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Abstract
Motivation—Accurately predicting the binding affinities of large sets of diverse protein-ligand
complexes is an extremely challenging task. The scoring functions that attempt such
computational prediction are essential for analysing the outputs of Molecular Docking, which is in
turn an important technique for drug discovery, chemical biology and structural biology. Each
scoring function assumes a predetermined theory-inspired functional form for the relationship
between the variables that characterise the complex, which also include parameters fitted to
experimental or simulation data, and its predicted binding affinity. The inherent problem of this
rigid approach is that it leads to poor predictivity for those complexes that do not conform to the
modelling assumptions. Moreover, resampling strategies, such as cross-validation or
bootstrapping, are still not systematically used to guard against the overfitting of calibration data
in parameter estimation for scoring functions.

Results—We propose a novel scoring function (RF-Score) that circumvents the need for
problematic modelling assumptions via non-parametric machine learning. In particular, Random
Forest was used to implicitly capture binding effects that are hard to model explicitly. RF-Score is
compared with the state of the art on the demanding PDBbind benchmark. Results show that RF-
Score is a very competitive scoring function. Importantly, RF-Score’s performance was shown to
improve dramatically with training set size and hence the future availability of more high quality
structural and interaction data is expected to lead to improved versions of RF-Score.

1 INTRODUCTION
Molecular Docking is a computational technique that aims to predict whether and how a
particular small molecule will stably bind to a target protein. It is an important component of
many drug discovery projects when the structure of the protein is available. Although it is
primarily used as a virtual screening tool, and subsequently for lead optimisation purposes,
there are also applications in target identification (Cases and Mestres, 2009). Beyond drug
discovery, these bioactive molecules can be used as chemical probes to study the
biochemical role of a particular target (Xu et al., 2009). Furthermore, this technique can also
be applied to a range of structural bioinformatics problems, such as protein function
prediction (Favia et al., 2008). Molecular Docking has two stages: docking molecules into
the target’s binding site (pose identification), and predicting how strongly the docked
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conformation binds to the target (scoring). Whereas there are many relatively robust and
accurate algorithms for pose identification, the imperfections of current scoring functions
continue to be a major limiting factor for the reliability of Docking (Kitchen et al., 2004;
Leach et al., 2006; Moitessier et al., 2008). Indeed, accurately predicting the binding
affinities of large sets of diverse protein-ligand complexes remains one of the most
important and difficult un-solved problems in computational biomolecular science.

Scoring functions are typically classified into three groups: force field, empirical and
knowledge-based. Force-field scoring functions parameterise the potential energy of a
complex as a sum of energy terms arising from bonded and non-bonded interactions (Huang
et al., 2006). The functional form of each of these terms is characteristic of the particular
force field, which in turn contains a number of parameters that are estimated from
experimental data and detailed computer-intensive simulations. These force fields were
designed to model intermolecular potential energies, and thus do not account for entropy
(Kitchen et al., 2004). Knowledge-based scoring functions use the three dimensional co-
ordinates of a large set of protein-ligand complexes as a knowledge base. In this way, a
putative protein-ligand complex can be assessed on the basis of how similar its features are
to those in the knowledge base. The features used are often the distributions of atom-atom
dis-tances between protein and ligand in the complex. Features commonly observed in the
knowledge base score favourably, whereas less frequently observed features score
unfavourably. When these contributions are summed over all pairs of atoms in the complex,
the resulting score is converted into a pseudo-energy function, typically through a reverse
Boltzmann procedure, in order to provide an estimate of the binding affinity (e.g. Mitchell et
al., 1999a,b; Muegge and Martin, 1999; Gohlke et al., 2000). Some knowledge-based
scoring functions now include parameters that are fitted to experimental binding affinities
(e.g. Velec et al., 2005). Lastly, empirical scoring functions calculate the free energy of
binding as a sum of contributing terms, which are individually identified with physico-
chemically distinct contributions to the binding free energy such as: hydrogen bonding,
hydrophobic interactions, van der Waals interactions and the ligand’s conformational
entropy, among others. Each of these terms is multiplied by a coefficient and the resulting
set of parameters estimated from binding affinity data. In addition to scoring functions, there
are other computational techniques, such as those based on Molecular Dynamics
simulations, that provide a more accurate prediction of binding affinity. However, these
expensive calculations remain impractical for the evaluation of large numbers of protein-
ligand complexes and are currently typically limited to family-specific simulations (Huang
et al., 2006; Guvench and MacKerell Jr, 2009).

Scoring functions do not fully account for a number of physical processes that are important
for molecular recognition, which in turn limits their ability to select and rank-order small
molecules by computed binding affinities. It is generally believed (Guvench and MacKerell
Jr, 2009) that the two major sources of error in scoring functions are their limited description
of protein flexibility and the non-explicit treatment of solvent. In addition to these
simplifications, there is an important issue that has received little attention so far. Each
scoring function assumes a predetermined theory-inspired functional form for the
relationship between the variables that characterise the complex, which also include a set of
parameters that are fitted to experimental or simulation data, and its predicted binding
affinity. The inherent problem of this rigid approach is that it leads to poor predictivity in
those complexes that do not conform to the modelling assumptions. For instance, the van der
Waals potential energy of non-bonded interactions in a complex is often modelled by a
Lennard-Jones 12-6 function with parameters calibrated with experimental data. However,
there could be many cases for which this particular functional form is not sufficiently
accurate. Clearly, there is no strong theoretical reason to support the use of the r−12 repulsive
term. Furthermore, while the r−6 attractive term can be shown to arise as a result of
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dispersion interactions between two isolated atoms, this does not include the significant
higher order contributions to the dispersion energy, as well as the many-body effects that are
present in protein-ligand interactions (Leach, 2001). Moreover, resampling strategies, such
as cross-validation or bootstrapping, are still not systematically used to guard against the
overfitting of calibration data in parameter estimation for scoring functions (Irwin, 2008).

As an alternative to modelling assumptions in scoring functions, non-parametric machine
learning can be used to implicitly capture binding effects that are hard to model explicitly.
By not imposing any particular functional form for the scoring function, any possible kind of
interaction can be directly inferred from experimental data. The first study of this kind that
we are aware of (Deng et al., 2004) was based on the distance-dependent interaction
frequencies between a set of pre-defined atom types observed in two separate modestly sized
datasets. Kernel Partial Least Squares was trained on these data, and finally validated against
several small external test sets (6 or 10 compounds). This study was a valuable proof-of-
concept that machine learning can produce useful scoring functions. More recently (Amini
et al., 2007), Support Vector Regression (SVR) was applied to produce family-specific
scoring functions for five different protein-ligand systems using data sets ranging from 26 to
72 complexes. Excellent correlation coefficients on the cross-validation data partitions were
obtained. Importantly for the interpretability of data, Inductive Logic Programming was
used in combination with SVR to derive a set of quantitative rules that can be used for
hypothesis generation in drug lead optimisation. In contrast to machine learning based
scoring functions, there has been much more research on machine learning approaches to
Quantitative Structure-Activity Relationships (QSAR). However, QSAR bioactivity
predictions are exclusively based on ligand molecule properties. Hence, unlike scoring
functions, QSAR performance is inherently limited by the fact that the information from the
protein structure is not also exploited.

Here we present the first application of Random Forests (Breiman, 2001) to predicting
protein-ligand binding affinity. Random Forest (RF) is a machine learning technique based
on an ensemble of decision trees generated from bootstrap samples of training data, with
predictions calculated by consensus over all trees. RF does not assume any a priori
relationship between the descriptors that characterise the complex and binding data, and thus
should be sufficiently flexible to account for the wide variety of binding mechanisms
observed across diverse protein-ligand complexes. RF is particularly suited for this task, as it
has been shown (Svetnik et al., 2003) to perform very well in nonlinear regression. In
addition, RF can be also used to estimate variable importance as a way to identify those
protein-ligand contacts that contribute the most to the binding affinity prediction across
known complexes. Lastly, the availability of substantially more data suggests that machine
learning should now be an even more fruitful approach, leading to scoring functions with
greater generality and prediction accuracy.

The rest of the paper is arranged as follows. Section 2 describes the benchmark used to
validate scoring functions. Section 3 presents the scoring functions and experimental setup
used in this study, with particular attention to RF. In Section 4, we will construct and study a
RF-based scoring function (RF-Score). Lastly, in Section 5, we will present our conclusions
as well as outline the future prospects of this promising class of scoring functions.

2 MATERIALS
2.1 Validation using the PDBbind benchmark

A number of studies (e.g. Wang et al., 2003; Ferrara et al., 2004; Wang et al., 2004; Cheng
et al., 2009) have validated scoring functions based on their ability to predict the binding
affinities of diverse protein-ligand complexes. Indeed, since current algorithms are generally
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able to find poses that are close to the co-crystallised ligand, it makes sense to focus on the
much harder scoring task so that the intrinsic properties of scoring functions are studied in
isolation. Otherwise, confounding factors present in alternative enrichment validations such
as the adopted docking algorithm, the particular target considered, or the composition of the
ligand and decoy sets could even lead to contradictory conclusions (Cheng et al., 2009).
Consequently, this approach permits a reliable assessment of the proposed function for re-
scoring purposes.

The PDBbind benchmark (Cheng et al., 2009) is an excellent choice for validating generic
scoring functions. It is based on the 2007 version of the PDBbind database (Wang et al.,
2005), which contains a particularly diverse collection of protein-ligand complexes, as it
was assembled through a systematic mining of the entire Protein Data Bank (PDB; Berman
et al., 2000). The first step was to identify all the crystal structures formed exclusively by
protein and ligand molecules. This excluded protein-protein and protein-nucleic acid
complexes, but not oligopeptide ligands as they do not normally form stable secondary
structures by themselves and therefore may be considered as common organic molecules.
Secondly, Wang et al. collected binding affinity data for these complexes from the literature.
Emphasis was placed on reliability, as the PDBbind curators manually reviewed all binding
affinities from the corresponding primary journal reference in the PDB.

In order to generate a refined set suitable for validating scoring functions, the following
conditions were additionally imposed by the curators. First, only complete and binary
complex structures with a resolution of 2.5Å or better were considered. Second, complexes
were required to be non-covalently bound and without serious steric clashes. Third, only
high quality binding data were included. In particular, only complexes with known
dissociation constants (Kd) or inhibition constants (Ki) were considered, leaving those
complexes with assay-dependent IC50 measurements out of the refined set. Also, because
not all molecular modelling software can handle ligands with uncommon elements, only
complexes with ligand molecules containing just the common heavy atoms (C, N, O, F, P, S,
Cl, Br, I) were considered. In the 2007 PDBbind release, this process led to a refined set of
1300 protein-ligand complexes with their corresponding binding affinities.

Still, the refined set contains a higher proportion of complexes belonging to protein families
that are overrepresented in the PDB. This is detrimental to the goal of identifying those
generic scoring functions that will perform best over all known protein families. In order to
minimise this bias, a core set was generated by clustering the refined set according to
BLAST sequence similarity (a total of 65 clusters were obtained using a 90% similarity
cutoff). For each cluster, the three complexes with the highest, median and lowest binding
affinity were selected, so that the resulting set had a broad and fairly uniform binding
affinity coverage. By construction, this core set is a large, diverse, unbiased, reliable and
high quality set of protein-ligand complexes suitable for validating scoring functions. The
PDBbind benchmark essentially consists of testing the predictions of scoring functions on
the 2007 core set, which comprises 195 diverse complexes with measured binding affinities
spanning more than 12 orders of magnitude.

3 METHODS
3.1 Intermolecular interaction features

Machine learning-based regression techniques can be used to learn the nonlinear relationship
between the structure of the protein-ligand complex and its binding affinity. This requires
the characterisation of each structure as a set of features that are relevant for binding
affinity. In this work, each feature will comprise the number of occurrences of a particular
protein-ligand atom type pair interacting within a certain distance range. Our main criterion
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for the selection of atom types was to generate features that are as dense as possible, while
considering all the heavy atoms that are commonly observed in PDB complexes. As the
number of protein-ligand contacts is constant for a particular complex, the more atom types
are considered the more sparse the resulting features will be. Therefore, a minimal set of
atom types was selected by considering atomic number only. Furthermore, a smaller set of
intermolecular features has the additional advantage of leading to computationally faster
scoring functions. However, this simple representation has the drawback of averaging over
occurrences of the same element in different covalently bonded environments. More easily
chemically interpretable features would arise from the additional consideration of the atom’s
hybridisation state and bonded neighbours. This is out of the scope of the present work, but
it will be studied in detail in the future.

Here we consider nine common elemental atom types for both the protein P and the ligand
L:

The occurrence count for a particular j-i atom type pair is evaluated as:

where dkl is the Euclidean distance between kth protein atom of type j and the lth ligand atom
of type i calculated from the PDBbind structure; Kj is the total number of protein atoms of
type j and Li is the total number of ligand atoms of type i in the considered complex; Z is a
function that returns the atomic number of an element and it is used to rename the feature
with a mnemonic denomination; Θ is the Heaviside step function that counts contacts within
a dcutoff=12Å neighbourhood of the given ligand atom. For example, x7,8 is the number of
occurrences of protein nitrogen interacting with a ligand oxygen within a 12Å
neighbourhood. This cutoff distance was suggested in PMF (Muegge and Martin, 1999) as
sufficiently large to implicitly capture solvation effects, although no claim about the
optimality of this choice is made. This representation leads to a total of 81 features, of which
45 are necessarily zero across PDBbind complexes due to the lack of proteinogenic amino
acids with F, P, Cl, Br and I atoms. Therefore, each complex will be characterised by a
vector with 36 features:

On the other hand, the binding affinities uniformly spanned many orders of magnitude and
are hence log-transformed. We merge Kd and Ki measurements in a single binding constant
K, as this increments the amount of data that can be used to train the machine learning
algorithm and preliminary tests showed no significant performance gain from making such a
distinction (data not shown). By applying this process to a group of N complexes, the
following pre-processed data set would be obtained:
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3.2 Random Forests for regression
Random Forest (RF) is an ensemble of many different decision trees randomly generated
from the same training data. RF trains its constituent trees using the CART algorithm
(Breiman et al., 1984). As the learning ability of an ensemble of trees improves with the
diversity of the trees (Breiman, 2001), RF promotes diverse trees by introducing the
following modifications in tree training. First, instead of using the same data, RF grows each
tree without pruning from a bootstrap sample of the training data (i.e. a new set of N
complexes is randomly selected with replacement from the N training complexes, so that
each tree grows to learn a closely related but slightly different version of the training data).
Second, instead of using all features, RF selects the best split at each node of the tree from a
typically small number (mtry) of randomly chosen features. This subset changes at each
node, but the same value of mtry is used for every node of each of the P trees in the
ensemble. RF performance does not vary significantly with P beyond a certain threshold
(e.g. Svetnik et al., 2003) and thus we subscribe to the common practice of using P=500 as a
sufficiently large number of trees. By contrast, mtry has some influence on performance and
thus constitutes the only tuning parameter of the RF algorithm. In regression problems, the
RF prediction is made by averaging the individual predictions Tp of all the trees in the

forest. Thus, in our case, the binding affinity of a given complex  is predicted by RF as:

The performance of each tree on predicting Out-Of-Bag (OOB) data, that is complexes not
selected in the bootstrap sample and thus not used to grow that tree, gives an internal
validation of RF. OOB is a fast resampling strategy carried out in parallel to RF training that
yields estimates of prediction accuracy that are very similar to those derived from more
computationally expensive k-fold cross-validations (Svetnik et al., 2003). The Mean Square
Error (MSE) expressed in terms of the OOB samples is:

where Ip
OOB comprises the indices of those complexes that were not used for training the pth

regression tree and |Ip
OOB| is the cardinal of such set. Possible mtry values cover all the

feature subset sizes up to the number of features ({2, …,36} in our case), which gives rise to
a family of 35 RF models. It is expected that the mtry value with best internal validation on
OOB data, i.e. data not used for training, will also provide the best generalisation to
independent test data sets. Thus, the selected RF predictor is:

RF has also a built-in tool to measure the importance of individual features across the
training set based on the process of “noising up” (replacing the value of a given feature with
random noise) and measuring the resultant decrease in prediction performance (equivalently,
increase in MSEOOB). The higher the increase in error, the more important that particular
feature will be for binding affinity prediction.
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In summary, RF has a number of strengths relevant to this nonlinear regression problem, in
particular it can handle large numbers of features even when some are uninformative,
provides a fast and reliable internal validation estimate, can measure the importance of each
feature across data instances, and is generally not strongly affected by overfitting.

3.3 Scoring functions for comparative assessment
A comparative assessment of 16 well established scoring functions, implemented in
mainstream commercial software or released by academic research groups, was very
recently carried out (Cheng et al., 2009). In our study, we will be using these scoring
functions to assess the performance of RF-Score relative to the state of the art. Five scoring
functions in the Discovery Studio software version 2.0 (Accelrys, 2001): LigScore
(Krammer et al., 2005), PLP (Gehlhaar et al., 1995), PMF (Muegge and Martin,1999;
Muegge, 2000; Muegge, 2001; Muegge, 2006), Jain (Jain, 1996) and LUDI (Böhm, 1994;
Böhm, 1998). Five scoring functions (D-Score, PMF-Score, G-Score, ChemScore, and F-
Score) in the SYBYL software version 7.2 (Tripos, 2006). GlideScore (Friesner et al., 2004;
Friesner et al., 2006) in the Schrödinger software version 8.0 (Schrödinger, 2005). Three
scoring functions in the GOLD software version 3.2 (Jones et al.,1995; Jones et al.,1997):
GoldScore, ChemScore (Eldridge, 1997; Baxter, 1998) and ASP (Mooij and Verdonk,
2005). In addition, two stand-alone scoring functions released by academic groups, that is,
DrugScore (Gohlke et al., 2000; Velec et al., 2005) and X-Score version 1.2 (Wang et al.,
2002). Several of these scoring functions have different versions or multiple options,
including LigScore (LigScore1 and LigScore2); PLP (PLP1 and PLP2), and LUDI (LUDI1,
LUDI2, and LUDI3) in Discovery Studio; GlideScore (GlideScore-SP and GlideScore-XP)
in the Schrödinger software; DrugScore (Drug-ScorePDB and DrugScoreCSD); and X-Score
(HPScore, HMScore, and HSScore). However, for the sake of practicality, only the version/
option of each scoring function that performed best on the PDBbind benchmark was
considered in (Cheng et al., 2009). We will also restrict our scope here to the best version/
option of each scoring function, as listed in Table 1.

4 RESULTS AND DISCUSSION
4.1 Building RF-Score

The process of training RF to provide a new scoring function (RF-Score) starts by separating
the 195 complexes of the core set from the remaining 1105 complexes in the refined set. The
former constitutes the test set of the PDBbind benchmark, while the latter is used here as
training data. Consequently, the training and test sets do not have complexes in common.
Next, each of these sets is pre-processed, as explained in Section 3.1 and implemented in the
C code provided in the Supplementary Information. Thereafter, the protocol detailed in
Section 3.2 is followed using the training data set only (this is implemented in the R code
provided in the Supplementary Information). As a result, it was found that the RF model
with the best generalisation to internal validation data corresponded to mbest=5, which
obtained an error of RMSEOOB=1.51 (square root of the MSEOOB). RF-Score is therefore
defined as:

RF-Score reproduces the training data with very high accuracy. Figure 1 shows the
correlation between measured and predicted binding affinities. This is quantified through
Pearson’s correlation coefficient (R), which is defined as the ratio of the covariance of both
variables over the product of their standard deviations. In this training set, R=0.952, which
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indicates a very high linear dependence between these variables over the training data.
Another commonly reported performance measure is the Root Mean Square Error (RMSE):

Indeed, RMSE is practically the same as the Standard Deviation (SD) used elsewhere (e.g.
Wang et al, 2002), specially for large sets such as this (with N=1105, both RMSE and SD
are 0.74 log K units on the training set). The performance on the OOB samples
(ROOB=0.699 and RMSEOOB=1.51) is a more realistic and useful estimation of RF-Score’s
predictive accuracy, since merely fitting the training set does not constitute prediction.
Figure 2 shows the increase in error observed when individually noising up each of the 36
intermolecular features. As explained in Section 3.2, this is an estimate of the importance of
the given feature for binding affinity prediction across the training data. Among the most
important features (%incMSE>20), we find the occurrence counts of hydrophobic
interactions (x6,6), of polar-nonpolar contacts (x8,6, x7,6, x6,8, x16,6), and also of those
intermolecular features correlated with hydrogen bonds (x7,8, x8,8, x8,7, x7,7).

4.2 RF-Score on the PDBbind benchmark
RF-Score is next tested on an independent external test set. This constitutes a real-world
application of the developed scoring function, where the goal is to predict the binding
affinity of a diverse set of protein-ligand complexes not used for training/calibration,
feature/descriptor selection or model selection. RF-Score predicts binding affinity for test
complexes with high accuracy (R=0.778, RMSE=1.58 log K units; see Figure 3). The OOB
estimates are close to the performance obtained on the test set, which further supports the
usefulness of this validation approach.

There is also the question of how much of the predictive ability of RF-Score is due to
learning the true relationship between the atomic-level description of structures and their
binding affinities. To investigate this, we destroyed any such relationship in the training set
by performing a random permutation of y-data (binding affinities), while leaving the
intermolecular features untouched. Thereafter, the training process in Section 3.2 was
carried out again with this modified data and the resulting RF-Score function used to predict
the test set. Over ten independent trials, performance on the test set was on average R=
−0.018 with standard deviation SR=0.095 (average RMSE=2.42 with SRMSE=0.04). These
results demonstrate the negligible contribution of chance correlation to RF-Score’s
prediction ability. Such y-scrambling validation is very useful in the validation of QSAR
studies (e.g. Rucker et al., 2007), where an optimal set of features is selected over a very
large pool of not always relevant molecular (ligand) descriptors and thus the likelihood of
chance correlation is much higher.

Importantly for the resulting prediction’s accuracy and generality, we were able to train and
validate RF-Score with an unusually large and diverse set of high quality data. This was
possible because RF is sufficiently flexible to effectively assimilate large volumes of
training data. We have trained and validated RF-Score with randomly chosen differently
sized subsets of the training data (see Table 2). Results show that RF-Score’s performance
on the test set improves dramatically with increasing training set size (Ntrain). This strongly
suggests that ongoing efforts to compile and curate additional experimental data will be of
great importance to improve generic scoring functions further. Also, as expected, the
RMSEOOB generalisation estimate becomes more accurate, i.e. closer to RMSE on the test
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set, as the training set, and thus the validation set, grows. This is reflected in the ΔRMSE
values.

4.3 Comparing with the state of the art
A wide selection of scoring functions has very recently been tested against the PDBbind
benchmark (Cheng et al., 2009). These scoring functions are listed in Section 3.3, with
references to their original papers. Table 3 presents the performance of these 16 scoring
functions along with that obtained in the previous section by RF-Score. Results show that
RF-Score obtains the best performance among the tested scoring functions on this
benchmark.

The performance results for the other 16 scoring functions shown in Table 3 were extracted
from Cheng et al. (2009). This procedure has a number of advantages. First, it ensured that
all scoring functions are objectively compared on the same test set under the same
conditions. Like Cheng et al., we consider that a fair comparison of scoring functions
requires a common benchmark. Second, by using an existing benchmark, the danger of
constructing a benchmark complementary to our own scoring function is avoided. The latter
would lead to unrealistically high performance and thus to poor generalisation to other test
datasets. Third, the results reported in Table 3 correspond to the version/option of each
scoring function that performed best on the PDBbind benchmark. Most importantly, thanks
to the team maintaining the PDBbind database, future scoring functions can be
unambiguously incorporated into this comparative assessment. Moreover, the free
availability of RF-Score codes permits the reproduction of our results and facilitates
application of RF-Score to other sets of protein-ligand complexes. Lastly, it could be argued
that RF-Score’s performance is somehow artificially enhanced by its training set being
related to the test set by the non-redundant sampling explained in Section 2.1. The rationale
would be that the other scoring functions could have used training sets chosen without any
reference to the test set. Actually, unlike RF-Score, top scoring functions such as X-
Score::HMScore, DrugScoreCSD, SYBYL::ChemScore and DS::PLP1 have a number of
training complexes in common with the test set (Cheng et al., 2009). In order to investigate
whether these overlaps could provide scoring functions with an advantage, the second best
performing function in Table 3, X-Score::HMScore, was recalibrated using exactly the same
1105 training complexes as RF-Score in Section 4.1 (i.e. ensuring that training and test sets
have no complexes in common). This gave rise to a version we labelled X-Score::HMScore
v1.3, which obtained practically the same performance as v1.2 in Table 3 (R=0.649 versus
R=0.644). This suggests that training-test links as strong as having data instances in
common have little impact on performance on this benchmark. In addition, since RF-Score
and our retrained X-Score::HMScore v1.3 used exactly the same training/calibration set and
were tested on exactly the same test set, all the performance gain (R=0.778 versus R=0.649)
is guaranteed to come from the scoring function characteristics, ruling out any influence of
using different training sets on performance.

5 CONCLUSIONS
We have presented a new scoring function called RF-Score. RF-Score was constructed in an
entirely data-driven manner by circumventing the need for problematic modelling
assumptions via non-parametric machine learning. RF-Score has been shown to be
particularly effective as a re-scoring function and can be used for virtual screening and lead
optimization purposes. It is very encouraging that this initial version has already obtained a
high correlation with measured binding affinities in such a diverse test set.

In the future, we plan to study the use of distance-dependent features, which could result in
further performance improvements given that the strength of intermolecular interactions
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naturally depends on atomic separation. Also, less coarse atom types will be investigated by
considering the atom’s hybridisation state and bonding environment. This will enhance the
interpretability of features in terms of the intermolecular interactions. Admittedly, a lack of
interpretability is currently a drawback of this approach. However, it is important to realise
that, although the terms comprising model-based scoring functions provide a description of
protein-ligand binding, such a description is only as good as the accuracy of the scoring
function. Lastly, machine learning based scoring functions constitute an effective way to
assimilate the fast growing volume of high quality structural and interaction data in the
public domain and are expected to lead to more accurate and general predictions of binding
affinity.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
RF-Score reproduces its training data with very high accuracy (Pearson correlation
coefficient R=0.952 and RMSE=0.74).
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Figure 2.
Estimation of feature importance based on internal validation data. Overall, it shows the
importance of each type of protein-ligand contact across training complexes, which are by
construction representative of the entire PDB.
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Figure 3.
RF-Score predicts the test data with high accuracy (Pearson correlation coefficient R=0.778
and RMSE=1.58).
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Table 1

Scoring functions tested in the PDBbind benchmark.

Software Scoring Function Type

Academic (stand-alone) DrugScoreCSD Knowledge-based

X-Score::HMScore v1.2 Empirical

Discovery Studio v2.0 DS::PLP1 Empirical

DS::LUDI3 Empirical

DS::LigScore2 Empirical

DS::PMF Knowledge-based

DS::Jain Empirical

SYBYL v7.2 SYBYL::ChemScore Empirical

SYBYL::G-Score Force field

SYBYL::D-Score Force field

SYBYL::PMF-Score Knowledge-based

SYBYL::F-Score Empirical

Schrödinger v8.0 GlideScore-XP Empirical

GOLD v3.2 GOLD::GoldScore Force field

GOLD::ChemScore Empirical

GOLD::ASP Knowledge-based
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Table 2

Dependence of RF-Score on size of training set (Ntrain)

Ntrain R Rs RMSE mbest RMSEOOB ΔRMSE

1105 0.778 0.765 1.58 5 1.51 0.07

900 0.750 0.740 1.63 9 1.51 0.12

700 0.734 0.735 1.69 4 1.52 0.17

500 0.685 0.684 1.77 6 1.44 0.33

300 0.609 0.628 1.90 10 1.46 0.44

100 0.562 0.572 2.01 7 1.56 0.45

R, Rs and RMSE are evaluated over the test set. Rs is the Spearman correlation coefficient, which measures here the ability of a scoring function to

predict the correct ranking of complexes according to binding affinity. ΔRMSE≡RMSE-RMSEOOB
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Table 3

Performance of scoring functions on the PDBbind benchmark.

scoring function R Rs SD

RF-Score 0.778 0.765 1.58

X-Score::HMScore 0.644 0.705 1.83

DrugScoreCSD 0.569 0.627 1.96

SYBYL::ChemScore 0.555 0.585 1.98

DS::PLP1 0.545 0.588 2.00

GOLD::ASP 0.534 0.577 2.02

SYBYL::G-Score 0.492 0.536 2.08

DS::LUDI3 0.487 0.478 2.09

DS::LigScore2 0.464 0.507 2.12

GlideScore-XP 0.457 0.435 2.14

DS::PMF 0.445 0.448 2.14

GOLD::ChemScore 0.441 0.452 2.15

SYBYL::D-Score 0.392 0.447 2.19

DS::Jain 0.316 0.346 2.24

GOLD::GoldScore 0.295 0.322 2.29

SYBYL::PMF-Score 0.268 0.273 2.29

SYBYL::F-Score 0.216 0.243 2.35

Pearson’s correlation coefficient (R), Spearman’s correlation coefficient (Rs) and standard deviation of the difference between predicted and

measured binding affinity (SD). Scoring functions are ordered in decreasing R, as in (Cheng et al.,2009).
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