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Purpose: To determine the mean and range of volumetric glandular fraction (VGF) of the breast in a
diagnostic population using a high-resolution flat-panel cone-beam dedicated breast CT system. This
information is important for Monte Carlo-based estimation of normalized glandular dose coefficients
and for investigating the dependence of VGF on breast dimensions, race, and pathology.
Methods: Image data from a clinical trial investigating the role of dedicated breast CT that enrolled
150 women were retrospectively analyzed to determine the VGF. The study was conducted in ad-
herence to a protocol approved by the institutional human subjects review boards and written in-
formed consent was obtained from all study participants. All participants in the study were assigned
BI-RADS R© 4 or 5 as per the American College of Radiology assessment categories after standard di-
agnostic work-up and underwent dedicated breast CT exam prior to biopsy. A Gaussian-kernel based
fuzzy c-means algorithm was used to partition the breast CT images into adipose and fibroglandular
tissue after segmenting the skin. Upon determination of the accuracy of the algorithm with a phantom,
it was applied to 137 breast CT volumes from 136 women. VGF was determined for each breast and
the mean and range were determined. Pathology results with classification as benign, malignant, and
hyperplasia were available for 132 women, and were used to investigate if the distributions of VGF
varied with pathology.
Results: The algorithm was accurate to within ±1.9% in determining the volume of an irregular
shaped phantom. The study mean (± inter-breast SD) for the VGF was 0.172 ± 0.142 (range:
0.012–0.719). VGF was found to be negatively correlated with age, breast dimensions (chest-wall
to nipple length, pectoralis to nipple length, and effective diameter at chest-wall), and total breast
volume, and positively correlated with fibroglandular volume. Based on pathology, pairwise sta-
tistical analysis (Mann-Whitney test) indicated that at the 0.05 significance level, there was no
significant difference in distributions of VGF without adjustment for age between malignant and
nonmalignant breasts (p = 0.41). Pairwise comparisons of the distributions of VGF in increasing
order of mammographic breast density indicated all comparisons were statistically significant (p
< 0.002).
Conclusions: This study used a different clinical prototype breast CT system than that in previous
studies to image subjects from a different geographical region, and used a different algorithm for
analysis of image data. The mean VGF estimated from this study is within the range reported in
previous studies, indicating that the choice of 50% glandular weight fraction to represent an average
breast for Monte Carlo-based estimation of normalized glandular dose coefficients in mammography
needs revising. In the study, the distributions of VGF did not differ significantly with pathology.
© 2012 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4765050]
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I. INTRODUCTION

In mammography, variations in radiographic density referred
to as parenchymal pattern were associated with breast can-
cer risk by Wolfe.1 Subsequently, Threatt et al.2 observed that
the breast cancer risk associated with parenchymal patterns
was dependent on age. Boyd et al.3 used six categories for
assessing mammographic breast density and observed an as-
sociation between increase in mammographic breast density
and increase in breast cancer risk for women 40–59 years of
age. Meta-analysis4 indicated that breast density is strongly

associated with breast cancer risk. Comprehensive review of
mammographic density and its association with breast cancer
risk was provided by Boyd et al.5 Quantitative techniques6–9

for determining breast density from mammograms have been
developed and a review of the measurement techniques has
been provided.10 Kopans11 advocated for the use of three-
dimensional (3D) imaging for estimating the amount of dense
tissue present in the breast. Techniques for quantitative es-
timation of fibroglandular tissue volume, and consequently
the ratio of fibroglandular tissue volume to the total breast
volume, often referred to as “volumetric glandular fraction”
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(VGF) using 3D imaging techniques such as breast MRI,12, 13

dedicated breast CT,14, 15 and ultrasound tomography16 have
been developed.

The amount of fibroglandular tissue present in the breast
is an important parameter in Monte Carlo-based estimation of
the normalized glandular dose coefficients (DgN) that is used
to determine the average glandular dose to the breast from
x-ray imaging techniques such as mammography, digital
breast tomosynthesis, and dedicated breast CT. Current
regulations17 and accreditation requirements18 for determin-
ing the average glandular dose in mammography are based on
DgN estimates that assume 50% glandular weight fraction.

In this work, we used a kernel-based fuzzy c-means
(KFCM) algorithm for estimating the mean volumetric glan-
dular fraction by analyzing a total of 137 dedicated breast CT
volumes from 136 women, all assigned BI-RADS R© assess-
ment categories 4 or 5 as per the ACR.19 The clinical proto-
type dedicated cone-beam breast CT system used in this study
was different from that used in previous studies.14, 15 Also,
the study participants were from a geographically different
location.

II. METHODS AND MATERIALS

II.A. Patient population

A prospective clinical trial was conducted to determine
3D lesion characteristics using flat-panel cone-beam dedi-
cated breast CT in accordance to a protocol that was approved
by the human subjects review boards from both institutions
and with written informed consent from study participants.
Recruitment, all imaging including the breast CT exam, tis-
sue sampling (biopsy), and histopathology were conducted
at the Highland Breast Imaging Center of the University of
Rochester Medical Center, while analysis of the breast CT im-
ages were performed at the University of Massachusetts Med-
ical School. The study enrolled 150 subjects, all women, from
which a total of 137 breast CT volumes from 136 women were
retrospectively analyzed in this study (bilateral volume for 1
woman). All women included in this analysis were assigned
BI-RADS R© 4 or 5 as per ACR assessment categories19 after
standard diagnostic work-up, and had a dedicated breast CT
exam of the breast(s) with BI-RADS R© 4 or 5 finding(s), prior
to biopsy. BI-RADS R© 4 and 5 assessment categories corre-
spond to suspicious abnormality and highly suggestive of ma-
lignancy, respectively.

In terms of racial and ethnic categories, the study popula-
tion (n = 136 women) included in the analysis self-identified
themselves as Whites (n = 93), African Americans (n = 34;
33 unilateral and 1 bilateral breast CT exams), Hispanics or
Latinos (n = 4), Asians (n = 3), American Indian or Alaskan
Native (n = 1), and more than one race (n = 1).

II.B. Dedicated breast CT system

A clinical prototype dedicated cone-beam breast CT
system comprising an amorphous silicon flat-panel detec-
tor with thallium-doped Cesium Iodine (CsI:Tl) scintillator

(PaxScan R© 4030CB, Varian Medical Systems, Salt Lake City,
UT) and a tungsten-target rotating anode x-ray tube (RAD
71SP, Varian Medical Systems, Salt Lake City, UT) powered
by a high-frequency x-ray generator (Sedecal, USA) was used
in this study.20 The system uses prone-patient positioning,
49 kVp x-ray beam (first half-value layer: 1.4 mm of Al),
pulsed x-ray source with 8 ms pulse width, and 300 pro-
jections over 360◦ that resulted in a scan time of 10 s.21 In
this study, FDK reconstructions22 that provided an isotropic
voxel size with dimensions of 0.273 mm on each side were
used.21

II.C. Breast dimensions

The dimensions of each breast were determined in terms of
the effective diameter23 of the breast (Deff) and the chest-wall
to nipple length (CNL). The effective diameter of the breast
was computed from the coronal slice farthest from the nipple
that provided a continuous breast boundary separated from
the contralateral breast and the bony structure of the shoulder,
if present. In 34 of the 137 breast volumes analyzed (24.8%)
some aspect of the shoulder bone was visible. For the selected
slice, the cross-sectional area was computed from the number
of voxels (Nvox) within the breast and the voxel dimension
(�V ), and the effective diameter23 of the breast was com-
puted by equating this cross-sectional area to that of a cir-
cle of equivalent area as23 Deff = 2 �V

√
Nvox / π . The CNL

was calculated using voxel dimensions and from the num-
ber of coronal slices between the slice used for determining
the effective diameter of the breast and the slice that depicts
the nipple. In addition, the pectoralis to nipple length (PNL)
was computed from the number of coronal slices between
the posterior-most slice that just excludes the pectoralis mus-
cle, if imaged, and the slice that depicts the nipple. In 107 of
the 137 breast volumes (78.1%) analyzed, the pectoralis mus-
cle was visible. For the remaining 30 breast volumes where
the posterior extent of the imaged field of view did not show
the pectoralis muscle, the PNL was considered to be the same
as the CNL.

II.D. Image data preparation

Image preparation steps for estimating the glandular frac-
tion include manually defining the breast volume to be used in
the analysis, segmenting the breast from the background (air)
region, and segmenting the skin. Briefly, the volume of breast
used for analysis was bounded posteriorly to exclude the pec-
toralis muscle and anteriorly to exclude the areolar region.
Segmentation of the breast from the background region24, 25

was performed by determining an optimum threshold that was
obtained from Gaussian fit to the background voxel intensity.
For skin layer segmentation, a method similar to that reported
by Huang et al.26 was used, wherein each coronal slice was
converted to polar coordinates, followed by application of a
1D derivative filter along the columns to determine the outer
and inner boundaries of the skin. The segmented skin layer
is removed from the polar transformed slice and converted
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FIG. 1. Illustration of the process used to prepare the images for segment-
ing the glandular tissue. From the coronal slice (a), the voxel intensity in
the background (air) is sampled and fitted to a Gaussian to obtain an opti-
mal threshold. The breast is segmented from the background and a rectan-
gular region that just includes the breast (b) is generated. The breast (b) is
converted to polar coordinates (c) and a first order derivative filter is applied
along columns to determine the skin layer (d). The skin layer (d) is subtracted
from (c) to provide the breast tissue excluding skin in polar coordinates (e),
which is then transformed to Cartesian coordinates (f).

back to Cartesian coordinates. This procedure is illustrated in
Fig. 1.

II.E. Volumetric glandular fraction

An automated KFCM method was used for classifying
each coronal slice that did not include the skin, into two com-
partments: fibroglandular tissue and adipose tissue. KFCM is
adapted from the FCM clustering algorithm, which is an auto-
mated and unsupervised technique that has been widely used
in medical image segmentation.27–29 Briefly, FCM classifies
the image based on its features into desired number of clusters
through iteratively minimizing an objective function. A com-
monly used objective function is the least squares error that
uses Euclidean distance (norm) as the metric.29 It has been
documented that FCM using Euclidean norm as the metric
for an objective function can be affected by outliers (noise)
and incomplete data.30, 31 Hence, we chose to use a kernel-
based FCM method31, 32 for fibroglandular tissue segmenta-
tion. For this study, we used an open-source program that was
available through the MATLAB R© central file exchange.33 Spe-
cific to our study, the image feature space contained only one
element, which was voxel intensity, and a Gaussian-kernel
based objective function with a Gaussian width σ was used.
The value of σ was chosen to be 0.1 for most coronal slices
based on visual comparison of the segmented fibroglandu-
lar region and the original coronal slice. However, for some
coronal slices that exhibited ring artifacts, σ = 0.01 yielded
better segmentation. Applying the KFCM algorithm, each
coronal slice was partitioned into two clusters based on voxel
intensities as either fibroglandular or adipose tissue. For each
coronal slice, a binary map representing fibroglandular tis-
sue was generated. Figure 2 illustrates the process for a sin-
gle breast CT volume where four randomly selected slices
are shown. The number of voxels representing fibroglandular
and adipose tissue were determined for each coronal slice and
summed across all slices to obtain the fibroglandular volume
(Vg), the adipose volume (Va), and hence the total breast vol-
ume (TBV = Vg + Va), after scaling for voxel dimensions.
The VGF (Ref. 23) was determined as Vg

TBV . Thus, our esti-
mate of Vg , TBV, and hence VGF excluded the skin and the
areolar region, while the estimate of Deff was inclusive of skin.

Coronal
Slice

Aft er
Skin
re mo val

Glandular
Tissue
Map

FIG. 2. Four slices selected from a single breast CT volume are shown. The
top row contains the coronal slices, the middle row shows the corresponding
slices after segmenting and removing the skin, and the bottom row shows the
binary maps corresponding to the slices generated using KFCM, where the
region representing fibroglandular tissue have a value of 1.

II.F. Validation with phantom

The nonuniform spatial distribution of fibroglandular tis-
sue in dedicated breast CT images suggests that the use of
an irregular shaped object to represent fibroglandular tissue
in a phantom would be preferable. Also, from the average
breast volume and mean ± standard deviation of the volu-
metric breast density reported by Yaffe et al.,15 the object
representing the fibroglandular tissue should have a volume
in the range of 24–164 cm3. We are not aware of a commer-
cial phantom that represents an uncompressed breast with a
spatial distribution of fibroglandular tissue similar to that ob-
served in breast CT images. Since our objective was to test the
algorithm with a complex structure, a phantom comprising a
scaled brain aneurysm model fabricated using a 3D prototyp-
ing system34 (Prodigy Plus, Stratasys, Eden Prairie, MN) was
immersed in a water bath. This phantom was chosen because
of its ready availability. The aneurysm volume was physically
measured by liquid displacement to be 135.85 cm3, which was
considered as “truth.” This value is within the aforementioned
range of fibroglandular tissue volume. The phantom was im-
aged with the dedicated breast CT system using tube current
(mA) values that covered the range used in clinical imaging.
Figure 3(a) shows the 3D volume rendering of the phantom
and three slices that contain the aneurysm model along with
their corresponding binary maps. The KFCM algorithm (σ
= 0.1) was applied to segment the aneurysm and its volume
was computed.

II.G. Relationship between mammographic breast
density and VGF

Mammography-based BI-RADS breast density categories
as per the ACR (Ref. 19) were used to determine its re-
lationship to the quantitative estimates of VGF obtained
from breast CT. For clarity, we use the term “mammo-
graphic breast density” to represent mammography-based BI-
RADS breast density categories. The mammographic breast
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FIG. 3. 3D volume rendering (a) of the validation phantom comprising an
irregular shaped object immersed in water. Selected slices from cone beam
CT of the phantom are in the left column (b, d, and f), and their binary images
(c, e, and g) where the region within the aneurysm has a value of 1 are in the
right column.

density categories19 are: almost entirely fat (<25% fibrog-
landular tissue); scattered fibroglandular densities (approx-
imately 25%–50% fibroglandular tissue); heterogeneously
dense (approximately 51%–75% fibroglandular tissue); and,
extremely dense (>75% fibroglandular tissue). For this study,
a single radiologist with more than 30 years of experience in
breast imaging reviewed the mammograms corresponding to
the breasts that were imaged with the breast CT system to
provide mammographic breast density assignments and these
assignments were used in the analysis.

III. RESULTS

III.A. Validation with phantom

The volume of the scaled aneurysm model measured by
liquid displacement was 135.85 cm3 and that determined us-

ing KFCM was in the range of 133.33–138.16 cm3, depend-
ing on the tube current (mA), indicating that the method was
accurate to within ±1.9%. From the segmented regions of
the aneurysm and the background (water), the corresponding
mean and standard deviation was computed and used to deter-
mine the signal-difference-to-noise ratio(SDNR). The SDNR
range was 2.6–4.5. A similar procedure was used to com-
pute the SDNR between adipose and fibroglandular tissue in
clinical breast CT images. The mean (± standard deviation)
SDNR was 11.6 ± 3.9 (range: 7.2–18.9), and in general in-
creased with increasing tube current (mA). This indicates that
the chosen phantom represented a more stringent condition
in terms of SDNR. The left column of Fig. 3 shows three
CT slices selected from the start, middle, and end of the ir-
regular object within the phantom, and the right side shows
their corresponding segmented binary images generated using
KFCM.

III.B. Breast dimensions

The mean (± inter-breast standard deviation) effective di-
ameter of the breast at the chest-wall inclusive of skin (Deff)
was 13.4 ± 2.4 cm (range: 8.2–20.5 cm). The mean (± inter-
breast standard deviation) CNL was 9.5 ± 2.7 cm (range:
3.4–15.2 cm). Summary statistics of these measurements are
included in Table I. The histograms are shown in Fig. 4,
where Figs. 4(a)–4(c) correspond to the effective diameter of
the breast at chest-wall (Deff), CNL, and PNL, respectively.
The Spearman’s rank correlation coefficient (Spearman rho)
was used to assess the correlation between age, CNL, PNL,
Deff, Vg , TBV, and VGF, and is shown in Table II. Table II
shows that Deff, CNL, and PNL were not significantly corre-
lated with age. As expected, there was significant correlation
between CNL and PNL, as they are similar measures. There
was significant correlation between CNL (and PNL) with Deff.
Figure 5 shows the scatter plot, where CNL is plotted as
a function of Deff. The solid line shows the linear fit with

TABLE I. Summary statistics (n = 137) of effective diameter of the
breast at chest-wall (Deff), chest-wall to nipple length (CNL), pectoralis
to nipple length (PNL), fibroglandular volume (Vg), total breast volume
(TBV), and volumetric glandular fraction (VGF). While Deff includes
the skin, Vg , TBV, and hence VGF exclude the skin and the areolar
region.

Deff CNL PNL Vg TBV
(cm) (cm) (cm) (cm3) (cm3) VGF

Mean 13.4 9.5 7.6 60.8 453.6 0.172
Inter-breast standard
deviation

2.4 2.7 2.6 56.1 338.4 0.142

Lower 95% CI of mean 13.0 9.0 7.1 51.4 396.4 0.148
Upper 95% CI of mean 13.8 9.9 8.0 70.3 510.8 0.196
Minimum 8.2 3.4 2.3 2.1 35.5 0.012
Median 13.3 9.8 7.5 38.8 375.9 0.136
Maximum 20.5 15.2 14.1 301.0 1870.4 0.719
First quartile (Q1) 11.9 7.3 5.5 21.2 193.0 0.067
Third quartile (Q3) 14.7 11.4 9.6 83.4 627.1 0.240
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FIG. 4. Histograms of the (a) effective diameter of the breast at chest-wall (Deff), (b) CNL, (c) PNL, (d) fibroglandular volume (Vg), (e) TBV, and (f) VGF.
While Deff includes the skin, Vg , TBV, and hence VGF exclude the skin and the areolar region.

zero-intercept. Current estimates35–38 for normalized glandu-
lar dose coefficients (DgNCT) assume a linear relationship be-
tween CNL and Deff. The data indicate that the choice of CNL
= 0.7014Deff is suitable, when a linear fit with zero-intercept
is assumed. There is a marginal improvement in fit-statistic
when a power curve is used to fit the data.

III.C. Volumetric measurements

The mean (± inter-breast standard deviation) and the
median fibroglandular volume (Vg) were 60.8 ± 56.1 cm3

and 38.8 cm3, respectively (range: 2.1–301 cm3). The mean
(± inter-breast standard deviation) and the median TBV were
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TABLE II. Correlation (Spearman rho) between age, chest-wall to nipple
length (CNL), pectoralis to nipple length (PNL), effective diameter of the
breast at chest-wall (Deff), fibroglandular volume (Vg), total breast volume
(TBV), and volumetric glandular fraction (VGF ). While Deff includes the
skin, Vg , TBV, and hence VGF exclude the skin and the areolar region. *
indicates significant correlation (two-tailed test) at the 0.05 level.

Age CNL PNL Deff Vg TBV VGF

Age 1
CNL 0.0136 1
PNL − 0.1056 0.8497* 1
Deff − 0.0291 0.4721* 0.4675* 1
Vg − 0.3124* 0.3896* 0.5059* 0.2208* 1
TBV − 0.0979 0.8098* 0.9406* 0.6112* 0.4800* 1
VGF − 0.2915* − 0.3095* − 0.2870* − 0.3079* 0.5834* − 0.3688* 1

453.6 ± 338.4 cm3 and 375.9 cm3, respectively (range: 35.5–
1870.4 cm3). The large difference between the mean and
median for Vg and TBV suggests that the distributions are
skewed as shown by the histograms in Figs. 4(d) and 4(e), re-
spectively. Summary statistics are provided in Table I. While
fibroglandular volume (Vg) was significantly correlated with
age, TBV was not (Table II). Also, Vg and TBV were signifi-
cantly correlated with CNL (and PNL) and Deff, and there was
significant correlation between Vg and TBV (Table II).

In Fig. 6, the parameters that exhibited significant corre-
lation either with Vg or with TBV are shown. Figures 6(a)–
6(c) show the scatter plots of Vg and TBV as a function of
age, CNL and Deff, respectively. In Fig. 6(d), Vg is plotted
as a function of TBV. Since the relationship between the pa-
rameters plotted in Fig. 6 was not known a priori, a simple
allometric power-curve (OriginPro 8.6.0, OriginLab Corpo-
ration, Northampton, MA) of the form y = axb was used for
fitting the data. Although the TBV did not exhibit statistically
significant correlation with age, in Fig. 6(a), it was observed

FIG. 5. CNL plotted as a function of effective diameter of the breast at chest-
wall (Deff). The linear fit with zero-intercept is provided as current estimates
of DgNCT assume a similar form. The fit-statistic improves marginally when
a power-curve is used to fit the data.

that the fibroglandular volume (Vg) decreased at a faster rate
than TBV with increasing age, as evidenced by the exponents
of the corresponding fits. Similarly, based on the exponents
of the fits, it can be observed that the TBV increased at a
faster rate than Vg with increasing CNL [Fig. 6(b)] and Deff

[Fig. 6(c)]. While the fibroglandular volume (Vg) increased
with TBV [Fig. 6(d)], the value for the exponent was less than
unity suggesting that the VGF will decrease with increasing
TBV, and is addressed below.

III.D. Volumetric glandular fraction

The mean (± inter-breast standard deviation) and the me-
dian VGF were 0.172 ± 0.142 and 0.136, respectively (range:
0.012–0.719). Summary statistics are provided in Table I. The
VGF was significantly correlated with age at the time of the
breast CT exam, CNL, PNL, Deff, Vg , and TBV (Table II).
Hence, scatter plots of VGF as a function of aforementioned
parameters were plotted and are shown in Fig. 7. A simple al-
lometric power-curve of the form y = axb was used to fit the
data. With the exception of fibroglandular volume (Vg) shown
in Fig. 7(e), VGF decreased with an increase in the parameter
value consistent with the negative values for the correlation
coefficient (Spearman rho) observed in Table II. The values
for the exponent of the power curve provide a direct means to
compare the influence of each parameter on the VGF.

III.E. Dependence on race/ethnicity

In our study population, all but nine subjects self-identified
themselves as either Whites or African Americans. Hence,
we analyzed if any of the metrics studied were dependent on
race. Table III summarizes the measurements. Mann-Whitney
test indicated that the distributions of CNL (p = 3.7E − 4),
PNL (p = 5.4E − 5), and TBV(p = 4.9E − 5) were signifi-
cantly different at the 0.05 level between African Americans
and Whites. However, the distributions of Deff (p = 0.06), Vg

(p = 0.09), and VGF (p = 0.08) were not significantly differ-
ent at the 0.05 level between African Americans and Whites.
Figure 8 shows the histograms of CNL, PNL, and TBV
that showed statistically significant difference for the
distributions.

III.F. Dependence on mammographic breast density

For the 137 breasts analyzed, the mammographic breast
density interpretation resulted in assignments of 8 breasts that
were almost entirely fat (F), 58 breasts with scattered fibrog-
landular densities (S), 53 breasts that were heterogeneously
dense (H), and 18 breasts that were extremely dense (E). Pair-
wise comparisons (Mann-Whitney test) of the distributions of
V GF in increasing order of mammographic breast density: F
vs S (p = 0.002), S vs H (p = 1.3E − 10), and H vs E (p
= 9.9E − 8), indicated all comparisons were statistically
significant. Figure 9 shows the box-plots between mammo-
graphic breast density and the parameters investigated. In
all the plots, the symbol and line within the box represent
the mean and median, respectively, the box-ends represent
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FIG. 6. Scatter plots of fibroglandular volume (Vg) and TBV plotted as a function of (a) age of the participant at the time of breast CT exam; (b) CNL; and,
(c) effective diameter of the breast at the chest-wall (Deff). All the aforementioned parameters exhibited significant correlation with either Vg or TBV (Table II).
(d) The scatter plot of Vg as a function of TBV. While Deff includes the skin, Vg and TBV exclude the skin and the areolar region. All plots were fitted with a
simple power curve.

± standard deviation from the mean, and the whiskers rep-
resent the minimum and maximum. In terms of the mean,
a monotonic decrease with increasing mammographic breast
density is observed for the CNL [Fig. 9(a)], PNL [Fig. 9(b)],

TABLE III. Summary statistics (n = 128 breasts) showing dependence on
race for chest-wall to nipple length (CNL), pectoralis to nipple length (PNL),
effective diameter of the breast at chest-wall (Deff), fibroglandular volume
(Vg), total breast volume (TBV), and volumetric glandular fraction (VGF).
While Deff includes the skin, Vg , TBV, and hence VGF exclude the skin and
the areolar region. * indicates the two distributions for the corresponding
measurement were significantly different at the 0.05 level (Mann-Whitney
test).

CNL* PNL* Deff Vg TBV* VGF

African American (n = 35 breasts)
Mean 10.7 9.1 14.0 75.9 649.8 0.134
Standard deviation 2.5 2.6 2.7 66.0 385.3 0.101
Minimum 6.1 3.9 9.2 2.7 82.0 0.012
Median 11.0 9.6 14.3 56.2 688.2 0.121
Maximum 15.2 14.1 20.5 301.0 1870.4 0.414

White (n = 93 breasts)
Mean 8.9 7.0 13.1 56.4 380.7 0.192
Standard deviation 2.6 2.4 2.3 52.3 293.2 0.155
Minimum 3.4 2.3 8.2 2.1 35.5 0.015
Median 9.0 6.9 12.8 36.6 330.8 0.139
Maximum 14.9 13.8 18.5 277.9 1648.8 0.719

and TBV [Fig. 9(e)]. The mean estimate of Vg and VGF
showed a monotonic increase with increasing mammographic
breast density [Figs. 9(d) and 9(e)]. Summary statistics of
VGF categorized based on mammographic breast density are
provided in Table IV.

III.G. Dependence of volumetric glandular fraction on
pathology

Pathology results were available for 132 study partici-
pants, of which, 38 participants had malignancies (M), 75 had

TABLE IV. Summary statistics of VGF categorized based on mammographic
breast density, where F, S, H, and E represent breasts that were almost entirely
fat (F), breasts with scattered fibroglandular densities (S), breasts that were
heterogeneously dense (H), and breasts that were extremely dense (E).

F (n = 8) S (n = 58) H (n = 53) E (n = 18)

Mean 0.036 0.092 0.201 0.399
Standard deviation 0.022 0.062 0.118 0.136
Lower 95% CI of mean 0.017 0.076 0.169 0.332
Upper 95% CI of mean 0.054 0.109 0.234 0.467
Minimum 0.012 0.013 0.065 0.187
Median 0.029 0.074 0.166 0.403
Maximum 0.067 0.308 0.611 0.719
First quartile (Q1) 0.017 0.049 0.135 0.298
Third quartile (Q3) 0.058 0.131 0.247 0.483
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FIG. 7. VGF plotted as a function of (a) age at the time of the breast CT exam; (b) CNL; (c) PNL; (d) effective diameter of the breast at chest-wall (Deff);
(e) fibroglandular volume (Vg); and, (f) TBV. All of the plotted parameters exhibited significant correlation with VGF (Table II). While Deff includes the skin,
Vg , TBV, and hence VGF exclude the skin and the areolar region.

benign findings (B), and 19 had hyperplasia (Hy), of which
11 were atypical. While the mean of VGF was higher for
breasts with benign findings and hyperplasia than that for
breasts with malignancies (Table V), pairwise comparisons

(Mann-Whitney test) of the distributions of VGF, without ad-
justment for age, and categorized based on pathology: benign
(B) vs hyperplasia (Hy) (p = 0.37); hyperplasia (Hy) vs malig-
nant (M) (p = 0.26); malignant (M) vs benign (B) (p = 0.55);
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FIG. 8. Histograms of CNL, PNL, and total breast volume excluding the skin and the areolar region (TBV) that were significantly different at the 0.05 level
between African Americans (AA) and Whites (W).

and, by grouping benign and hyperplasia together (B + Hy)
vs malignant (M) (p = 0.41), indicated none of the compar-
isons were statistically significant. Similar pairwise compar-
isons for the distributions of fibroglandular volume (Vg) and
TBV were not statistically significant (p > 0.19).

IV. DISCUSSION

The mean (± inter-breast standard deviation) effective di-
ameter of the breast at the chest-wall inclusive of skin (Deff)
was 13.4 ± 2.4 cm (Table I), which is in good agreement
with physical measurements reported by Boone et al.35 Our
estimate of fibroglandular volume (Vg), TBV, and the VGF
excluded the skin and the areolar region. For the average di-
mensions of the breast from this study, Deff = 13.4 cm and
PNL = 7.6 cm (the PNL metric was used for consistency
with the study by Yaffe et al.15), the volume of an average
breast assuming a semiellipsoidal shape can be computed as
709.5 cm3, which is good agreement with the previous
study.15

Nelson et al.14 reported that the percent of fibroglandular
tissue within the total breast volume that is inclusive of skin as
17.1% ± 15.2%. Subsequently, Yaffe et al.15 reported a simi-
lar measure of fibroglandular tissue within the total breast vol-
ume that is inclusive of skin as 14.3% ± 10.2% by analyzing

TABLE V. Summary statistics of VGF categorized based on pathology,
where B, Hy, and M indicate that the analyzed breasts had benign findings
(B), hyperplasia (Hy), and malignancies (M). B + Hy indicates that the breasts
with benign findings and hyperplasia were grouped together.

B (n = 75) Hy (n = 19) B + Hy (n = 94) M (n = 38)

Mean 0.176 0.189 0.179 0.161
Standard deviation 0.150 0.128 0.145 0.137
Lower 95% CI of
mean

0.141 0.128 0.149 0.116

Upper 95% CI of
mean

0.210 0.251 0.208 0.206

Minimum 0.012 0.013 0.012 0.015
Median 0.138 0.166 0.140 0.118
Maximum 0.719 0.512 0.719 0.591
First quartile (Q1) 0.069 0.088 0.070 0.067
Third quartile
(Q3)

0.241 0.284 0.241 0.240

191 breast CT exams. In the same study,15 including mam-
mograms an estimate of 14.3% ± 10.7% was obtained. In
comparison, the VGF excluding the skin from this study was
17.2% ± 14.2%. To facilitate direct comparison of our results
with the previous studies,14, 15 the VGF was recomputed inclu-
sive of the skin, and resulted in mean (± inter-breast standard
deviation) of 15.8% ± 13%. Statistical analysis39 (Welch’s
t-test, two-tailed) indicated that the study results were not sta-
tistically different from Nelson et al.14 (p = 0.48), and Yaffe
et al.15 (p = 0.19).

From Table II, it is observed that the VGF is negatively cor-
related with age, breast size (CNL/PNL and Deff), and TBV
and positively correlated with fibroglandular volume (Vg).
Since CNL and PNL are similar measures, it is sufficient to
consider one of these metrics for analysis. Further, VGF is
derived from Vg and TBV. Hence, the dependence of age,
CNL and Deff on Vg and TBV were independently analyzed.
In terms of age it is observed from Table II, that there ex-
ists a statistically significant correlation with Vg , but not with
TBV. This is also supported by Fig. 6(a), where the exponents
of the power-curve indicate that Vg decreases at a faster rate
than TBV with increasing age, suggesting that the VGF will
decrease with increasing age. This observation is confirmed
in Fig. 7(a).

CNL and Deff were correlated with Vg and TBV (Table II).
Figures 6(b) and 6(c) show the individual effects of CNL and
Deff on Vg and TBV, respectively. Figure 6(b) shows that both
Vg and TBV increase with CNL, with TBV increasing at a
faster rate than Vg . Similar observation can also be made for
Deff [Fig. 6(c)]. In Fig. 7, VGF is observed to decrease with
increasing CNL and Deff, with VGF decreasing at a faster rate
for Deff [Fig. 7(d)] than CNL [Fig. 7(b)]. Hence, to under-
stand the combined effects of CNL and Deff on Vg and TBV,
3D contour plots were generated (OriginPro 8.6.0, OriginLab
Corporation, Northampton, MA) and are shown in Fig. 10. In
each plot, the levels for the contours were obtained from the
quartiles in Table I. The contours were generated with straight
lines connecting the points corresponding to that level. The
median of CNL and Deff are shown, resulting in four quad-
rants (labeled as Roman numerals I–IV) in each plot. In
Fig. 10(a), it is observed that subjects with fibroglandular vol-
ume (Vg) greater than the third quartile occurred more often
in quadrants I and IV, than in quadrants II and III. Comparing
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FIG. 9. Box-plots showing the relationships between mammographic breast density (F – almost entirely fat; S – scattered densities; H – heterogeneously dense;
E – extremely dense) and (a) CNL; (b) PNL; (c) effective diameter of the breast at chest-wall (Deff); (d) fibroglandular volume (Vg); (e) TBV, and (f) VGF. In
all plots, the symbol and line within the box represent the mean and median, respectively, the box-ends represent ± standard deviation from the mean, and the
whiskers represent the minimum and maximum. (d) and (e) Log-scale for y-axis. In (f), * indicates statistically significant difference between the distributions.

quadrants II and IV, it is apparent that more number of sub-
jects with Vg > 3rd quartile occurred in quadrant IV than in
quadrant II. These results imply that there is an increase in Vg

with increasing CNL and Deff, and that the increase in Vg is
more dependent on CNL than Deff. These observations are in
agreement with the correlation value shown in Table II, and
the value of the exponents shown in Figs. 6(b) and 6(c). In

Fig. 10(b), it is observed that subjects with TBV greater than
the 3rd quartile occurred when CNL and Deff were greater
than their corresponding median. In terms of VGF shown in
Fig. 10(c), it is observed that all subjects with VGF < 1st
quartile had a CNL greater than the median.

In terms of race, while the distributions of CNL, PNL,
and TBV showed statistically significant differences between
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FIG. 10. Contour plots were generated to understand the combined effects
of CNL and the effective diameter of the breast at chest-wall (Deff) on
(a) fibroglandular volume (Vg), (b) TBV, and (c) VGF. In each plot, the con-
tour levels correspond to the quartiles from Table I. The median of CNL and
Deff are shown, resulting in four quadrants (labeled as Roman numerals) in
each plot.

African Americans and Whites (p < 3.7E − 4), the distri-
butions of Deff, Vg , and VGF were not significantly differ-
ent at the 0.05 level (p > 0.06). A larger study is needed to
confirm these findings. Also, pairwise comparisons between
malignant and nonmalignant breasts showed that the distribu-
tions of Vg , TBV, and VGF were not significantly different at

the 0.05 level. This study was not designed to address breast
cancer risk; but, to provide a method for determining VGF
and to understand the influence of various parameters in the
VGF estimate. Since the study only included breast volumes
from subjects assigned BI-RADS R© 4 and 5, the study is not
suitable for estimating breast cancer risk due to VGF.

Our study had limitations. All breast volumes included in
this analysis were from subjects assigned BI-RADS R© 4 and 5,
and hence have a suspicious finding. Generally, lesions tend
to be segmented as fibroglandular tissue. Hence, Vg and VGF
are likely to be overestimated in this study. In 30 of the 137
breast volumes (21.9%), the pectoralis muscle was not im-
aged. Since, we used PNL=CNL for these cases, the PNL is
likely to be underestimated. However, in Table II we observe
all parameters that exhibit statistically significant correlations
with CNL are also significantly correlated with PNL. This
suggests it is sufficient to consider one of these parameters,
preferably CNL, in future studies.

The data provided here could be useful for Monte Carlo-
based estimation of DgN that are used to estimate the average
glandular dose to the breast. Specifically for breast CT, the
DgNCT coefficients need to be determined for the observed
range of CNL and Deff. In Monte Carlo-based estimation of
DgN, the amount of fibroglandular tissue within the breast is
usually specified in terms of glandular weight fraction. Hence,
transforming our data that is expressed in volumetric glandu-
lar fraction to glandular weight fraction using the method in
Boone,40 results in a mean of 18.85%. This value is lower than
the 50% glandular weight fraction typically used in Monte
Carlo based estimates of DgN used in mammography, indi-
cating that the DgN factor needs revision.

V. CONCLUSION

In summary, the mean (± inter-breast standard deviation)
VGF excluding the skin and the areolar region was 0.172
± 0.142. This study used a different clinical prototype breast
CT system to image subjects from a different geographical
region, and used a different algorithm for analysis of im-
age data. VGF was observed to be dependent on breast di-
mensions. The distributions of VGF between African Amer-
icans and Whites and between malignant and nonmalignant
breasts did not vary significantly. Pairwise comparisons of the
distributions of VGF in increasing order of mammographic
breast density indicated all comparisons were statistically
significant.
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