
Revisiting Molecular Dynamics on a CPU/GPU system: Water
Kernel and SHAKE Parallelization

A. Peter Ruymgaart and Ron Elber*

Department of Chemistry and Biochemistry, Institute for Computational Engineering and Sciences,
University of Texas at Austin, Austin, TX 78712

Abstract
We report Graphics Processing Unit (GPU) and Open-MP parallel implementations of water-specific
force calculations and of bond constraints for use in Molecular Dynamics simulations. We focus on
a typical laboratory computing-environment in which a CPU with a few cores is attached to a GPU.
We discuss in detail the design of the code and we illustrate performance comparable to highly
optimized codes such as GROMACS. Beside speed our code shows excellent energy conservation.
Utilization of water-specific lists allows the efficient calculations of non-bonded interactions that
include water molecules and results in a speed-up factor of more than 40 on the GPU compared to
code optimized on a single CPU core for systems larger than 20,000 atoms. This is up four-fold from
a factor of 10 reported in our initial GPU implementation that did not include a water-specific code.
Another optimization is the implementation of constrained dynamics entirely on the GPU. The
routine, which enforces constraints of all bonds, runs in parallel on multiple Open-MP cores or
entirely on the GPU. It is based on Conjugate Gradient solution of the Lagrange multipliers (CG
SHAKE). The GPU implementation is partially in double precision and requires no communication
with the CPU during the execution of the SHAKE algorithm. The (parallel) implementation of
SHAKE allows an increase of the time step to 2.0fs while maintaining excellent energy conservation.
Interestingly, CG SHAKE is faster than the usual bond relaxation algorithm even on a single core if
high accuracy is expected. The significant speedup of the optimized components transfers the
computational bottleneck of the MD calculation to the reciprocal part of Particle Mesh Ewald (PME).

Keywords
computer simulations; constraints; DHFR; Optimization

Introduction
Extending time scales of molecular dynamics (MD) simulations makes it possible to address
more complex molecular problems than was possible before. One approach to this problem
utilizes advances in hardware to obtain faster propagation of the trajectory in time. Increases
in computational speed of molecular dynamics algorithms have been obtained by utilizing
multiple CPU’s and/or specialized hardware such as graphics-processing units (GPU)1–5.
Parallelization is the dominant way nowadays to speed up MD using modern computer
hardware. Speed-up is achieved while retaining the overall accuracy of the calculations. As
simulations become more complex, and are more expensive and lengthy to conduct it becomes

Contact: Ron Elber, ron@ices.utexas.edu, phone: 512-232-5415, Fax: 512-471-8694.

Supporting Information: A code of the pre-conditioner conjugate gradient algorithm on the GPU (Appendix A), code for “in kernel
parallel reduction” (Appendix B), and code for GPU water-water interactions (Appendix C) are provided. This information is available
free of charge via the Internet at http://pubs.acs.org.

NIH Public Access
Author Manuscript
J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

Published in final edited form as:
J Chem Theory Comput. 2012 November 13; 8(11): 4624–4636. doi:10.1021/ct300324k.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

http://pubs.acs.org

important to be able to assess their quality on the fly and avoid costly mistakes. One of the
important measures of correctness is the conservation of the total energy (or other conserved
entities). Moreover, if the focus of the calculations is on explicit dynamics and time scales then
the NVE ensemble (N number of particles, V volume, and E energy) is the most natural choice.
To sample from this ensemble correctly and to accurately compute the dynamics the energy
must be conserved. This requirement is significant and not trivial to satisfy even for relatively
short trajectories of only a few nanoseconds. If energy conservation is not adequately addressed
the phenomenon of energy drift (energy change linear in time) is observed. Under these
conditions, even if some physical observables are reasonably well behaved, or if the energy is
adjusted empirically, it is difficult to accept the results without significant reservations. One
of the focuses of our code MOIL 5,6 is on the calculations of kinetics with the method of
Milestoning 7–11. In Milestoning we launch a large number of short trajectories and use their
statistics to estimate rates at long times. To ensure the correctness of our short trajectories we
insist on relative energy conservation (|ΔE/E|) which is at most 10−2 per microsecond for the
standard benchmark of DHFR.5

At present our code is aimed at individual laboratories and typical laboratory hardware. Since
our applications focuses on launching a very large number of short trajectories it makes sense
for us to optimize the code of one trajectory for one node. We optimized our code for a CPU
with 4 cores and a GPU. With this system size we can easily and efficiently study systems of
about 100,000 atoms. Simulations of systems larger than this size will require further
adjustments of the code to overcome current memory limitations.

We chose to split the computations between the GPU and the CPU since we wanted a stable
programming model (to avoid re-writing significant portion of the code when new GPU
hardware is introduced), and since we seek a programming platform that supports reasonably
rapid code development. The GPU provides massively parallel computations for simple data
and instructions and can be faster for specific tasks by a factor of several tens compared to a
single core. However, it is not always the best choice and consideration of memory and
accuracy are important. The GPU is most efficient if single precision is used. However, single
precision accuracy is not always sufficient. While recent GPU versions support double
precision computations there is a cost using this option (e.g. the variables may not fit in a cache
or available registers). The evolving support level of GPU makes it difficult to retain a stable
programming model, and extensive code changes may be required for new hardware variants,
something that we wish to avoid to the extent possible. Having an option of computing in
double precision when deemed necessary on the CPU is therefore an advantage. Moreover,
GPU is significantly more difficult to code and for a program that we routinely add and change,
programming on the GPU is costly in human and time resources. Complex code is better
developed on the CPU. Finally, it is likely that exploitation of heterogeneous computing is
possible for the CPU/GPU pair in which some of the calculations are done on the CPU and
some on the GPU to obtain greater efficiency. Ignoring this possibility (by insisting on doing
everything on the GPU) is limiting. We demonstrate the possibility of asynchronous computing
in the paper. We show significant asynchronous speed up for SHAKE by SHAKing the water
molecules on the CPU and the macromolecule on the GPU.

We believe the future of single node computing in general is heterogeneous. The AMD Fusion
and Intel Sandybridge are already commonplace with AMD offering training for heterogeneous
programming on its Fusion chips. Now also NVIDIA joins the heterogeneous CPU-GPU
market with “Project Denver”. We also think memory transfer between CPU/GPU will increase
in performance in future systems. Calculations that are complex (require many registers), are
few in number and involve numerous atoms per calculation are best suited for the CPU. Just
like operations with many branch possibilities. PME, torsion and improper torsion calculations
fall in this category and can be performed on CPU cores at the same time as the Non-bonded

Ruymgaart and Elber Page 2

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

calculations on the GPU. We believe in using them both, and using them both at the same time.
Let the total computational cost be T and in our programming model a fraction 1-α is computed
on the GPU and a fraction α on the CPU. The compute time on the GPU is T(1−α)/G and on
the CPU Tα/C where the computational speeds of the CPU and the GPU are denoted C and
G respectively. We also consider an overhead o of the communication between the CPU and
the GPU. If we use just the GPU the calculation time is T/G. If we use both, the new time is
t=max[T(1−α)/G, Tα/C]+o. The parameter α is a subject of optimization. Can we indeed argue
that the optimal α is always 1? For reasonably small o and diverse computing tasks this is not
the case.

The only argument supporting GPU-only computing is that the data transfer o is expensive.
Indeed in the case of a simple Lennard-Jones fluid GPU-only simulation is sound. In this case
memory transfer between host and device (the only pitfall of heterogeneous computation) is
costly if done at each step. However, in the far more complex simulations of explicitly solvated
biopolymers, there are components that are not suited for massive parallelization with single
precision. In particular we illustrate in our first paper that particle meshed Ewald (PME)
calculated in single precision increases the energy drift by a factor of about 10. Therefore,
single precision PME should not be used in quantitative simulations. There are also terms such
as torsions and improper torsions that run with similar efficiency on both the CPU and the
GPU. The latter two require significant local resources (registers) and at the same time are
relatively small in number reducing benefits from parallelism. Hence, these arguments and
experimentations led to our choice of using heterogeneous computing in a laboratory setting
to speed up molecular simulations.

An increase in the size of the integration time-step is another way to enhance the efficiency of
the calculation. Enlarging the time step (while retaining numerical accuracy) can be achieved
by removing fast degrees of freedom from the system. A widely used example is the SHAKE
algorithm 12 which constrains bond lengths to their ideal values. Another approach is based on
filtering high frequency modes 13. Removal of bond vibrations, which are fast degrees of
freedom, allows doubling the step of integration while retaining numerical precision. However,
a combination of parallel architecture and the popular bond-relaxation SHAKE was proven
hard to achieve. This is since bond-relaxation is inherently serial and requires many iterations
to adjust coordinate positions. An alternative SHAKE formulation is based on a direct and
iterative solution to a set of approximate linear equations for the Lagrange’s multipliers. This
alternative is easier to parallelize, and requires significantly fewer iterations of coordinate
adjustments 14–16. In the present manuscript we consider a novel implementation of the matrix
formulation of SHAKE in which the entire algorithm is carried out on the GPU with some
components in double precision. The Lagrange multipliers are found using conjugate gradient
algorithm 14 in single precision while the coordinate adjustments are conducted in double
precision. This implementation brings more work to the GPU freeing the CPU to
asynchronously conduct other computations. Our implementation on the GPU of parallel
matrix SHAKE is more efficient than the use of CPU only in cases where the number of CPU
cores is low compared to the system size. We use a typical laboratory tool of a CPU with four
cores and a single GTX480. On a node with 12 cores and the same GPU, the constraints are
better computed on the CPU. We therefore retain the option to run the same algorithm on
multiple shared memory CPU’s as defined by user input illustrating the flexibility of
heterogeneous computing.

In addition to the improvement in SHAKE parallelization we also consider a special GPU
routine (kernel) to handle non-bonded interactions between water molecules. We exploit the
fact that most biological macromolecules simulated with an explicit solvent contain a large
number of water molecules. Since all water - water interactions share Lennard Jones and
electrostatic parameters we can significantly reduce memory access by keeping these

Ruymgaart and Elber Page 3

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

parameters in fast memory. Moreover, since we use neighbor lists, making a special case for
water, one stores a water index rather than three atomic indices thereby reducing list size by
up to three-fold. We recently reported a GPU implementation of the non-bonded force
calculation using atomic neighbor lists 5. Here we build on this code and present a specialized
GPU implementation of water non-bonded force calculations.

These two additions led to speedup compared to our previous code (on the standard test case
of DHFR) by about three-fold overall and four-fold in the GPU non-bonded force calculation.
For each GPU implementation, an equivalent optimized function was implemented for
execution on a multi-core shared memory CPU (using the parallel library Open Multi
Processing (OpenMP) in case a GPU is not available.

Matrix SHAKE
In order to increase the time step while maintaining energy conservation we remove bond
displacements that are fast degrees of freedom from the equations of motion. It is easy to
parallelize the constraints of only the fastest bonds that include hydrogen atoms since the
number of coupled bonds is always small and decoupled. Here we focus on the more general
problem of parallelization of a network of bonds that is not factored to independent bond
clusters. Examples are long peptide chains. Matrix SHAKE with conjugate gradient
optimization to determine the Lagrange multipliers is an appropriate methodology to handle
the above problem and was described in 14. We briefly review it and discuss specific
adjustments appropriate for the heterogeneous computing system of the present manuscript.
Consider the algorithm of velocity Verlet 17 with constraints (bold font denotes a vector):

(1.a)

(1.b)

Where τ is the time step, x,vεR3N are coordinate and velocity vectors of the whole system.
xa1 and xa2 are the three dimensional coordinates of the two bonded atoms, and σa is the
constraint on bond a, i.e. the distance square between the two points xa1 and xa2 is constrained
to be equal to the square of the equilibrium distance r2

eq,a. The Lagrange multipliers are ηa. M
is a 3Nx3N diagonal matrix where N is the number of atoms. The mass of a particle repeats
three times in the matrix for the x,y, and z directions. For a corresponding equation for the
velocities see 14. We split (1.a) into a step without the application of the constraints; a Verlet
step, which we call x(0) and a correction when the constraints are taken into account

(2.a)

(2.b)

Δxconstr is the adjustment to the coordinate enforced by the constraints such that xi+1 = x(0) −
Δxconstr. The constraints at step i+1 are approximated by a first order Taylor expansion near
the coordinates x(0) which are now adjusted by Δ xconstr to satisfy the constraint condition σ
(xi+1) = 0:

(3.a)

Ruymgaart and Elber Page 4

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

(3.b)

We can write the right hand side of (3.b) ∇σ(x(0)) Δxconstr in matrix form using (2.b) while
factoring out the Lagrange multipliers and the time step:

(4)

This matrix is asymmetric because σa(x(0)) is not equal to σa(xi). We can use the matrix A to
estimate the Lagrange multipliers λb=ηbτ2 of Eq. (2.b) using Eq. (3) and (4):

(5)

The solution of this system is approximate because σ is not linear in λ. The linear
approximation made at (3.a) requires a Newton-like iteration until convergence. It converges
provided that the initial point is sufficiently close to the right answer. Convergence is assumed
when

(6)

where ε is a small number. The convergence is required for all constraints. For every iteration
step we have

(7)

We define a corresponding matrix

(8)

And we also have

(9)

It is easier to understand the computational aspects of the linear equation (Eq. (9)) for the
constraints when the explicit expression for the bond constraints is used. Consider Eq. (1.b),
taking a spatial derivative we have ∇σa = 2(xa1 − xa2) and a matrix element is therefore

(10)

Discussions on the properties of this matrix were given in the original paper of
SHAKE 12 and 14,18. We consider three cases: (i) The constraints “a” and “b” are identical. In
this case we have Aaa

(n+1)=2(1/ma1+1/ma2)(xa1
(n+1) − xa2

(n+1))t (xa1 − xa2). (ii) The constraints
“a” and “b” are not the same but they share one atom (e.g. a2=b1), we have Aab

(n+1)=2
(xa1

(n+1) − xa2
(n+1))t (1/ma2)(xa2 − xb2). (iii) No atoms are shared, Aab=0.

Ruymgaart and Elber Page 5

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

From the explicit expression (Eq. (10)) and the cases discussed above it is clear that the matrix
is sparse (bonds are coupled only if at least one atom is shared) and is recomputed every λ
iteration. One alternative to the calculation of the matrix in the linear equation for the Lagrange
multipliers is to approximate Aab

(n+1) by its diagonal, which is the bond relaxation
algorithm6. The disadvantage of the bond-relaxation algorithm is that it requires many
iterations; iterations that must be executed serially. Bond-relaxation is therefore not effective
for parallelization and for GPU implementation. From now onwards we consider only options
that employ non-diagonal matrices. Besides using the exact matrix we consider two
approximate matrices (a) a symmetric matrix and (b) a constant matrix (Figure 1).

Consider first the symmetric matrix option, we write:

(11)

Since xa1 is different from xa1
(n+1) only by terms of order of τ2 (the small time step), the

difference between the exact and the symmetric matrix is small. The iterations of Eq. (9)
converge with both matrices from Eq. (10) or Eq. (11) for sufficiently small τ. The number of
iterations is however different. In practice a smaller number of iterations is required to converge
the values of the Lagrange multipliers using the asymmetric matrix.

Another option is to use a constant matrix that does not depend on the coordinate at all. Hence
a single matrix can be used throughout the simulations. The constant matrix was proposed
in 14 and an implementation was discussed in 19. The basic idea is that the deviation of the
constrained bond from ideality is expected to be small, so when constructing the symmetric
matrix we have for non-zero elements

(12)

Where a and b bonds are sharing an atom (a2=b1), and θ is the angle between the two bonds.
For the protocol to be exact the angle must be constrained as well. We can enforce it by adding
an additional bond constraint between a1 and b2 atoms of equation (11) 14. Alternatively we
can pick the equilibrium, constant angle (θab,eq) and plug it into equation (12) to compute an
approximate but time independent constraint matrix 19. Since bond angles are usually restrained
with a stiff harmonic potential their fluctuations are small suggesting that the approximation
of a constant matrix is sound (even though it is no longer possible to argue that the solution is
accurate with a particular order of τ). A significant advantage is that the matrix is fixed and
requires computation only at the beginning of the calculations. The disadvantage (similar to
the discussion about the symmetric matrix) is that the number of iterations to convergence that
must be conducted serially may be significantly larger and more costly than the number of
iterations for matrices that are updated during the calculation. Below we examine the options
of symmetric and constant matrices.

Another complication that we need to consider is that we need to find the inverse of A to
determine the Lagrange multipliers (Eq. (9)). Calculation of an inverse is usually significantly
more expensive than the construction of the matrix itself. How to estimate the Lagrange
multipliers with explicit calculation of the inverse therefore attracted some attention. In
LINCS 21 an approximate inverse is computed. Here we follow the algorithm outlined in 14 in
which a conjugate gradient algorithm (CG) estimates the Lagrange multipliers. For a symmetric
and non-negative matrix A we seek the minimum of a target function T as a function of the
Lagrange multiplier

Ruymgaart and Elber Page 6

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

(13)

Note that since we are restricted to symmetric and non-negative matrices we cannot use the
exact matrix Eq. (13) “as is” and we therefore use the symmetric versions. The symmetric
matrix is indeed non-negative as was shown in 14. Differentiating the target function T with
respect to λ recovers Eq. (9). So solving (13) is equivalent to solving (9). Formally, CG is
guaranteed to find the global minimum in L steps where L is the number of constraints. In
practice the number of iterations to determine the Lagrange multipliers is below 10. As is
illustrated in the Results section in our most efficient implementation we fixed the number of
iterations to seven. It provides good accuracy and at the same time avoids a convergence check
and an “if” statement. Since the final decision about convergence is made by coordinate test,
high accuracy of the Lagrange’s multipliers (which are calculated here in single precision) is
less important.

We add one more twist to the straightforward application of CG using a pre-conditioner. The
CG is solved trivially if A is diagonal or close to identity. A good pre-conditioner will bring
the matrix closer to the identity operator. A common practical choice for a pre-conditioner is
the following. Consider the matrix D that includes only the diagonal elements of A (D=diagonal
(A)). We use D to bring the matrix A closer to identity and to reduce the number of iterations
required.

Finally it is important to emphasize that we have two loops of iterations. We have iterations
to solve the Lagrange multipliers and iterations to adjust the coordinate vectors. The latter must
be done in double precision or bond energy will not converge to less than 1×10-7 or so. We
offer the option to run the entire algorithm on the GPU (determine the Lagrange multipliers
and adjust the coordinates in double precision) without memory transfer before convergence.

Finally we comment on the implementation on the GPU. The linear solver must be programmed
from scratch manually, which is an additional challenge for non-symmetric matrices. As we
argue below, linear solvers for the GPU, based on function libraries, are not effective.

The preconditioned conjugate gradient SHAKE algorithm
The resulting SHAKE Algorithm for constrained Molecular Dynamics 14 on the CPU or the
GPU is below. Note the meaning of the three indices: time step i, SHAKE step n and conjugate
gradient step k. Step 4 is the CG algorithm where r (residual), b (direction of search step) and
x are utility vectors. The scalars α (step magnitude) and γ are coefficients required in the
parallel version of the conjugate gradient algorithm (PCG). In addition, max_shk limits the
maximum number of SHAKE iterations, max_CG limits the maximum number of CG steps,
ε is the maximum allowed constraint error (maximum of the error found in all bonds) and
CG_tolerance is the conjugate gradient convergence tolerance for the determination of the
Lagrange multipliers. The dashed lines indicate barriers. A barrier is a point in the code that
enforces any threads that reached that point to wait. This is until all (other) threads have
completed their tasks and reach the same point. Barriers are special breaks during parallel
execution in which all the threads are forced to synchronize and are typically used at a time in
which data sharing between the threads is required.

Algorithm: At time step i:

1) Compute the matrix non-zero elements Aab
2) do while (|σa(xi(n))|>ε) and (n < max_shk)
3. Evaluate constraints. If |σa(xi(n))| ≤ ε ∀a, stop.

Ruymgaart and Elber Page 7

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

4. Solve the linear system Σb Aabλb = σa(xi(n)) to find λ(n) by PCG:
r1 = σ − Aλ
b1 = D−1r1
x1 = b1
- - - - - (end of PCG segment 1)
do while (|rk| > PCG_tolerance) and (k < max_CG)
α = rkTxk/bTAb
- - - - - (end of PCG segment 2) delete; rk+1 = rk − αAbk
λk+1 = λk + αbk
xk+1 = D−1rk+1
γ= r
 k+1
 T
 x
 k+1 / r
 k
 T
 x
 k
- - - - - (end of PCG segment 3)
 b k+1
 = x
 k+1 + γ b
 k
- - - - -
end do
5. Compute an adjusted coordinate set:
x i
 (n+1) = x i
 (n) − (1/2)M −1 Σ λ β
 (n) ∀σ β (x
 i)
6. n = n + 1
end do

Implementation of parallel conjugate gradient SHAKE
We consider a symmetric or a constant A matrix. The PCG algorithm consists of matrix vector
multiplications, vector dot products and the product of a pre-conditioner matrix with a vector.
In our case, the pre-conditioner matrix is diagonal and is stored as a linear array. For efficient
execution we exploit the sparsity of the matrix and minimize memory access. We store the
sparse matrix in compressed row storage format 22 14. This is the same format used by the
cusparse NVIDIA GPU linear algebra library [NVIDIA CUDA user manual]. This storage is
well suited for a parallel matrix vector multiplication algorithm 23. The nonzero columns of
each row are stored adjacent (row major order) in memory in the array elem. The length of
elem is the number of non-zero matrix elements. The column number of each entry in elem is
stored in the integer col array of the same length as elem. Similarly, the row number of each
entry is stored in the integer row array of the same length as elem. The cmprow array is of
length of the number of rows plus one. The elements of cmprow (except the very last) are the
first non-zero column of A for each row (as found in elem). The very last element in the array
stores the would-be-first column of a non-existing additional row. This allows the creation of
a loop such as shown in the matrix multiplication algorithm below to iterate over all rows
without exceptions for the last row. Note that the indices follow C convention in which the

Ruymgaart and Elber Page 8

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

first element is elem(0). An example for the compressed representation of a symmetric matrix
follows below:

Compressed row storage example:

The sparse matrix multiplication algorithm b = Ax is using the same arrays as described above.
b is the result vector. All arrays are global variables. The integers row_start and row_end are
the start and end row numbers assigned to the thread. In the GPU implementation each thread
loops over one row and the outer loop disappears. In this case row j equals the thread number.

for (int j=row_start; j<row_end; j++) {
double elm = 0.0;
for (int i= cmprow [j]; i< cmprow [j+1]; i++) {
int c = col [i];
double Aij = elem [i];
elm += Aij * x [c];
//---- if use symmetry, we must add the following here in the inner loop:
if (c != row) b [c] += Aij * x [j]; //-- scattered write
}
 b [j] = elm;
}

We do not take advantage of the symmetry of the A matrix because it requires scattered memory
access and, in parallel, necessitates the use of a reduction. Threads need to write to elements
in the result vector other than the rows they are assigned to in the load balance phase. The latter
also requires local (thread private) copies of the result vector.

Parallelization—Steps 1 and 5 of the algorithm are easily parallelized. In step 1, when re-
computing the matrix we take advantage of the fact that the identity of the non-zero elements
is fixed and that it was already stored in efficient sparse storage format. We consider only
nonzero matrix elements that are divided precisely between open-MP threads on CPU and get
the bond indices from the non-compressed column and row arrays. This can be done in parallel
by dividing the number of matrix elements over the number of threads. Step 3 is divided
between open-MP threads on the CPU or one constraint per thread on the GPU. On the CPU,
each thread stores its own maximum σ error determined in a global array of length of the
number of threads. Subsequently, on the CPU, all threads loop over this array and determine
max error individually. On the GPU, a shared memory parallel reduction is done inside the
function without global memory access. The GPU reduction is explained in more detail below.
So on the CPU, the final reduction is not done in parallel as it is on the GPU. On the CPU, each
thread performs its own final sum. In step 5 of the SHAKE algorithm (and equation 7) we sum
up the adjustments of the coordinates. It is not possible to adjust the coordinates by looping
independently over the constraints since it is possible that multiple constraints share an atom.
Therefore we loop instead over all atoms involved with one or more constraints and divide
these between the threads. On the GPU this is one atom per thread. To work simultaneously
in the constraints and the atom representation we keep 3 additional arrays, one array storing
each atom number involved in any constraint and one array with pointers into a third array with

Ruymgaart and Elber Page 9

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

the constraint numbers for that atom. The coordinate adjustments are in a nested loop, the outer
loop over the atoms and inner loop (the sum of equation 7) over the constraints. This prevents
the write conflicts between threads.

Parallel Preconditioned Conjugate Gradient—Dot products, while simple to calculate
in series, are more challenging to do in parallel since communication is required to gather the
results from all threads. To begin with each thread calculates its share of elements of the dot
product and accumulates the partial sum. To perform the global sum all threads must complete
their task and a barrier for synchronization is required. In case of a dot product on several CPU
threads, each thread must complete its own partial sum and write the result into a global array
of length of the number of threads before a global sum can be attempted. Then the final sum
can be made. This final sum can also be done in parallel as we do on the GPU (see parallel
reduction below) or as we do on the CPU; each thread can perform this final sum on its own
whenever it is ready to use the data. The last option is not efficient on thousands of threads but
is faster with a limited number of threads (say up to 128) because it does not require a second
barrier. Therefore we implement the parallel reduction only in the GPU code (see parallel
reduction below).

The main obstacles to efficient parallelization are the thread synchronizations required to
calculate the coefficients α and γ and update of the vector b. We therefore combined segments
of the PCG algorithm (see algorithm above, dashed lines) in such a way that only three barriers
remain and at the same time memory (array) access is minimized. In general, the PCG code
can be combined into 3 main segments (Supporting Information Appendix A) that can be
calculated without intermediate barriers in massive parallel calculation at a level of one thread
per row of the matrix A. To reduce (array) memory access, for example in PCG segment 1, we
declare a local utility variable q:

double q = Sigma[n] − Ax[n] (see appendix A);

This variable q is then used 4 times in the product with D−1, the assignment of vectors and the
accumulating dot product. So this prevented us from accessing arrays Sigma and Ax again.
Similarly, memory access is minimized in the other PCG segments (Supporting Information
Appendix A). This process works the same way on the GPU.

GPU Implementation—The entire algorithm is ported to the GPU in the GPU
implementation. The outer Newton-like iterations need to be evaluated in double precision. In
particular, the error vector determination, and coordinate adjustment need to be done in double
precision or the error will not converge to less than ~10−10 as measured by relative error in
bond lengths. The conjugate gradient itself is divided into the same segments as discussed
above and all steps are computed entirely on the GPU. There is no requirement for memory
transfer between host and device during the determination of the Lagrange multipliers
calculation nor during coordinate corrections resulting in significant speedup.

GPU Parallel Conjugate Gradient (PCG)
The main difference between the CPU and GPU code is the granularity of parallelization. The
CPU code is still serial in nature. On the GPU, each row of the vector x (and the matrix A) in
Ax = b is represented by its own single thread. This completely eliminates all outer loops. In
the matrix multiplication code segment shown above, the loop over row j is eliminated and
row j is the thread number. We notice right away now there are no partial sums at all. Each
thread only has the single value calculated in that thread. We take as an example xTx. We could
take the same approach as in the serial implementation. We place a barrier that enforces a wait

Ruymgaart and Elber Page 10

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

until all threads have completed their single product xj*xj. And then we could have each thread
sum all rows. This would give the correct result but with thousands of rows, very inefficiently.
We therefore implement a shared memory parallel reduction algorithm at the end of each PCG
segment, inside the kernel that is logarithmic in the number of array elements (Supporting
Information Appendix B).

A quick review of CUDA instructions necessary for the text below follows. Threads are divided
into blocks. Within a block threads can communicate through shared memory. Threads in a
different block cannot access shared memory in another block. Individual threads also have
local registers in which they can read/writer scalars. Only the owner thread can access local
registers. Global memory can be accessed by all threads so it can also be used for
communication between threads but is slow. Continuing with our example, we realize that each
thread in a particular block has calculated its xj*xj product; it can store this in fast and
shared memory shared that can be seen by other threads in the same block. The shared memory
array is the length of the fixed block-size which is a factor of 32 (we use 128). The parallel
shared memory reduction is conducted as follows. Each thread stores its value in shared:

shared[j]= xj*xj;

Reduction is first conducted within the thread block (see Figure 1). We start with 128 values
in separate threads.

if (j < blocksize/2) shared[j] += shared[j + blocksize/2];

With this single statement, we have reduced our block data by half. The reduction, which is
done in parallel, is exponentially fast:

for (int n=6; n<=0; n--)
if (j < 2n) shared[j] += shared[j + 2n];

For a block size of 128, 7 statements are needed to compute the sum of all elements of the
block in the first position of the array shared. At this point we need to communicate between
blocks. We have up to 128 blocks that each have the sum of the dot product in the first thread
of that block. We perform the last sum using the slow global memory. We define a global array
global of length blocksize.

If (thread == 0) global[block ID] = shared[0].

At this point we have a global array with up to 128 values and one more reduction of one final
block is required. Therefore at this point we need a global thread barrier, which is done as
follows (see also Appendix B in Supporting Information). A counter is kept for each block
during the global writes. When this counter reaches the number of total blocks, each has written
its value and the last block of threads to write is the one that will perform the final reduction.
This last block will now load the global data back into shared:

shared[j] = global[j];

Ruymgaart and Elber Page 11

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

At this point the reduction is just like what is shown above, except that only one block is used.
Repeat for n=6 to 0

if (j < blocksize/2n) shared[j] += shared[j + 2n];

When done:

global[0] = shared[0].

The final single scalar result is now in global[0]. All other threads were waiting for this result;
the waiting is enforced by the global barrier. Thread zero of this last block will release this
global thread barrier.

A reduction, (summation of array elements that are spread over a large number of threads) can
be costly if communication is not handled efficiently. In the context of GPU programming,
such reduction can be done in parallel if we stay within the boundary of a block – a subgroup
of threads that share memory. For a block the reduction requires only a logarithmic number of
serial steps as a function of the length of the array. This is illustrated in Fig. 1 for a block of
threads on the GPU that share the same memory. A global barrier (for all blocks) is not provided
currently in CUDA (only block-wise barriers are provided). The global barrier implemented
between the block reductions and the final block reduction allowed calculation of an entire
PCG step in one GPU kernel. The alternative is a separate kernel for each PCG segment. Calling
separate kernels from the CPU introduces a global barrier anyway; however the last barrier is
a bit slower. Local storage of Conjugate Gradient intermediate results minimizes array memory
access altogether just as in the CPU code (see example, double q = Sigma[n] − Ax[n] above
and details in Supporting Information, Appendix B). We use a fixed block size of 128 allowing
a maximum of 16384 constraints. The fixed block size also allows complete unrolling of the
reduction loop. The block-size can be doubled to 256 (increasing the maximum to 65536
constraints) or increased further as needed.

Water-specific force kernels on the GPU
In molecular simulations with explicit solvent the number of water interactions is significant
and a focus on optimizing this part, even with a specific code, seems like a reasonable approach.
Indeed, the program MOIL 6 has used water-specific code for a long time. Here we discuss the
development of a new water code for the GPU that led to a dramatic speed up and was ported
back to the CPU with a similar effect.

We start with the generation of atomic neighbor lists presented recently in our initial GPU
implementation. Atomic neighbor lists are widely implemented in CPU based code. However,
GPU memory limitations motivated a number of studies to seek different solutions 24–26. In
our previous paper we show that atomic lists can be used accurately and efficiently on the GPU.
The main simulation box is divided into rectangular cells or grid boxes, equal in size. Each
atom is placed in a grid box according to its atomic coordinates. Since the neighboring boxes
are predetermined, atomic neighbors are considered according to their own and neighboring
boxes and are finally added to a list according to a cutoff distance criterion.

Force calculation can be done directly at the level of the grid boxes avoiding the use of lists.
Why use atomic neighbor lists? The advantages of the atomic list approach are as follows. 1)
Exclusion of non-bonded-interactions (of bonded atoms) is made at the list generation step, so
we avoid exclusion tests during the force calculation. 2) Some parameter calculation can be
done and stored during the list calculations (e.g. charge-charge multiplication) in a coalesced

Ruymgaart and Elber Page 12

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

way. This does not only save a set of floating point calculations in the force kernel but also
prevents the need to use local registers of the threads to store parameters for the atoms. It also
prevents the need for shared memory storage of its neighbor atom parameters. 3) Since the
cutoff distance is spherical fewer interactions need to be calculated compared to direct box
calculations.

A disadvantage of the neighbor list is that neighbor coordinates cannot be stored in shared
memory (each atom has a unique list and the lists are too large) but this is compensated for by
the significantly reduced number of interactions and frees the otherwise required shared
memory for other uses. In particular, on Fermi based GPUs, a portion of this freed shared
memory can be used as L1 cache. This cache memory significantly increases coordinate access
speed. The remaining portion of the freed shared memory stores a lookup table for a quadratic
interpolation of the electrostatic force. We also keep the option of storing larger tables in texture
memory but we find the shared memory option significantly faster (almost 2 fold) even if the
texture memory table access is completely cached. A third option is a medium-sized (up to
2000 knots or so) lookup table in constant memory; this option is still slower than the shared
memory approach.

To conclude, the use of a neighbor list makes the resultant force kernel simpler. With the list
it has more resources available for other types of calculations. The contribution of the present
manuscript is the division of input particles into non-water atoms and water molecules resulting
in multiple and specific force kernels, which are significantly faster. Our most complex force
kernel (water-water interactions) allows the calculation of all 9 terms of a water-water
interaction while remaining around the maximum limit of 32 registers. Satisfying the limit of
32 registers allows for up to 66% occupancy on Fermi GPU’s. For a water-water interaction,
each thread represents one water molecule. It requires 18 local registers to store 9 coordinates
+ 9 force accumulation registers. After separating the water molecules from the rest of the
atoms, each grid box has two lists: a list of non-water atoms and a list of water particles. The
lists are generated in the same way as described previously5. We do not take advantage of the
symmetry in the neighbor list in the GPU implementation (i.e. we compute both interactions,
particle i and j and particles j and i). Memory access considerations motivate the doubling of
computations (also see discussion by Stone et al.25). This means that we now have four
respective kernels for neighbor list generation and four kernels for non-bonded force
calculation. Each force kernel accesses its own neighbor list. The interaction types are: (1) a
non-water atom interacting with another non-water atom. In this case each interacting pair can
comprise 2 different atoms and the geometric averages of the pair Lennard Jones and product
of charge parameters are stored in a single float4 of the neighbor list as previously
described.16 (2) A water molecule interacting with a non-water atom. In this case we again still
use a float4 neighbor list matrix but store the non-water atom parameters rather than the
geometric pair averages stored in the previous case. We do not store products such as done in
case (1) because additional memory would be needed. This is since there are two interaction
types (non-water with water oxygen and water hydrogen). We almost always choose to do an
extra calculation over global memory access since the performance is typically bound by
memory access. This is true for both CPU and GPU. (3) Non-water atom with water particle.
In this case, only the integer number of the neighbor water molecule is stored in the respective
neighbor matrix in order to obtain its coordinates in the force kernel. Note that this function is
not needed in the CPU version of the code since on the CPU we do take advantage of the
symmetry and calculations of (3) are conducted in case (2). (4) Water interacting with another
water molecule: We store the single integer of the number of neighbor water in the neighbor
matrix.

All of the above mentioned functions are also implemented with Open Multi-Processing (OMP)
for parallel execution on a shared memory system with multiple CPU threads in absence of a

Ruymgaart and Elber Page 13

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

GPU. The simplicity and performance of the GPU functions prompted us to port this code back
to the CPU for multi-core execution in the absence of a GPU. On the CPU, we do take advantage
of symmetry in the neighbor matrix so no pair interaction is calculated twice. The CPU has a
limited number of threads and it makes sense to have a copy of the force vectors for each thread.
This allows the scattered writes to neighbor atom force that we avoid on the GPU. Therefore
on the CPU a reduction over all thread results is required after the completion of the non-bonded
force calculation on all threads. This reduction is parallelized in a trivial way: each thread adds
n vectors of force of its subset of atoms where n is the number of threads. On the GPU one
thread represents either one atom in cases (1) and (3) above or one water molecule in cases (2)
and (4) above while on the CPU one thread has an outer loop iterating over multiple non-water
atoms or water molecules. Neighbor matrices are of the same types, and they can be generated
on the CPU or on the GPU. Importantly however, for coalesced access, the CPU matrix versions
are the transpose of the GPU version. In massive parallel computing, the 1st row of the neighbor
matrix is the first neighbor of all atoms or water molecules. Switching the index generates the
other type: for CPU serial execution, the first row contains all the neighbor atoms of the 1st

atom or water. More discussion on this topic can be found in 4,7.

Since all water molecules have the same composition and atomic parameters it makes sense to
store these parameters in constant or local memory rather than include them as interacting pair
information in the neighbor lists. We pre-calculate the 5 water hydrogen-hydrogen, oxygen-
oxygen and hydrogen-oxygen pair interaction for charge (qiqj) and Lennard Jones (AiAj and
BiBj) products (see #define, appendix C). This significantly reduces memory access and storage
requirements of the neighbor matrix in cases (3) and (4) above since a neighboring water is
represented simply by one integer. In addition, since one GPU thread now represents a water
molecule in two of the interaction types discussed above (cases (2) & (4)) one set of neighbor
coordinates read can be used for the calculation of 3 interactions: one with each of the 3 atoms
of the water belonging to the thread. This means 3 fold less coordinate access in these kernels
compared to the non-water atom approach used exclusively before.

The NB force kernel in more detail (see also Supporting Information)—The non-
bonded force kernel for non-water interactions is essentially identical to the one previously
reported 5. The new water-water kernel is shown in its entirety in supporting information. It is
an interesting case to illustrate the tradeoff of the computing versus memory access. The
efficiency is dominated by memory accesses and less by computing, especially for the GPU.
In the procedure described below we therefore emphasize reduced memory access at the
expense of more calculation. This leads to a significantly more efficient code.

In the current implementation of the water-water kernel one thread represents one water
molecule. The coordinates and forces of one water molecule are loaded into 18 local registers.
Quadratic force lookup coefficients are read from texture memory and stored in shared
memory 5. The neighboring water molecules are read from the global memory matrix in a
coalesced way in which the next thread accesses the exact adjacent memory location of the
neighbor list resulting in substantial performance gain. For a more extensive discussion on
coalesced memory access with atomic neighbor matrix molecular dynamics see 5,27. The
neighboring water is identified only by its index since all the energy parameters are stored in
registers. Information that we miss is the grid-box position of the neighboring water. This
information is useful since it identifies neighbors that are related by translational symmetry.
Nevertheless to avoid memory accesses we found it beneficial to re-examine the Cartesian
displacements between the water oxygens instead. The translation only adds a logical test,
which is not very expensive, leading to an overall computational gain. Once the single integer
number denoting a water neighbor is obtained from the water-water neighbor matrix the
coordinates of the neighboring oxygen are fetched in a single float4 read, from global (L1
cache) or optionally from texture memory as discussed in 5. The difference vector with respect

Ruymgaart and Elber Page 14

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

to the oxygen of the prime water molecule is computed. The elements of the difference vector
are (rx,ry,rz). If any of these elements (say ri) exceeds half box length the neighbor must result
from a translational symmetry operation. The displacement is shifted to make the length of all
the vector elements smaller than half the box size. The extra cost of the shift was found to be
less significant than memory access (if we attempt to store and transmit the grid-box identity
and/or the difference vector).

After accessing the neighbor oxygen coordinate the O-O interaction force can be calculated,
as well as the H1-O and H2-O interaction forces. This is before further neighbor coordinates
are read from global memory. Each set of coordinates (one of the three neighbor water atoms)
allows for three pair calculations with each of the atoms of the water belonging to the thread
(see Supporting Information, Appendix C, underlined comment for neighbor coordinate read).
During these three calculations, only shared memory is accessed in the force lookup. The nine
calculations have the effect of partial unrolling of the neighbor loop. In loop unrolling the
statements inside a loop are written explicitly and thereby reduce the loop iterations. Loop
iterations carry some overhead.

Results
Systems

The systems investigated and benchmarked in this study varied in their size (from 2690 atoms
to 99,905) with consistent improvements in performance as outlined in this section. Important
simulation parameters are given in Table 1 below:

Performance
The new matrix SHAKE implementation for satisfying the macro-molecule bond constraints
is faster than the serial ‘bond relaxation’ approach even on a single core. Timing results for
SHAKE on a single core are listed in Table 2 where the last row is the bond relaxation method.
Scaling seems to improve with system size.

We comment that system sizes considered are small to overcome the parallelization overhead.
A factor that leads to less than optimal scaling is the relatively low load per thread. Even in
our largest linked system with 7691 non-separable bonds we only have 641 bonds per core on
12 cores. This is a relatively small amount of work to justify significant communication. On
the GPU, at one constraint or atom per thread, this translates to low occupancy (only a portion
of the card is being used). Thus, while we see significant speed up in the SHAKE calculations
while adding more cores the speed-up is slower than linear. Hence the parallelization of a
globally linked system is significantly more complex than parallelization of decoupled bonded
molecules (e.g. water molecules). Decoupled systems can be divided trivially between cores,
scale perfectly, and are not included in the simulation below.

An interesting feature of the combination of the heterogeneous environment of multiple CPU
cores and a GPU is the possibility to conduct asynchronous calculation. For example the GPU
may work on conducting the SHAKE algorithm for the coupled system of bonds of the
macromolecule(s) while at the same time the CPU’s may work on adjusting water coordinates.
A possibility of partitioning the workload is given in Table 3. Using the GPU and exploiting
asynchronous calculations as mentioned earlier are providing additional speed advantage. On
the larger systems, the GPU constrained calculations are done at about the same speed as 5
CPU cores but at the same time free CPU cores for potentially picking up other tasks such as
in this case water SHAKE.

More detailed benchmarks of SHAKE options and the use a fixed matrix, versus a matrix that
is updated every time step is provided in Table 2. In all cases reported below convergence was

Ruymgaart and Elber Page 15

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

assumed when the relative errors of bond lengths were smaller than 10−10 and the
corresponding errors for velocities did not exceed 10−8. Significantly less accurate convergence
criteria did not conserve energy to the threshold we desired (less than one percent change in
energy for a microsecond simulation of DHFR in the NVE ensemble). Significant
experimentation with the SHAKE parameters led to the following conclusions:

1. The use of a constraint matrix A which is updated every time step led to execution
about ~30% faster than the use of a constant matrix which is pre-computed in the
beginning of the calculations. The constant matrix is of course cheaper to compute
but it requires a larger number of SHAKE iterations.

2. Conjugated gradient (CG) iterations on the GPU, to determine the Lagrange
multipliers, are conducted in single precision. In principle CG iterations can continue
until high precision Lagrange multipliers are obtained. This however is not necessary
and less efficient. The final judge of convergence is the accuracy of the bond lengths
(in double precision) so the algorithm is still successful if the (approximate) Lagrange
multipliers are not the most accurate but are successful in generating accurate bonds.

3. The CG calculations are conducted with a fixed number of iterations (and not
necessarily until exact convergence of the Lagrange multipliers is achieved). This
choice was made following efficiency considerations. A fixed number of iterations
converge faster to the correct bond length than CG calculations that accurately
determine the Lagrange multipliers. We note that testing for convergence is
inefficient, even on the CPU. Instead we conduct a fixed number of CG steps (typically
seven, unrolled) that provide a sound next-approximation for the coordinate
adjustments.

4. In principle velocity SHAKE requires no iterations and should be satisfied with a
single round of Lagrange multipliers. However, our calculations are using
approximate, single precision Lagrange multipliers and therefore sometimes
iterations are required (until the above convergence criterion is satisfied).

As we discussed in our first paper on GPU/CPU implementation of MOIL 5 our code conserves
well the energy of the system and therefore provides adequate sampling of configurations and
trajectories from the microcanonical ensemble. We illustrate the energy conservation in table
4 and figure 4. In principle the SHAKE algorithm allows the use of a larger time step than
before. In Table 4 we report energy conservation for the full SHAKE implementation as well
as for the option of SHAKE-L, which means that only bonds that include light atoms (like
hydrogen atoms) are included in the set of constrained bonds. SHAKING all bonds in the
DHFR system is showing an improved energy conservation compared to SHAKE-L. The
example below is for DHFR

We consider next the enhancement in performance that we obtained in the calculation of real
space non-bonded interactions due to the introduction of the water kernel. In Figure 5 we
compare the time of calculation using the new system in milliseconds on a system that contains
a GPU card (GTX480), parallel calculations on all four cores of the shared-memory system,
and calculations on a single core. We made a choice of computational set-ups that can be
purchased cheaply and can be found in a usual laboratory setting. The speed up of the GPU
system compared to a typical four core machine is roughly a factor of ten for DHFR and DOPC
and about a factor of twelve for 1IHF and myosin.

It is also useful to examine directly the benefit of the water kernel on the calculation of the
non-bonded force on the GPU with a different measure. We consider the time (in nanoseconds)
that is required per atom and the comparison is provided in Fig. 6 for the overall real-space
non-bonded interaction using (black square) or not using (gray diamond) special water kernels.

Ruymgaart and Elber Page 16

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

The speed up is consistently more than a factor of three and up to just over a factor of four.
This is with exception of the two smallest systems for which overhead associated with the
multiple kernels plays a role.

Finally we provide an overall view of our code performance. We consider the same seven
benchmark systems and compare a 4 core computer to a 4 core computer + GTX480. We
measure the performance in nanoseconds per day emphasizing the optimization of different
components in Figure 7. The best possible speedups are obtained for relatively small systems
and the speedup is reduced for larger systems. The reason is the lack of successful optimization
of the reciprocal summation of the non-bonded interactions (PME). In our earlier paper 5 we
noted that to conserve energy the PME calculation is better conducted in double precision and
we therefore keep it on the CPU. While we parallelized the PME code on 4 cores the
performance is still lagging behind other speedup of the code. This optimization remains a
topic for future work.

Figure 8 graphically illustrates the increased weight of the PME code and the necessity for
future optimization to address this component or find an alternative to the calculation of long-
range electrostatics. The figure is arranged such that the smallest system is at the center and
the largest at the upper layer of the circle. It is evident that the yellow component of the
calculation dominates for the largest system and is significantly less important for the smallest
system. Future direction may consider parallelization on more cores, or doing parts of the PME
calculations in single precision (like we are doing for the SHAKE algorithm, the Lagrange
multipliers are computed in single precision and the coordinates in double).

Conclusions
In the present manuscript we revisited a Molecular Dynamics code (MOIL) that was ported to
the heterogeneous environment of the CPU and GPU and further enhance the efficiency and
versatility of the program. We have shown that a special kernel for water molecules speeds up
the GPU calculations of real-space non-bonded forces by a factor of four for systems larger
than 20,000 atoms. We have also illustrated that the usually difficult-to-parallelize SHAKE
algorithm can run efficiently when the matrix form is used both on multiple CPU’s or entirely
on the GPU. The speedup is evident even on a single core compared to the bond relaxation
approach. The GPU SHAKE implementation performance is similar to a calculation conducted
on 5 cores. In our first CPU/GPU implementation of MD reported in 5 we emphasized the use
of double precision coordinates and velocities to ensure energy conservation and correct
dynamics in the microcanonical ensemble. Therefore we split the SHAKE algorithm such that
the coordinate adjustments are done in double precision on both the GPU or CPU. We were
further able to take advantage of asynchronous calculations in which the SHAKE of water (that
is done in separate routines in matrix form) is conducted simultaneously with the GPU SHAKE
of the macromolecular coupled bond system. We anticipate that the gain from the new version
of SHAKE will be more significant as the number of coupled bonds increases. Future directions
may include the study of more complex network of bonds (e.g. the inclusion of bond angle as
Urey Bradely terms) and the expansion of special kernel to other molecular fragments.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This research was supported by NIH grant GM05976, NSF grant CCF-0833162, and by Welch grant F-1783. Helpful
discussions and the advice of Professor Martin Burtscher are gratefully acknowledged.

Ruymgaart and Elber Page 17

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

References
1. Hess B, Kutzner C, van der Spoel D, Lindahl E. J Chem Theory Comput. 2008; 4:435–447.

2. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L,
Schulten K. J Comput Chem. 2005; 26:1781–1802. [PubMed: 16222654]

3. Harvey MJ, Giupponi G, De Fabritiis G. J Chem Theory Comput. 2009; 5:1632–1639.

4. Shaw DE, Deneroff MM, Dror RO, Kuskin JS, Larson RH, Salmon JK, Young C, Batson B, Bowers
KJ, Chao JC, Eastwood MP, Gagliardo J, Grossman JP, Ho CR, Ierardi DJ, Kolossvary I, Klepeis JL,
Layman T, McLeavey C, Moraes MA, Mueller R, Priest EC, Shan YB, Spengler J, Theobald M, Towles
B, Wang SC. Commun ACM. 2008; 51:91–97.

5. Ruymgaart AP, Cardenas AE, Elber R. J Chem Theory Comput. 2011; 7:3072–3082. [PubMed:
22328867]

6. Elber R, Roitberg A, Simmerling C, Goldstein R, Li HY, Verkhivker G, Keasar C, Zhang J, Ulitsky
A. Comput Phys Commun. 1995; 91:159–189.

7. Kirmizialtin S, Nguyen V, Johnson KA, Elber R. Structure. 2012; 20:618–627. [PubMed: 22483109]

8. Kirmizialtin S, Elber R. J Phys Chem A. 2011; 115:6137–6148. [PubMed: 21500798]

9. Majek P, Elber R. J Chem Theory Comput. 2010; 6:1805–1817. [PubMed: 20596240]

10. West AMA, Elber R, Shalloway D. Journal of Chemical Physics. 2007; 126:145104. [PubMed:
17444753]

11. Faradjian AK, Elber R. J Chem Phys. 2004; 120:10880–10889. [PubMed: 15268118]

12. Ryckaert JP, Ciccotti G, Berendsen HJC. Journal of Computational Physics. 1977; 23:327–341.

13. Olender R, Elber R. J Chem Phys. 1996; 105:9299–9315.

14. Weinbach Y, Elber R. J Comput Phys. 2005; 209:193–206.

15. Hess B. J Chem Theory Comput. 2008; 4:116–122.

16. Elber R, Ruymgaart AP, Hess B. Euro Phys J - Special Topics. 2011; 200:211–223.

17. Verlet L. Phys Rev. 1967; 159:98–103.

18. Barth E, Kuczera K, Leimkuhler B, Skeel RD. J Comput Chem. 1995; 16:1192–1209.

19. Eastman P, Pande VS. J Chem Theory Comput. 2010; 6:434–437. [PubMed: 20563234]

20. Miyamoto S, Kollman PA. J Comput Chem. 1992; 13:952–962.

21. Hess B, Bekker H, Berendsen HJC, Fraaije J. J Comput Chem. 1997; 18:1463–1472.

22. Barrett, R.; Berry, M.; Chan, TF.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.;
Romine, C.; der Vorst, HV. Templates for the solution of Linear Systems: Building Blocks for
Iterative Methods. SIAM; Philadelphia PA: 1994.

23. Buatois, L.; Caumon, G.; Levy, B. High Performance Computing and Communications, Proceedings.
Perrott, R.; Chapman, BM.; Subhlok, J.; DeMello, RF.; Yang, LT., editors. Vol. 4782. 2007. p. 358

24. van Meel JA, Arnold A, Frenkel D, Zwart SFP, Belleman RG. Mol Simul. 2008; 34:259–266.

25. Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K. J Comput Chem. 2007;
28:2618–2640. [PubMed: 17894371]

26. Eastman P, Pande VS. J Comput Chem. 2010; 31:1268–1272. [PubMed: 19847780]

27. Anderson JA, Lorenz CD, Travesset A. J Comput Phys. 2008; 227:5342–5359.

28. Tuckerman M, Berne BJ, Martyna GJ. J Chem Phys. 1992; 97:1990–2001.

Ruymgaart and Elber Page 18

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 1.
An illustration of the different options in matrix SHAKE. Option-1 computes a fixed matrix
that does not change throughout the calculations. It implies that the bond angles are exactly
fixed 14 or approximately so. 19 The advantage is that the fixed matrix is computed only once
throughout the simulation. The disadvantage is that the fixed matrix is approximate and a
relatively large number of iterations are required to determine the Lagrange multipliers
accurately. We determine the Lagrange multipliers using conjugate gradient (CG) algorithm.
Building on the fixed matrix of reference 14 an implementation that does not constrain the
angles was proposed 19. This variation is likely to require even larger number of iterations to
converge to an accurate solution. In general it is not possible to retain high accuracy and to
avoid iterative solutions of the Lagrange multipliers (and coordinates) with the exception of

Ruymgaart and Elber Page 19

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

very small systems for which analytical solutions are available (e.g. SETTLE 20). In the second
option a symmetric matrix is constructed every time step. Since the matrix is sparse the cost
of generating it each time step is small. The reduction in the number of CG iterations to achieve
high accuracy is significant. This results in a more efficient algorithm. The third option of
generating asymmetric matrix every CG step is not considered here since CG cannot use an
asymmetric matrix without costly symmeterization, for example by using AtA instead of A.

Ruymgaart and Elber Page 20

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 2.
Parallel reduction (summation of array elements) in one block of 8 GPU threads. In this
example, the values in the top row of rectangles are examples of vector entries we wish to add.
Three operations (in parallel) are required to accomplish this reduction of 8 numbers. See also
appendix B. Doing the block-wise shared memory parallel reduction in the CG kernel avoids
the intermediate storage of partial results in global memory. Only the final block reduction
requires global memory access.

Ruymgaart and Elber Page 21

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 3.
Speedup of the conjugate gradient SHAKE algorithm (coordinate + velocity) with the number
of Open-MP cores used. Results are shown for DHFR, 1IHF, (protein + DNA) and myosin:
the constraints for water are done in a separate calculation. These data were obtained on a 12-
core node. The load of SHAKE bonds per thread in case of DHFR is only ~200 on the twelve
cores. Scaling improves with larger systems but even our largest test system, myosin, balances
to only 641 bonds per core making further improvement with system size likely. Fastest GPU
results (one GTX 480) are five-fold faster than 1 CPU core so translate to at least 5 CPU cores
for the largest systems.

Ruymgaart and Elber Page 22

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 4.
Energy conservation in the DHFR system. See legends of Table 1 and Table 4 for the simulation
parameters. The total energy (in kcal/mole) is plotted as a function of time (in nanoseconds).
A linear fit of the energy as a function of time suggests negligible energy drift, which we
estimated as 0.1 percent relative error in a period of one microsecond.

Ruymgaart and Elber Page 23

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 5.
Calculation time of the non-bonded real space forces. Non-bonded real space force calculation
on a single CPU core, 4 CPU cores and a GTX480. GPU Speedup factors versus a single CPU
core are 37, 40, 49 and 47. For more details on the systems see Table 1.

Ruymgaart and Elber Page 24

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 6.
Time of non-bonded real space force calculation as a function of the number of atoms (time
per atom shown) on the GTX480 GPU. The same seven test systems (see Table 1) are used.
The GPU non-bonded real-space calculation is done with and without utilization of separate
water force kernels. The GPU performs better with an increasing number of atoms in the
system. The system at ~39K atom is a DOPC membrane with relatively less water molecules
compared to other systems. Other fluctuations in separate water trends can be due to ionic
concentration and ion distribution (more non-water water interactions). The additional
overhead of separate water kernels causes slower results in small systems. Comparing our
results to those of GROMACS (cores flyer: www.binarybio.com) we note that they use one
faster and a second slower GPUs (GTX470 and GTX580) in their benchmarks. We used an
intermediate GPU (GTX480). For systems larger than 20,000 atoms the results are comparable.

Ruymgaart and Elber Page 25

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 7.
MOIL-opt with GPU overall performance. Although the speedup of real-space non-bonded
force calculation does not degrade on the GPU with number of atoms (see Fig. 4), the overall
speedup decreases with number of atoms due to newly exposed bottlenecks such as the PME
(see Fig. 8). The overall performance on DHFR (13 ns/day) is similar to results reported for
GROMACS 4.5 website from the PME results).

Ruymgaart and Elber Page 26

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 8.
Fraction of computation cost of different parts of the molecular dynamics algorithm on a 4 core
desktop PC equipped with a single GTX480 GPU. All 4 CPU cores and GPU are used here.
The inner time of RESPA is 2fs and the outer time 4fs. In accord with our previous publication
the PME reciprocal calculation is not repeated every step 5. The seven test systems are shown
as different layers in the pie-chart. The outermost layer is the largest system (myosin) and
innermost pepta (see Table 1 for more details). Note that positive times per step are shown
while actual time per step includes a “negative” pie slice contribution because some time is
gained from asynchronous execution on the GPU. This gain is not shown here. It is coming
from SHAKE (see Table 3). Another gain is the simultaneous calculation of bonded interactions
and a part of the reciprocal sum calculation on the CPU while the GPU computes the real non-
bonded interactions.

Ruymgaart and Elber Page 27

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Ruymgaart and Elber Page 28

Ta
bl

e
1

T
es

t
sy

st
em

s.
 A

ll
 s

ev
en

 s
ys

te
m

s
li

st
ed

 b
el

ow
 u

se
 e

xp
li

ci
t

so
lv

at
io

n.
 U

nl
es

s
ot

he
rw

is
e

no
te

d,
 a

ll
 r

es
ul

ts
 a

re
 o

bt
ai

ne
d

w
it

h
ta

bu
la

te
d

co
nd

it
io

ns
 o

n
a

4-
co

re
A

M
D

 P
he

no
m

 9
65

 d
es

kt
op

 P
C

 e
qu

ip
pe

d
w

it
h

a
G

T
X

 4
80

 G
P

U
. T

he
 s

ol
va

ti
on

 b
ox

 s
iz

es
 i

n
an

gs
tr

om
s

ar
e

30
.1

 ×
 3

0.
1

×
 3

0.
1

(P
ep

ta
),

 4
0.

0
×

 4
0.

0
×

 4
0.

0
(T

R
P

zi
pp

er
),

 5
9.

0
×

 5
9.

0
×

 5
9.

0
(H

el
ix

),
 6

2.
2

×
 6

2.
2

×
 6

2.
2

(D
H

F
R

),
 6

5.
0

×
 6

5.
0

×
 1

20
.0

 (
D

O
P

C
-N

aC
l)

, 9
9.

8
×

 9
9.

8
×

 9
9.

8
(1

IH
F

)
an

d
90

.0
 ×

 1
12

.5
 ×

10
5.

0
(M

yo
si

n)
. C

ut
of

f
li

st
 (

up
da

te
 f

re
qu

en
cy

)
ca

lc
ul

at
io

n:
 “

d–
l”

 is
 th

e
cu

to
ff

 d
is

ta
nc

e
us

ed
 in

 th
e

at
om

ic
 n

ei
gh

bo
r

li
st

 g
en

er
at

io
n,

 u
pd

at
e

“f
re

qu
en

cy
”

is
 th

e
nu

m
be

r
of

 s
te

ps
 b

et
w

ee
n

li
st

 u
pd

at
es

 a
nd

 “
d–

f”
 is

 th
e

cu
to

ff
 d

is
ta

nc
e

us
ed

 in
 th

e
fo

rc
e

ca
lc

ul
at

io
n.

 A
ll

 th
e

w
at

er
 m

ol
ec

ul
es

 a
re

 c
on

st
ra

in
ed

 w
it

h
a

sp
ec

ia
li

ze
d

ve
rs

io
n

of
 M

at
ri

x
S

H
A

K
E

 fo
r i

nd
iv

id
ua

l w
at

er
 m

ol
ec

ul
es

 (t
he

 in
ve

rs
e

of
 th

e
sy

m
m

et
ri

c
an

d
co

ns
ta

nt
 A

 fo
r a

 w
at

er
 m

ol
ec

ul
e

is
 p

re
-c

om
pu

te
d

at
 th

e
be

gi
nn

in
g

of
 t

he
 c

al
cu

la
ti

on
s

an
d

us
ed

 e
ve

r
af

te
r)

.

N
r.

 o
f

at
om

s
N

um
be

r
of

 b
on

d
co

ns
tr

ai
nt

s
P

M
E

-D
P

 g
ri

d
C

ut
of

f
d-

l(
fr

eq
)d

-f
N

r.
 o

f
w

at
er

 m
ol

ec
ul

es

P
ep

ta
26

90
43

16
 ×

 1
6

×
 1

6
10

.0
(8

)
9.

0
88

2

T
R

P
zi

pp
er

58
47

22
7

32
 ×

 3
2

×
 3

2
9.

99
(8

)
9.

0
18

75

H
el

ix
20

18
7

38
8

48
 ×

 4
8

×
 4

8
9.

8(
8)

 9
.0

65
88

D
H

F
R

23
53

6
25

23
48

 ×
 4

8
×

 4
8

10
.0

(8
)

9.
0

70
12

D
O

P
C

-N
aC

l
38

80
2

67
84

48
 ×

 4
8

×
 9

6
10

.0
(8

)
9.

0
10

50
2

1I
H

F
91

76
5

54
94

64
 ×

 6
4

×
 6

4
9.

97
(8

)
9.

0
28

76
3

M
yo

si
n

99
90

5
76

91
64

 ×
 6

4
×

 6
4

10
.0

(8
)

9.
0

30
77

6

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Ruymgaart and Elber Page 29

Table 2

Use of fixed constraint matrix A versus a matrix which is updated every time step (see also figure 1). Explanation
of symbols: M-up is an A matrix which is updated every time step. M-fix is a fixed matrix which is generated
once at the beginning of the calculations and used ever after. PCG-fix-it=7 is the use of a parallel conjugate
gradient algorithm with a fixed number of iterations (in this case seven). Similarly PCG-var-it=7 means that the
number of iterations was set to a maximum of seven, but the calculation was terminated if convergence was
detected at a smaller number of iterations. This may be expected to save time, however the check (for
convergence) is less efficient on the GPU and on the CPU. SHAKE-B is the standard use of SHAKE by the bond

relaxation method12. The numbers reported below each example name are reported in the format x.xx(yy.y)z.zz
and means the following: x.xx is the average number of overall SHAKE iterations that are required for
convergence. Note the significantly larger number of iterations required for coordinate adjustments when the
matrix is fixed. yy.y is the total number of conjugate gradient iterations required per time step. If “*” is added to
the left of the number then the number CG of iterations was fixed, otherwise the number of iterations was
determined according to convergence of the conjugate gradient algorithm (“var” option). It is not surprising that
the number of CG evaluations is smaller for the “var” option. However, consider the most important measure
which is z.zz and is the time of executing the SHAKE algorithm in microseconds per bond. The shortest times
obtained are faster for the “M-up PCG-fix-it=7” option.

Method DHFR 1IHF DOPC Myosin

M-up PCG-fix-it=7 8(56*),2.69 8(56*)2.95 6(42*),1.73 7.1(49.6*),2.72

M-fix PCG-fix-it=7 13.6(95.5*),3.81 12.8(89.7*),3.89 10.7(75.1*),2.57 12.6(88.1*),3.77

M-up PCG-var-it=7 11.8(63.4),2.85 10.9(66.1),2.99 8.0(47.7), 1.75 10.3(61.3),2.77

M-fix PCG-var-it=7 17.0(82.9),3.99 16.0(81.5),3.91 13.7(66.5),2.59 16.1(79.0),3.83

M-up PCG-var-it=32 8.8(91.2),3.16 7.5(92.6),3.35 6.0(67.3),1.96 7.25(84.8),3.15

M-up GPU PCG-fix-it=7 7.8(55*),1.07 8(56 *),0.68 6(42.1)0.44 7.1(49.6*)0.53

M-fix GPU PCG-fix-it=7 13.7(95.9*),1.6 13(90.7 *),0.86 10.7(75.1*)0.61 12.6(88.1*)0.86

SHAKE-B (bond relaxation method) 61.4(n/a),4.36 66.6(n/a),4.38 21.62(n/a),1.44 61.1(n/a),4.0

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Ruymgaart and Elber Page 30

Ta
bl

e
3

S
H

A
K

E
 o

n
G

P
U

 v
s

m
ul

ti
-C

P
U

 S
H

A
K

E
, s

ys
te

m
 M

yo
si

n,
 ~

10
0K

 a
to

m
s,

 7
69

1
no

n
w

at
er

 b
on

ds
. T

he
 e

xe
cu

ti
on

 o
f

th
e

m
at

ri
x

S
H

A
K

E
 o

n
th

e
G

P
U

 +
 o

ne
C

P
U

 c
or

e
to

 i
ns

tr
uc

t/
m

on
it

or
 t

he
 G

P
U

 a
ll

ow
s

co
nc

ur
re

nt
 e

xe
cu

ti
on

 o
f

w
at

er
 m

at
ri

x
S

H
A

K
E

 o
n

th
e

re
m

ai
ni

ng
 C

P
U

 c
or

es
 (

so
 a

t
4

C
P

U
 c

or
es

, 3
 c

or
es

 a
re

sh
ak

in
g

w
at

er
 m

ol
ec

ul
es

).
 A

sy
nc

hr
on

ou
s

co
m

pu
ta

ti
on

al
 g

ai
n

fo
r

S
H

A
K

E
 p

er
 t

im
e

st
ep

 i
s

il
lu

st
ra

te
d.

 W
e

al
so

 i
nc

lu
de

d
th

e
re

su
lt

s
fo

r
th

e
bo

nd
 r

el
ax

at
io

n
ap

pr
oa

ch
, w

hi
ch

 is
 th

e
m

os
t c

om
m

on
ly

 u
se

d
S

H
A

K
E

 v
ar

ia
nt

. I
n

al
l c

al
cu

la
ti

on
s

w
at

er
 m

ol
ec

ul
es

 w
er

e
co

ns
tr

ai
ne

d
by

 a
 s

pe
ci

al
iz

ed
 m

at
ri

x
S

H
A

K
E

 a
lg

or
it

hm
a

ca
lc

ul
at

io
n

co
nd

uc
te

d
so

le
ly

 o
n

th
e

C
P

U

C
P

U
 c

or
es

T
im

e
w

at
er

T
im

e
ot

he
r

bo
nd

s
G

ai
n

as
yn

ch
T

ot
al

 t
im

e
SH

K

M
at

ri
x

S
H

A
K

E
:

C
P

U
4

5.
75

5.
70

no
ne

11
.4

5

M
at

ri
x

S
H

A
K

E
:

G
P

U
1

+
 (

3
w

at
er

)
6.

04
4.

07
2.

53
7.

58

B
on

d-
re

lx
1

+
 (

3
w

at
er

)
6.

04
30

.8
6.

04
30

.0
3

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Ruymgaart and Elber Page 31

Table 4

Energy conservation in the DHFR system. The RESPA algorithm28 was used with an inner time step of 2fs and

outer time step of 4fs. Quadratic force interpolation for electrostatics with 256 knots in the lookup table is used

as described in reference 5. Under “Cut” we report the cutoff distance used to generate the non-bonded list (10.0Å)
and the actual cutoff used in the calculation of the force (9.0 Å). The tolerance of error is defined as |Δb/b| where

b is the ideal distance and Δb the deviation from ideal value and is set to 10−10.

Cut Time step SHAKE DRIFT (% μs)

10.0/9.0 2.0 fs Light 0.4

10.0/9.0 2.0 fs Matrix 0.1

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

