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Abstract
Druglikeness is a key consideration when selecting compounds during the early stages of drug
discovery. However, evaluation of druglikeness in absolute terms does not adequately reflect the
whole spectrum of compound quality. More worryingly, widely used rules may inadvertently
foster undesirable molecular property inflation as they permit the encroachment of rule-compliant
compounds toward their boundaries. We propose a measure of druglikeness based on the concept
of desirability called Quantitative Estimate of Druglikeness (QED). The empirical rationale of
QED reflects the underlying distribution of molecular properties. QED is intuitive, transparent,
straightforward to implement in many practical settings and allows compounds to be ranked by
their relative merit. We extend the utility of QED by applying it to the problem of molecular target
druggability assessment by prioritizing a large set of published bioactive compounds. The measure
may also capture the abstract notion of aesthetics in medicinal chemistry.

The concept of druglikeness provides useful guidelines for early stage drug discovery 1, 2.
Analysis of the observed distribution of some key physicochemical properties of approved
drugs, including molecular weight, hydrophobicity and polarity, reveals they preferentially
occupy a relatively narrow range of possible values3. Compounds that fall within this range
are described as “druglike.” Note that this definition holds in the absence of any obvious
structural similarity to an approved drug. It has been shown that preferential selection of
druglike compounds increases the likelihood of surviving the well-documented high rates of
attrition in drug discovery4.

Druglikeness can be rationalized by consideration of how simple physicochemical properties
impact molecular behavior in vivo, with particular respect to solubility, permeability,
metabolic stability and transporter effects. Indeed druglikeness is often used as a proxy for
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oral bioavailability. However, druglikeness provides a broad composite descriptor that
implicitly captures several criteria, with bioavailability amongst the most prominent.

In practical terms, assessment of druglikeness is most commonly manifested as rules, the
original and most well known of which is Lipinski’s Rule of Five (Ro5)5. The rule states
that a compound is more likely to exhibit poor absorption or permeation when two or more
of the following physicochemical criteria are fulfilled: the molecular weight (MW) is greater
than 500Da; the calculated logP (ClogP) is greater than 5; there are more than 5 hydrogen-
bond donors or the number of hydrogen-bond acceptors (nitrogen and oxygen atoms) is
greater than 10. The rule does not apply to substrates of biological transporters or natural
products. Aside from its predictive power, the widespread adoption of the Ro5 as a guideline
for compound evaluation can also be attributed to the fact that it is conceptually simple and
straightforward to implement.

Lipinski’s insight - that the great majority of orally absorbed drugs occupy a privileged area
of molecular property space5, 6 - has resulted in greater awareness of the importance of
molecular properties in determining oral bioavailability. The rule has inspired numerous
refinements and investigations into the concept of druglikeness: a comprehensive review of
the area is provided by Ursu et al. 2. The rule of five is not without its critics7, yet in detail
the issues tend to be with its qualitative nature, or the focus on oral drug space, as opposed
to druglike thinking per se.

Paradoxically, since the publication of Lipinski’s seminal paper5 there appears to be a
growing epidemic, of what Hann has termed “molecular obesity” 8 amongst new
pharmacological compounds (Supplementary Figure 1). Compounds with higher molecular
weight and lipophilicity have a higher probability of attrition at each stage of clinical
development 4, 9-11. Thus, the inflation of physico-chemical properties that increases the
risks associated with clinical development may partly explain the decline in productivity of
small molecule drug discovery over the past two decades4. However, the mean molecular
properties of new pharmacological compounds are still considered Lipinski compliant,
despite the fact their property distributions are far from historical norms.

Whilst the Ro5 is predictive of oral bioavailability, 16% of oral drugs violate at least one of
the criteria and 6% fail two or more (although this does include natural products and
substrates of transporters) (Supplementary Figure 2a and Supplementary Table 1). Notably,
high profile drugs such as atorvastatin (Lipitor) and montelukast (Singulair), fail more than
one of the Lipinski rules (Supplementary Figure 2b). Despite Lipinski’s recommendation
that the rule be considered as a guideline in reality it is routinely used to filter libraries of
compounds. The implementation of rules as filters means that no discrimination is achieved
beyond a qualitative pass or fail – all compounds that comply with the rules are considered
equal, as are all that breach.

The response to such issues is not to define more refined rules. Instead, methods to quantify
druglikeness are required 12-14. However, scoring schemes proposed to date, often derived
by machine learning methods, have lacked the intuitiveness, transparency and ease of
implementation of the Ro5. To quantify compound quality we apply the concept of
desirability15 to provide a quantitative metric for assessing druglikeness that we call QED
(Quantitative Estimate of Druglikeness). QED values can range between zero (all properties
unfavourable) and one (all properties favourable). The desirability approach can be used to
generate functions to describe any set of compounds depending on requirements. Here we
will demonstrate the utility of the approach by describing desirability functions derived from
a set of orally absorbed approved drugs.
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Desirability provides a simple yet powerful approach to multi-criteria optimization. It is
finding increasing utility in a number of applications in drug discovery including compound
selection 16, library design 17, 18, molecular target prioritisation, central nervous system
penetration 19 and estimating the reliability of screening data 20.The concept was originally
introduced by Harrington15 in the area of process engineering and further refined by
Derringer21. Desirability takes multiple numeric or categoric parameters measured on
different scales and describes each by an individual desirability function. These are then
integrated into a single dimensionless score. In the case of compounds, a series of
desirability functions (d) are derived, each corresponding to a different molecular descriptor.
Combining the individual desirability functions into the QED is achieved by taking the
geometric mean of the individual functions, as shown in Equation 1.

Equation (1)

Conventionally, desirability functions are defined arbitrarily, usually as monotonic
decreasing or increasing functions, or “hump” functions at defined parameter ranges and
inflection points. Importantly, whereas previous approaches have used functions defined by
user experiences and expectations16, 19, our approach differs fundamentally in that the
functions are derived empirically by describing the underlying property distributions of a set
of approved drugs, much as the boundaries defined by Lipinski were. The data used
comprises a carefully curated collection of 771 orally dosed approved drugs. Eight widely-
used molecular properties were selected on the basis of published precedence for their
relevance in determining druglikeness3, 5, 22, 23: molecular weight (MW), octanol-water
partition coefficient (ALOGP)24, number of hydrogen bond donors (HBD), number of
hydrogen bond acceptors (HBA), molecular polar surface area (PSA), number of rotatable
bonds (ROTB), the number of aromatic rings (AROM)25, 26 and number of structural alerts
(ALERTS)27. The molecular properties were chosen on the basis that they have all been
shown to influence the likelihood of attrition and can all be calculated robustly at high-
throughput. Histograms showing the distribution of the eight molecular properties across the
set of oral drugs are shown in Figure 1. We found that the property distribution data are
consistently best modelled as asymmetric double sigmoidal (ADS) functions, which are also
shown in Figure 1 over the same range. The general ADS function is shown in Equation 2
where d(x) is the desirability function for molecular descriptor x.

Equation (2)

The parameters (a, b, c, d, e and f) for each of the ADS functions dMW, dALOGP, dHBD,
dHBA, dPSA, dROTB, dAROM and dALERTS are shown in Supplementary Table 2, as are the R2

values and the rank amongst a library of non-linear functions.

Weighted desirability functions
The chosen molecular descriptors may vary in the importance of their contribution to
druglikeness, so each can be weighted by their relative significance. The unweighted QED
shown in Equation 1 would then be replaced with a weighted QED (QEDw), shown in
Equation 3,
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Equation (3)

where d is the individual desirability function, w is the weight applied to each function and n
is the number of descriptors. Rather than assigning weights subjectively, we rationalized that
the optimal set of weights is that which maximises information content, which can be
measured by calculating the Shannon entropy28, 29 (Supplementary Figures 3a and 3b). An
exhaustive search of possible weight combinations was performed for the set of approved
drugs (see Methods). Three resulting sets of weights were considered (Table 1): i) the set of
weights that gave the maximal information content (QEDw

max), ii) the mean weights of the
1,000 weight combinations giving the highest information content (QEDw

mo) and iii) all
weights as unity i.e. unweighted (QEDw

u). Interestingly, the QEDw
max series gave zero

weight to the PSA and HBA parameters suggesting the information in these parameters is
redundant. To help explain the relative weights we performed a Principal Component
Analysis of the unweighted desirability functions (Supplementary Figure 3c). The results
were consistent with the entropy analysis in that the least correlated descriptors were
weighted most highly. The pair-wise cross correlations between each of the properties is
shown in Supplementary Figure 3d and listed in Supplementary Table 4. The complete
weighted QED is given in Equation 4.

Equation

(4)

The property descriptors that are considered, the weights given to those descriptors and the
set of data that the functions are derived from, can all be varied according to requirements.
In this study we have considered approved drugs that are dosed orally, but given appropriate
data sets, desirability functions could be derived with relative ease to describe the relevant
chemical space for parenteral administration, blood-brain barrier penetration30 or taxonomic
species with different permeability barriers.

Benchmarking
A benchmark study was designed to determine the relative performance of QED, the
druglike classifiers defined by Lipinski5, Veber23 and Ghose22 and the quantitative score of
Gleeson et al.31 in distinguishing a set of drugs from a background set of compounds. The
issue of assessing whether a compound is objectively druglike or otherwise is non-trivial
and, as we have already argued, such a binary classification is somewhat misleading. With
this consideration in mind, for the purposes assessing the relative performance of rule-based
classifiers and QED we attempted to benchmark their performance qualitatively. The
Drugbank database 32 was used as the positive set whilst the small molecule ligands of the
Protein Data Bank (PDB) were used as the negative set.

The results of the benchmark study are shown in Figure 2a and Supplementary Figure 4 in
the form of a Receiver-Operator Characteristic (ROC) plot. QED outperforms the Ro5 and
Ghose rules and performs marginally better than the Veber rule at a QED of 0.35 (the
threshold at which Veber closely approaches that of QED). However, unlike rule-based
approaches this threshold could be modulated to give different levels of sensitivity and
specificity according to requirements. The Ghose rule is less sensitive but more specific than
the Veber and Lipinski rules. Interestingly this benchmark suggests that the Veber rule
outperforms the Ro5. QEDw

mo and QEDw
u outperform the quantitative measure of Gleeson

regardless of threshold. QEDw
max outperforms Gleeson above 0.37, below which it

performs comparably. Performance of QEDw
max, QEDw

mo and unweighted QEDw
u is
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generally comparable, suggesting that the optimally weighted index (QEDw
max) can provide

similar discrimination despite using fewer molecular descriptors. The best performing
measure alternates between QEDw

mo and the unweighted QEDw
u depending on the range

being considered, with QEDw
max performing marginally worse. Given the somewhat

artificial nature of the benchmark, in practical terms QEDw
mo and QEDw

u could be used
interchangeably; only 18 (2.3%) of the DrugStore oral drugs have ΔQED (between
QEDw

mo and QEDw
u ) of >0.15 and 100 drugs (13.0%) have ΔQED >0.10 (Supplementary

Figures 5a and 5b). Therefore, QEDw
mo is used in all further analyses described here.

Direct comparison of the Ro5 and QED is illustrated in Figures 2b and 2c for the set of 771
oral drugs. An advantage of QED is its ability to rank compounds whether they fail the Ro5
or not. Interestingly, oral drugs that fail the Ro5 show QED values over a very wide range
from nearly 0 to 0.8 (Figure 2c). Figure 2d shows the differences in the distribution of QED
scores for compounds in the ChEMBL database of small molecule bioactivities33, small
molecule ligands from the PDB and the set of oral drugs from DrugStore used to derive the
functions. Such comparative analyses provide the means of establishing the relative
druglikeness of any library of compounds.

Chemical aesthetics
As beauty is in the eye of the beholder, so chemical attractiveness is in the eye of the
chemist34, 3536. A study that compared the ability of chemists to assess druglikeness,
revealed that while chemists would agree on the ‘attractive’ or drug-like structures,
subjective human analysis is inconsistent in rejecting undesirable or ‘ugly’ compounds35. In
an attempt to use chemists collective experiences as a means to evaluate druglikeness
Takaoka et al. found the correlation coefficient between druglike scores assigned by
individual chemist to be 0.5 – 0.6 34. Lipinski has argued that pattern recognition is the forte
of the chemist37, 38. Wipke and Rogers have described the chemist’s knowledge of chemical
structures as Gestalt pattern recognition process39. Thus we suggest that QED is an objective
score that may correlate with the tacit knowledge of chemists’ subjective assessment of
druglikeness or chemical attractiveness. The advantage of a codified metric on which
chemical attractiveness can be judged is its application to ranking very large numbers of
compounds. To aid the interpretation, it may be useful to consider QED values in the context
of the observed distribution of a large reference set. To illustrate this, QED values
corresponding to key percentiles from the ChEMBL database are shown in Supplementary
Table 3 and a complete list is provided in the Supplementary Information.

Compared to the binary classification of the Ro5, QED exhibits a continuous scale from the
most druglike drugs (Figure 3a) to the least druglike (Figure 3b). Comparison of the most
druglike drugs that fail Ro5 (Figure 3c) and the least druglike drugs that pass the Ro5
(Figure 3d) illustrate the potential of QED to objectively rank compounds by the elusive
quality of chemical attractiveness.

To assess whether QED reflects chemists’ opinions of chemical attractiveness we compared
QED with the manually assigned annotations for 17,117 diverse compounds scored by a
survey of 79 chemists from across AstraZeneca’s chemistry community (see Supplementary
Information). Each chemist was asked to provide a yes or no answer to the question “would
you undertake chemistry on this compound if it were a hit?” for approximately 200
compounds each. Less than one third (31.8%) of the compounds were considered as
attractive chemical starting point for hit optimisation (5,457). Of 11,660 compounds that
were considered unattractive, 4,497 (38.6%) were considered to be “too complex” and 5,243
(45.0%) considered “too simple”, the remainder having no reason assigned. The mean QED
is 0.67 (S.D. = 0.16) for the attractive compounds, 0.49 (S.D. = 0.23) for the unattractive
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compounds and 0.34 (S.D. = 0.24) for the unattractive compounds considered “too
complex” (Figure 3e and 3f). The difference in QEDs between the attractive and unattractive
compounds is statistically significant. The estimated difference in the medians of the
attractive and unattractive compounds is 0.164 (Wilcoxon rank-sum test, 95% confidence
interval 0.157-0.171). The equivalent value for the difference between the attractive and the
“too complex” set is 0.349 (95% confidence interval 0.340-0.358).

The Chemical Beauty of Drug Targets
A logical extension of the concept of compound druglikeness is to apply it to the problem of
target druggability assessment. Hopkins and Groom 40 postulated that if there are physico-
chemical limitations to the properties of compounds that are likely to be oral drugs (as
Lipinski proposed 5, 6), then drug binding sites should have complementary properties. An
implication of this idea is that not all ligand binding sites have the appropriate physico-
chemical and topological properties to non-covalently bind small molecule drugs with
sufficient affinity. Binding sites that do have these characteristics are described as
druggable. Note that this definition is independent of any wider biological considerations. A
number of algorithms have been developed to determine the druggability of proteins based
on analysis of the structural and physico-chemical properties of an identified binding
site 41-44. A common feature of structure-based druggability analysis methods is the
classification of a binding site into the categories of druggable or undruggable based on
predefined training data.

Much as we have argued for the benefits of considering druglikeness in quantitative terms,
the druggability of a protein can also be considered as a continuum of chemical
tractability 45 rather than as a simple binary categorical assignment, thereby enabling the
prioritization of druggable binding sites. QED provides an efficient means to quantify and
rank the druggability of targets according to the chemical attractiveness of their associated
ligands. QEDs were calculated for each compound in the ChEMBL database33 of published
bioactivity (release ChEMBL09) having an affinity <10uM for a defined human protein
target. The resulting 167,045 compounds are associated with 1,729 human proteins.

Top ranking targets by three different schemes are shown in Table 2. The first scheme
involves ranking targets by the mean QED of their associated ligands (Table 2 and
Supplementary Table 5). The mean QED for all targets in the list is 0.478. For the targets of
approved drugs the mean QED is 0.492 and for the targets of approved oral drugs the mean
QED is 0.539 (with an average standard deviation for a target of 0.231). Drug targets are
indeed enriched towards the more highly desirable targets with 70% of the drug targets
being found in the top 50% of the prioritized target list.

Within a set of ligands for a target, it is useful to consider the QED of distinct chemical
series, as even targets that are perceived as being relatively intractable may have a small
proportion of associated chemical matter that is druglike and of potential interest. To
approximate distinct chemical series, all by all Tanimoto similarity matrices46 were
calculated for each of the 1,729 human protein targets in ChEMBL. Compound similarity is
represented as a network with chemical series being identified as distinct subgraphs within
the network using a Tanimoto similarity threshold of 0.7. We define a chemical series as a
cluster comprising at least 5 compounds and an active chemical series as one where the
proportion of actives is at least 0.7 (with an activity threshold of 10μM or Ligand Efficiency
of 0.3). The number of compounds, series and active series for all ChEMBL targets is listed
in the Supplementary Information. Chemical similarity networks for four targets are shown
in Figure 4. The chemical network representation in Figure 4 illustrates the presence of
highly desirable chemotypes even for some targets with low mean QED. The mean QED of
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the most druglike active series for each target provides the second ranking scheme, listed in
Table 2 and Supplementary Table 6. The mean QED of the best compound cluster of all
ChEMBL targets is 0.569 (where the cluster comprises at least 5 compounds). The mean
QED of the best cluster of human drug targets is 0.693. The mean QED when considering
only the best cluster of the targets of oral drugs is 0.766.

A third approach to ranking targets is to consider the degree of enrichment of druglike
series. Here, targets are ranked by the proportion of active series that have a mean QED
above that of the top 10% of the ChEMBL database (0.796) (Table 2 and Supplementary
Table 7).

Conclusion
QED provides the means to rank chemical structures by their merit relative to a target
function, which in this case are the properties of oral drugs. Furthermore, by extension of the
concept to the set of ligands associated with a drug target, QED provides an efficient means
to quantify and rank the druggability of targets. Lipinski’s Rule of Five has gained
considerable traction in early stage drug discovery largely because it is predictive, intuitive
and simple to implement. We believe QED compares favourably in each of these regards.
Compared to the rule-based approaches QED offers a richer, more nuanced view of
druglikeness. The QED functions are based on the underlying distribution data of drug
properties and unlike rule-based metrics can identify cases when a generally unfavourable
property can be tolerated where the other parameters are close to ideal. In so doing the
phenomenon of druglikeness is evolved from a binary ‘black and white’ assessment to a
more realistic and gradated description of the continuum of compound quality.

METHODS
Data set of known drugs

A non-redundant data set comprising 771 approved drugs was derived from the ChEMBL
DrugStore database47. The selected compounds were all (i) marketed drugs, (ii) classified as
small molecular weight therapeutics (i.e. no nutritional supplements, diagnostic agents or
biologics), (iii) of specified molecular structure, (iv) composed of at least six atoms, (v)
dependent on a biological macromolecule for their mode of action (i.e. exclude chelators and
buffers), (vi) orally administered, (vii) systemically absorbed (i.e. exclude compounds
whose site of action is in the gastro-intestinal (GI) tract e.g. orlistat targets gastric lipase,
acarbose targets enteric alpha glucosidase).

Molecular properties
Physico-chemical properties were calculated using the Pipeline Pilot Chemistry Collection
(version 8.0.1.500) from Accelrys (San Diego, CA, USA). The properties calculated were
Molecular Weight (MW), octanol-water partition coefficient (ALOGP) (using the atom-
based method by Ghose and Crippen24), number of hydrogen bond donors (HBD), number
of hydrogen bond acceptors (HBA), molecular polar surface area (PSA), number of rotatable
bonds (ROTB) and the number of aromatic rings (AROM)25, 26. Finally, a substructure
search was performed against each drug using a curated reference set of 94 functional
moieties that are potentially mutagenic, reactive or have unfavourable pharmacokinetic
properties27. The number of matches for each compound was captured (ALERTS). We
chose to omit the acid dissociation constant (pKa) as the available high-throughput
computational approaches do not provide sufficient accuracy48.
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Fitting of Desirability functions
Histograms were plotted reflecting the distribution of each of the 8 molecular properties for
the oral drugs. For discrete variables (HBD, HBA, ROTB, AROM, ALERTS) a bin size of 1
was used. For continuous variables (MW, ALOGP and PSA) the optimal bin size D was
estimated by optimising the cost function C(Δ)49 (Equation 5):

Equation (5)

where k and v are the mean and variance of the occupancy of bins of size Δ respectively.
For PSA a local minimum C(Δ) was used. A library of functions was fitted to the
distributions using TableCurve 2D version 5.01 (Systat Software, CA, USA). Asymmetric
Double Sigmoidal (ADS) functions (Equation 2) were found to be the most consistently
high-ranking non-linear functions (Supplementary Table 1) and also reflected the important
underlying asymmetry. Each function was then normalized by dividing by the maximum
function value d(x)max to give a value between 0 and 1.

QED
The individual desirability functions were combined into the QED by taking the geometric
mean, which, by logarithmic identities, can be expressed as the exponent of the arithmetic
mean of the logarithm transformed identities (Equations 1 and 3).

Assignment of Weights
We rationalized that the optimal set of weights is that which maximises information content,
as measured by Shannon entropy28 (Equation 6):

Equation (6)

where QEDw is the weighted QED calculated with a set of weights w. Each possible
combination of weights between 0 and 1 at increments of 0.25 were exhaustively
enumerated for all 8 molecular descriptors, giving 58 (390,625) weight combinations of for
each of the 771 drugs. The combination of weights giving the highest entropy gives
QEDw

max (Table 1). Inspection of the ranked weight combinations revealed a “spike” of
higher entropy values over the highest-scoring 1,000 combinations (Supplementary Figure
3a). The mean of each individual molecular property weight over these 1,000 highest ranked
entropy scores gives the mean optimal weighted QEDw

mo (Table 1). QEDw
mo may more

accurately sample the high entropy combinations whilst attenuating the quantized nature of
the weight increments. The robustness of this procedure was established by assessing the
relationship of individual descriptor weights to the ranked entropy scores compared to a
randomized series (Supplementary Figure 3b).

Principle Component Analysis (PCA)
PCA was performed on the 8 unweighted desirability functions calculated on the ChEMBL
database (release ChEMBL09) using Pipeline Pilot’s R Statistics Component Collection
(Supplementary Figure 3c).

Benchmark study
The benchmarking assessment involves assignment of positive and negative compound sets.
The DrugBank database32 was used to derive the positive set. 771 compounds having the
word “oral” in their “Route of Administration” field were selected. Whilst we endeavoured
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to obtain a truly independent positive set for the benchmark inevitably significant overlap
was found between the DrugBank set and the drugs used to derive QED. 554 of the 771
compounds were structurally identical and a further 30 had significant structural similarity
(Tanimoto score > 0.8). Small molecule ligands from the Protein Data Bank’s (PDB’s)
Ligand Dictionary50 was selected as the negative set as it provides a large and diverse
source of chemical tools, metabolites, natural products, crystallographic buffers as well as
drugs. To prevent ambiguity, 475 compounds were removed that had significant structural
similarity to the positive set (Tanimoto score > 0.8), leaving a negative set of 10,250.

Performance measures
The following performance measures were used:

Equation (7)

Equation (8)

Equation (9)

Where MCC = Mathews Correlation Coefficient, TP = True Positives, TN = True Negatives,
FP = False Positives and FN = False Negatives.

Target Druggability Methods
The ChEMBL database includes a highly heterogeneous assortment of published bioactivity
data. Bioactivity endpoints were only considered when (i) there was a defined protein
molecular target, (ii) the activity type was either IC50, Ki or Kd, (iii) the relation was ‘=’, ‘<’
or ‘<=’, (iv) standard units were defined as ‘nM’ and (v) the activity was greater than 10-6

nM (largely to remove misannotations). A broad range of bioactivity values are typically
reported for a given combination of target and ligand due to a combination of biological,
technical and annotation errors. Selection of the “correct” value is non-trivial, particularly
when using large-scale automated procedures. Simple calculation of a mean is sensitive to
outliers. As such, for each combination of target and ligand we identified the modal log unit
of bioactivity and calculated the mean value of activities within that range. Consideration of
only human targets results in 167,045 unique compounds being associated with 1,729
proteins, giving 310,551 compound target pairs.

For each protein target the Tanimoto structural similarity of each associated compound to
every other associated compound was calculated using Pipeline Pilot (FCFP_4 fingerprints)
to give an all-against-all similarity matrix. Compound networks were derived from these
matrices using the Python package NetworkX.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Histograms of 8 selected molecular properties for a set of 771 orally absorbed small
molecule drugs
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The solid blue line describes the Asymmetric Double Sigmoidal (ADS) functions (Equation
2) used to model the histogram. The parameters for each function are shown in
Supplementary Table 1. The Lipinski compliant areas are shown in pale blue in Figures 1
(a), (b), (c) and (d). The molecular properties are: (a) Molecular Weight (MW), (b)
Lipophilicity estimated by atomic based prediction of octanol-water partition coefficient
(ALOGP), (c) number of hydrogen bond donors (HBD), (d) number of hydrogen bond
acceptors (HBA), (e) polar surface area (PSA), (f) number of rotatable bonds (ROTB), (g)
number of aromatic rings (AROM) and (h) number of structural alerts (ALERTS).
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Figure 2. Benchmarking of QED against other measures of druglikeness
(a) ROC curve (Receiver operating characteristic) of true positive rate (sensitivity) against
false positive rate (1-specificity) describing the difference in performance of different
approaches in classifying compounds as druglike or otherwise. The performance of the rules
of Lipinski5, Veber23 and Ghose22, Gleeson (4/400)51, Congreve (Ro3)52, Hughes9 and the
quantitative method of Gleeson31 is compared to three different QED weighting schemes
(maximal entropy (QEDw

max), mean optimal entropy (QEDw
mo) and unweighted (QEDw

u)).
Veber et al. observed that compounds with fewer than 10 rotatable bonds and Polar Surface
Area (PSA) less than or equal to 140Å2 (or fewer than or equal to 12 hydrogen donors and
acceptors) had an increased oral bioavailability in rats23. Ghose et al. suggested a qualifying
range that could be used in the development of druglike chemical libraries and
recommended the following constraints: molecular weight between 160 and 480; calculated
logP between -0.4 and 5.6; molar refractivity between 40 and 130 and total number of atoms
between 20 and 7022. Gleeson et al. has proposed the most desirable region for ADME
properties lies between MW<400 and AlogP<451 and recently suggested a quantitative
ADMET score based on molecular weight and AlogP 31. For comparison the 52 ‘Rule of
Three’ for fragment selection (Ro3) is also plotted (where MW <300, AlogP ≤3, PSA ≤60,
the number of hydrogen bond donors ≤3, the number of hydrogen bond acceptors ≤3). At a
threshold that provides an equivalent level of sensitivity as the Ro5, a QEDw

mo of 0.40
offers 48% greater specificity than the Ro5. Equally, for the same degree of specificity as
the Ro5 a QEDw

mo of 0.26 offers 12% greater sensitivity. The dashed line represents the
line of no discrimination – the level of performance that would be achieved by a random
guess. (b) Direct comparison of Ro5 and QED. Drugs failing (red) and passing (blue)
Lipinski’s Ro5. (c) Equivalent plot of the QED results of the same set of compounds. The
overlapping distributions indicate the greater resolution provided by the quantitative
measure – some rather druglike Lipinski failures are observed as are some undruglike
passes. (d) QED distribution for three small molecule databases: the ChEMBL database of
small molecule bioactivities (green), small molecule ligands from the PDB (red) and the set
of oral drugs used to derive the functions (blue). Both weighted (QEDw

mo) (solid lines) and
unweighted (QEDw

u) (dashed line) indices are shown.

Bickerton et al. Page 19

Nat Chem. Author manuscript; available in PMC 2012 December 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Bickerton et al. Page 20

Nat Chem. Author manuscript; available in PMC 2012 December 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. Chemical aesthetics
Illustrative subsets of the oral drugs from DrugStore. (a) The 5 most druglike drugs. (b) The
5 least druglike drugs. (c) The 5 most druglike Ro5 failures. (d) The 5 least druglike Ro5
passes (also see Supplementary Figure 8). (e) Results of chemical survey: QED distributions
between compounds annotated chemically attractive and unattractive. (f) Cumulative QED
distribution of chemical survey results.
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Figure 4. Structural diversity networks
In each of the networks compounds are represented as nodes and are coloured by their
respective QED values. An edge connects nodes if they are structurally similar (defined by a
Tanimoto threshold of >= 0.7). The networks provide a useful way of summarizing a large
amount of data describing the published bioactivity data for a target in an intuitive and
visually digestible form. The four targets were chosen as they each have a considerable
number of associated compounds but illustrate the importance of considering druglikeness
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and chemical diversity when prioritizing targets. (a) Structural diversity network for
matriptase, a target whose associated bioactive compounds are neither druglike nor diverse.
(b) Structural diversity network for plasminogen, a target whose published bioactive
compounds are diverse but not druglike. (c) Structural diversity network for 1-
acylglycerol-3-phosphate O-acyltransferase beta, a target whose published bioactive
compounds are druglike but not diverse. (d) Structural diversity network for norepinephrine
transporter, a target whose published bioactive compounds are both druglike and diverse.
The network images are generated by the open source graph visualization software
GraphViz.
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