs is typically frequent,
whereas others are much less so).

2.3 Filtering the CDEs
With the current setting, the Apriori algorithm returned a large number of association rules.
The latter were then further filtered and grouped according to semantic similarity. In
particular, we perform two post-processing steps: semantic filtering (see Section 2.3.1) and
similarity-based grouping (see Section 2.3.2). One could argue that filtering and grouping
could be performed using the concept of “confidence”, which is a natural measure of the
importance of an association rule [32, 33]. In particular, the confidence score measures the
probability of finding the rule head (i.e., X) of the association among all the item sets of the
data (i.e., the set of eligibility criteria) containing the rule body (i.e., Y)3. However, the
confidence can be affected by the size of the analyzed data, especially in presence of very
unbalanced sets, i.e., those with a few rule heads that are frequent and many others that are

3The confidence C of an association rule X⇒Y is computed using the concept of support introduced in Section 2.2; in particular, C =
S(XUY) / S(X).
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rare. Moreover, it does not take into account the role of the terms in the body rules;
therefore, a confidence-based filter could include highly frequent terms that are not relevant
CDEs (e.g., “severe”, “uncontrolled”, “clinically”). For these reasons, we decided to
perform the data filtering without considering the confidence score of the association rules,
but following the steps described in the next sections.

2.3.1 Semantic Filtering—Semantic filtering is a common technique to improve
information relevance [34]. To this end, we used as our information filter a preference list of
semantic types that are common in eligibility criteria. In particular, previous studies [35, 36]
defined 27 semantic classes for clinical trial eligibility criteria at the sentence level, e.g.,
“Disease or Symptom”, “Therapy or Surgery”, “Diagnostic or Lab Results”, each containing
a set of frequent UMLS semantic types. Overall we manually selected 48 semantic classes to
be used as groups and filters for CDEs (see Appendix 1). For example, the semantic class
“Diagnostic or Lab Results” grouped the UMLS semantic types “Laboratory Procedure” and
“Laboratory or Test Results”. Therefore, the UMLS terms associated with these semantic
types were designated as CDEs under the same semantic class.

2.3.2 Grouping Similar CDEs using Dice Coefficient—The list of raw CDEs
returned by the Apriori algorithm was randomly ranked. As a result, similar CDEs, e.g.,
“urine pregnancy test”, “pregnancy test”, were often not adjacent, complicating the manual
review process. Therefore, in order to return a list of CDEs ranked by some criterion of
correlation, we applied the Dice Coefficient (DC) to measure the similarity between pairs of
strings and created a list of CDEs ranked according to this measure.

The Dice coefficient of two strings i and j represented as bigrams is defined as

where Nij is the number of bigrams in common between the two strings, and Ni and Nj are
the number of bigrams for strings i and j, respectively [37].

The large number of terms extracted from the eligibility criteria made it computationally
impracticable to calculate all the pair-wise similarity values. For this reason we used an
iterative greedy search strategy [38], which starts by assigning the highest ranking to the
term with the largest support, i.e., the “seed” term. At each iteration, the algorithm looks for
the next term having the largest DC-based similarity with the current seed, adds this term to
the ranking list, and makes it the new seed. The process repeats until all terms are sorted.

The result of grouping can be seen in Table 1. First, before grouping, CDEs are only tagged
using the UMLS semantic types and returned in a random order (left part). Afterwards,
CDEs are grouped not only by semantic type, but also by disease topic (right part, where
groups are highlighted using marking symbols (i.e., *, +, ^, ~). The grouping assists manual
review of the CDEs by presenting to the user semantically related concepts. In fact, in this
case a user can easily see that the CDEs fall into four distinct groups: hepatic disease, heart
disease, breast cancer, and function impairment.

3 Experimental Results
This section presents the results achieved by applying the proposed approach to derive
CDEs for the two diseases considered, breast cancer and cardiovascular diseases.
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3.1 Examples of Machine-powered Eligibility Criteria CDEs
First, we report a sample of the CDEs mined by the proposed semi-automatic approach. In
particular, Table 2 shows the top five CDEs retrieved with respect to the four most frequent
semantic classes for both diseases: “Disease, Symptom and Sign”, “Diagnostic or
Laboratory Results”, “Pharmaceutical Substance or Drug”, and “Therapy or Surgery”. As
can be seen, in most cases, our method led to pertinent CDEs. In fact, considering the breast
cancer domain as an example, common variables mined by the algorithm are
“chemotherapy”, “radiotherapy”, and “hormonal therapy”, which are well-known cancer
therapies, as well as “IHC” (i.e., ImmunoHistoChemistry) [39] and “Platelet Count” (an
indicator of the side effect of breast cancer treatments), which are frequent measures
reported in related laboratory results.

3.2 Retrieval Results
We evaluated the correctness of the CDEs recommended by the proposed approach by
comparing them with CDEs independently identified by the authors. Our manual
identification process contained two steps: (1) list all the terms and their frequencies; and (2)
manually review all these terms and retain only those that (a) occur at least three times (as
the minimum support threshold defined in Section 2.2); (b) specify one patient
characteristic. We used the standard information retrieval metrics precision, recall, and F-
score [40]. Precision is the probability that the approach correctly retrieves a CDE. Recall is
the probability that the approach retrieves a CDE that should have been retrieved. F-score is
the harmonic mean of precision and recall and is a single measure of the overall retrieval
performance. The results, reported in Table 3, demonstrate that the proposed approach has a
high recall value, correctly identifying 80% of all the CDEs retrieved by manual review. The
average precision across both diseases was 0.823, indicating that this method has a false
positive rate of less than 20%. Finally, the resulting average F-score was 0.810. All the
CDEs identified by the machine-powered approach and by the experts are reported in
Appendix 2 and 3 for cardiovascular diseases and breast cancer, respectively.

3.3 Comparison with Expert-Defined CDEs
The American College of Cardiology Foundation (ACCF) and the American Heart
Association (AHA) recently published 95 key cardiovascular disease CDEs defined by
human experts [16]. For comparison, we evaluated how the cardiovascular CDEs mined by
our approach were represented with respect to this standard. As Table 4 shows, the mined
CDEs covered about 80% of the CDEs defined by the ACCF/AHA standard. The latter
classifies all the data elements into five categories: we achieved the best coverage in the
category “History and Physical Examinations” (e.g., “chest pain”, “angina grade”) with
89.2% and in “Pharmacologic Therapies” (e.g., “Aspirin and steroid”) with 85.7%. The
coverage in the other categories was lower: in particular, we achieved the “Laboratory
Results”, the “Diagnostic and Therapeutic Procedures”, and the “Outcomes” covered at
about 73%, 67%, and 50%, respectively. It should be noted that the “Outcomes” comprised
only two elements: “Death” and “Date of Death”. Our system correctly identified the
former.

The proposed approach also identified some CDEs that were not formally defined by the
ACCF/AHA standard. For example, Table 5 shows all the medication CDEs that the
machine-powered approach found with a frequency greater than 10 that were not defined in
the ACCF/AHA standard; many of these are common treatments for cardiovascular
diseases. Therefore, the machine-powered approach might have the potential to augment
human-based CDEs with additional knowledge. Lastly, Appendix 4 lists the comparison
between the machine-recommended CDEs and the CDEs published by AHA.
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4 Discussion
This section provides an analysis on the strengths (Section 4.1) and limitations (Section 4.2)
of the proposed approach.

4.1 Advantages over Related Approaches to CDE Development
The human expert-based CDE development process consists of six steps: (1) reviewing data
sources and existing standards; (2) generating CDE candidates; (3) prioritizing CDEs; (4)
defining attributes and valid values for each CDE; (5) convening group discussions to
achieve consensus definitions; and (6) eliciting peer reviews and applying for board
approvals. Each step requires significant time from multidisciplinary domain experts, from
several weeks to several months [15, 16, 18, 20]. The machine-powered approach can
reduce the time required for domain experts on steps 1, 2, 3, and 5.

First, the existing manual CDE selection method heavily relies on domain experts in
identifying CDE candidates. For example, in the ACCF/AHA standard, an informatics
committee identified a preliminary set of candidate CDEs through face-to-face and
conference call meetings, as well as email correspondence. This is a labor-intensive process
and, in fact, the experts spent more than 6 months merely refining and vetting a list of
candidate CDEs. Because our method recommends CDEs through text mining, it
significantly reduces the need to manually review large amount of text.

Moreover, human-based approaches lack an objective evaluation regarding the
representativeness of the CDEs within the data. For example, in order to prioritize CDEs of
Atrial Fibrillation [41], the ACC/AHA committee spent several months on manually
reviewing literature and trials data source. They classified CDEs by frequency into only
three very broad categories: “high”, “medium”, and “low”. Conversely, the machine-
powered approach provides a statistical evaluation about the role of CDEs among the
various trials, which can be used in many ways. For example, the frequency information
may inform trial eligibility criteria authors about the uses of CDEs in the past and their
prevalence in a particular disease. It also may help researchers to develop fine-grained
standards for prioritizing CDEs and reducing the manual effort needed to rank them.

Manually reviewing the CDEs also requires searching medical terminologies and existing
data standards. In our approach, the CDE candidates are automatically annotated with
UMLS concept ID and semantic types, and the term list is sorted to allow the user fast
browsing and generalization. As a result, domain experts can start directly from the
proposed CDE candidates to select and formally define CDE attributes. Therefore, the
machine-powered approach has the potential to reduce the time required for clinical experts
to reach a consensus.

Finally, due to the limitations of expertise specialization and time constraints, it is difficult
to develop CDE candidates across a large number of different diseases. This is the main
reason that existing CDE development efforts focus on one disease at a time. This is a
significant barrier to achieving one of the major goals of CDE development, the support of
large-scale data aggregation for research and discovery. In contrast, the machine-powered
approach attempts to surmount this by making use of an unsupervised machine learning
algorithm and, consequently, of a general solution. In fact, in order to work with other
diseases, the approach requires only the disease name (or code) and source of information to
automatically retrieve the corresponding clinical trials, parse the eligibility criteria section,
and return the CDEs.
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4.2 Limitations
At this point, there are two major limitations about this approach. First, some false positives
were due to verbs (e.g., “schedule”, “repair”). However, they do not describe patient
characteristics and should not be classified as CDEs. We hypothesize that the use of part-of-
speech analysis [42] may be able to filter this type of false positive.

Second, multi-term CDEs such as “[patient’s] age at diagnosis” and “[patient’s] age at
death” contain multiple UMLS terms. At this point, our system is able to identify “age” as
an eligibility criterion CDE but cannot capture CDEs including multiple UMLS terms and,
therefore, cannot distinguish “age of diagnosis” and “age of death”. In this case, we still rely
on domain experts to group UMLS terms to form more meaningful CDEs. However, this
aspect of design is impractical, and therefore temporary, because it reduces the scalability of
the approach, especially with respect to the number of diseases that can be processed.

5 Conclusion
This paper contributes a scalable human-computer collaborative approach to CDE
identification, which combines the use of an unsupervised machine learning algorithm (i.e.,
association rule-learning) with UMLS to process the free-text eligibility criteria associated
with the clinical trials of a specific disease. The accuracy achieved in this initial study using
two diseases, i.e., breast cancer and cardiovascular diseases, and ClinicalTrials.gov as data
source is satisfactory and promising. The approach is only semi-automated, so that domain
experts are still required for reviewing, filtering, and enriching the recommended CDEs. On
the other hand, the machine-recommended CDEs reduce the workload of the experts, who
no longer have to manually parse a large number of clinical research documents.

Future studies can focus on the following aspects. First, the semantic annotator plays a key
role in CDE identification and requires improvements to accommodate the continual data
updates on ClinicalTrials.gov. Second, the approach should be extended to identify multi-
term CDEs to improve the overall machine performance. Third, organizing and formatting
the CDEs (e.g., structuring them into ontologies) would enable interoperability. Last, this
initial study focused only on CDE identification, not on CDE definition. The latter involves
CDE attribute specification and feature discovery and is an important and advanced research
topic on its own for semi-automated CDE discovery.
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• A human-computer collaboration method is proposed to augment domain
experts in CDE identification

• Machine-assisted CDE identification achieves acceptable accuracy

• We demonstrated the feasibility of using this method to identify about 86% of
CDEs published by The American Heart Association

• UMLS plays an important role in filtering out terms with irrelevant semantic
types
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Figure 1.
A human-computer collaborative framework for identifying eligibility criteria CDEs (round-
cornered boxes indicate procedures, while rectangle boxes indicate external resources or
algorithms; solid arrows show workflow, and dotted arrows indicate information flow).
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Table 1
Eligibility criteria CDEs as presented to the user by the Apriori algorithm (left) and after
Dice Coefficient-based (DC) grouping (right). In the tables: DSNY =
“Disease_or_Syndrome”; NEOP = “Neoplastic_Process”; (*, +, A, ~) mark groups of
semantically related data

Type Apriori Algorithm List

DSNY coronary heart disease (+)

DSNY hepatic disease (*)

NEOP invasive carcinoma of the breast (~)

DSNY hepatitis c (*)

NEOP breast adenocarcinoma (~)

DSNY hearing impairment (^)

DSNY heart disease (+)

DSNY cognitive impairment (^)

DSNY hepatic cirrhosis (*)

NEOP breast carcinoma (~)

DSNY hepatitis b (*)

DSNY heart attack (+)

DSNY coronary artery disease (+)

DSNY visual impairment (^)

NEOP recurrent breast cancer (~)

NEOP invasive breast cancer (~)

NEOP stage iv breast cancer (~)

DSNY renal impairment (^)

Type DC-based Grouped List

DSNY hepatitis b (*)

DSNY hepatitis c (*)

DSNY hepatic cirrhosis (*)

DSNY hepatic disease (*)

DSNY heart disease (+)

DSNY coronary heart disease (+)

DSNY coronary artery disease (+)

DSNY heart attack (+)

DSNY renal impairment (^)

DSNY visual impairment (^)

DSNY hearing impairment (^)

DSNY cognitive impairment (^)

NEOP breast adenocarcinoma (~)

NEOP breast carcinoma (~)

NEOP invasive carcinoma of the breast (~)
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Type DC-based Grouped List

NEOP invasive breast cancer (~)

NEOP stage iv breast cancer (~)

NEOP recurrent breast cancer (~)
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Table 2
The top five CDEs in the four most frequent semantic classes for breast cancer and
cardiovascular diseases

Target Disease UMLS Concept ID Top 5 CDEs Frequency

Therapy or Surgery

Breast Cancer
Trials

C0392920 chemotherapy 323

C0034619 radiotherapy 98

C0279025 hormonal_therapy 80

C0034619 radiation_therapy 55

C0175795 oral_medication 54

Cardiovascular
Disease Trials

C1532338 pci (percutaneous coronary intervention) 747

C0581603 revascularization 350

C0010055 cabg (coronary artery bypass surgery) 330

C0011946 dialysis 234

C0162589 icd (implantable cardioverter defibrillator) 224

Diagnostic or Lab Results

Breast Cancer
Trials

C0021044 ihc (immune_histo_chemistry) 1194

C0032181 platelet_count 776

C0373595 creatinine_clearance 739

C0428772 lvef (left ventricular ejection fraction) 604

C0201976 serum_creatinine 441

Cardiovascular
Disease Trials

C0428772 lvef (left_ventricular_ejection_fraction) 811

C0201976 serum_creatinine 585

C0032181 platelet_count 166

C0027051 stemi (myocardial_infarction) 143

C0302353 serum_potassium 104

Medication

Breast Cancer
Trials

C0002059 alkaline_phosphatase 696

C0728747 trastuzumab 208

C0039286 tamoxifen 85

C0215136 taxane 61

C0014939 estrogen 49

Cardiovascular
Disease Trials

C0360714 statin 240

C0003195 antiarrhythmic 110

C0004057 aspirin 102

C0070166 clopidogrel 100

C0144576 paclitaxel 100

Disease, Symptom and Sign

Breast Cancer
Trials

C0006142 breast_cancer 1873

C2939420 metastatic_disease 681
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Target Disease UMLS Concept ID Top 5 CDEs Frequency

C0278488 metastatic_breast_cancer 316

C0494165 liver_metastases 205

C0858252 adenocarcinoma_of_the_breast 108

Cardiovascular
Disease Trials

C0027051 myocardial_infarction 1706

C0020538 hypertension 1552

C0018801 heart_failure 1061

C0002962 angina 897

C0022116 ischemia 799
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Table 5
List of medication CDEs that are not listed in the ACCF/AHA standard but are correctly
found by the machine-powered approach. In the table, CUI = “Concept Unique
Identifier”

UMLS CUI Medication CDEs Frequency

C0070166 clopidogrel 100

C0144576 paclitaxel 100

C0019134 heparin 79

C0003195 antiarrhythmic drug 74

C0040207 ticlopidine 70

C0043031 warfarin 52

C0699493 luminal 43

C0521942 angiotensin ii receptor antagonist 37

C0600437 nitric oxide donors 37

C0002598 amiodarone 19

C0012963 dobutamine 19

C0001443 adenosine 19

C0017887 nitroglycerin 16

C0541315 everolimus 16

C0003364 antihypertensive 13

C0003280 anticoagulant 12

C0017725 glucose 12

C0012265 digoxin 11

C0001617 corticosteroids 10

C0001480 atp 10
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