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A common process associated with oxidative stress and severe mitochondrial impairment is the opening of the mitochondrial

permeability transition pore, as described in many neurodegenerative diseases. Thus, inhibition of mitochondrial permeability

transition pore opening represents a potential target for inhibiting mitochondrial-driven cell death. Among the mitochondrial

permeability transition pore components, cyclophilin D is the most studied and has been found increased under pathological

conditions. Here, we have used in vitro and in vivo models of X-linked adrenoleukodystrophy to investigate the relationship

between the mitochondrial permeability transition pore opening and redox homeostasis. X-linked adrenoleukodystrophy is a

neurodegenerative condition caused by loss of function of the peroxisomal ABCD1 transporter, in which oxidative stress plays a

pivotal role. In this study, we provide evidence of impaired mitochondrial metabolism in a peroxisomal disease, as fibroblasts in

patients with X-linked adrenoleukodystrophy cannot survive when forced to rely on mitochondrial energy production, i.e. on

incubation in galactose. Oxidative stress induced under galactose conditions leads to mitochondrial damage in the form of

mitochondrial inner membrane potential dissipation, ATP drop and necrotic cell death, together with increased levels of oxi-

dative modifications in cyclophilin D protein. Moreover, we show increased expression levels of cyclophilin D in the affected

zones of brains in patients with adrenomyeloneuropathy, in spinal cord of a mouse model of X-linked adrenoleukodystrophy

(Abcd1-null mice) and in fibroblasts from patients with X-linked adrenoleukodystrophy. Notably, treatment with antioxidants

rescues mitochondrial damage markers in fibroblasts from patients with X-linked adrenoleukodystrophy, including cyclophilin D

oxidative modifications, and reverses cyclophilin D induction in vitro and in vivo. These findings provide mechanistic insight

into the beneficial effects of antioxidants in neurodegenerative and non-neurodegenerative cyclophilin D-dependent disorders.
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Introduction
Oxidative stress has been shown to participate in the onset and/or

progression of several human neurodegenerative diseases (Lin and

Beal, 2006; Pratico, 2008; Stack et al., 2008; Zhou et al., 2008;

Martinez et al., 2010). Compelling evidence indicates that exces-

sive levels of radical oxygen species can modify or deactivate pro-

tein activity or even alter its conformation (Wang et al., 2012).

Oxidative stress also provokes mutations in mitochondrial and nu-

clear DNA, causing mitochondrial dysfunction and cell death

(Pamplona and Barja, 2007).

Mitochondria are organelles playing a pivotal role in orchestrat-

ing cell survival and death, and their optimal functioning is

required to preserve cell and organism viability (Lin and Beal,

2006; Du and Yan, 2010; Fernandez-Checa et al., 2010; Black-

stone and Chang, 2011). Nonetheless, mitochondria are main tar-

gets of oxidative stress. In pathological conditions, there are

increasing probabilities of mitochondrial permeability transition

pore formation, triggering an irrevocable necrotic cell death

(Petronilli et al., 1994; Baines et al., 2005; Halestrap, 2005;

Nakagawa et al., 2005). It is well established that once the mito-

chondrial permeability transition pore is formed, a non-selective,

high conductance pore allowing the flux of solutes up to 1.5 kDa

across the inner mitochondrial membrane is opened. This results in

the dissipation of mitochondrial membrane potential and damage

to the mitochondrial respiratory chain, thereby reducing ATP pro-

duction and exacerbating mitochondrial dysfunction. Moreover,

mitochondrial osmotic swelling leads to ruptures in outer mito-

chondrial membrane triggering irreversible cell death (Baines

et al., 2005; Bernardi et al., 2006; Du and Yan, 2010).

Although the protein composition of mitochondrial permeability

transition pore remains elusive, different components have been

proposed, including the voltage-dependent anion channel, the ad-

enine nucleotide translocator, the mitochondrial phosphate carrier

and the cyclosporin A target cyclophilin D (Halestrap, 2009).

Genetic ablation studies have confirmed that cyclophilin D is an

essential component of mitochondrial permeability transition pore

(Baines et al., 2005; Nakagawa et al., 2005; Schinzel et al., 2005),

although formal proof is lacking for the rest of the

above-mentioned candidates. In this regard, blockade of cyclophi-

lin D by genetic abrogation or pharmacological inhibition protects

mitochondria in many age-related neurodegenerative disease

models, such as Alzheimer’s disease (Du et al., 2008),

Parkinson’s disease (Gandhi et al., 2009; Thomas et al., 2011),

amyotrophic lateral sclerosis (Karlsson et al., 2004; Martin et al.,

2009; Martin, 2010) and multiple sclerosis (Forte et al., 2007).

Oxidative stress is a well-established inducer of mitochondrial

permeability transition pore formation (Baines et al., 2005;

Halestrap, 2005; Du et al., 2008; Martin et al., 2009), but little

is known about the molecular mechanisms involved in this process.

For this reason, we chose to study cellular and in vivo models of

X-linked adrenoleukodystrophy (McKusick No.300100), a rare

neurometabolic disease in which oxidative stress is the main

early contributing pathogenic factor (Fourcade et al., 2008).

X-linked adrenoleukodystrophy is the most frequent peroxisomal

disorder (minimum incidence 1:17 000 males) characterized by

progressive demyelination within the CNS, adrenal insufficiency

and a pathognomonic accumulation of very long-chain fatty

acids (C522:0) in plasma and tissues, in particular hexacosanoic

acid, C26:0 (Powers et al., 2000; Moser, 2001; Ferrer et al.,

2010). This inheritable disorder is caused by mutations in the

ABCD1 gene encoding the homonymous ATP-binding cassette

peroxisomal transporter, which is involved in the import of very

long-chain fatty acids, and very long-chain fatty acids–coenzyme

A esters into the peroxisome for degradation (Hettema et al.,

1996; van Roermund et al., 2008).

Classical inactivation of Abcd1 in the mouse results in late onset

neurodegeneration with axonopathy in spinal cord, in the absence

of inflammatory demyelination in the brain, resembling the most

frequent X-linked adrenoleukodystrophy phenotype or adreno-

myeloneuropathy (Forss-Petter et al., 1997; Lu et al., 1997;

Pujol et al., 2002, 2004). Oxidative damage has been shown in

post-mortem brain samples from individuals with cerebral X-linked

adrenoleukodystrophy (Gilg et al., 2000) and in mouse spinal

cords well before disease onset (Fourcade et al., 2008). Further,

we recently reported that a combination of antioxidants halts

clinical progression and reverses axonal damage in the X-linked

adrenoleukodystrophy mouse model, thereby providing formal

conceptual proof that oxidative injury is a major aetiopathogenic

factor in this disease (Singh and Pujol, 2010; Lopez-Erauskin et al.,

2011; Galea et al., 2012). These findings are currently being trans-

lated in a clinical trial for patients with adrenomyeloneuropathy

(NCT01495260).

Our present study uncovers a functional impairment of mitochon-

dria in X-linked adrenoleukodystrophy fibroblasts, underscoring the

essential role of mitochondrial permeability transition pore in cell

death. Further, we present novel molecular events underlying oxi-

dative stress-induced mitochondrial permeability transition pore for-

mation in X-linked adrenoleukodystrophy and molecular actions of

antioxidants on cyclophilin D. This highlights the rationale for using

these types of agents as a therapeutic option against mitochondrial

permeability transition pore opening, a cardinal event observed in

most prevalent neurodegenerative diseases.

Materials and methods

Chemicals
The following chemicals were used: 6-carboxy-20,70-dichlorodihydro-

fluorescein diacetate diacetoxymethyl-ester (H2-DCFDA; Invitrogen),
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L-Buthionine-sulfoximine (Sigma), cyclosporin A (Calbiochem), FK506

(LC Laboratories), Hoechst 33342 (Sigma), monochlorobimane (Mole-

cular Probes), N-acetylcysteine (Sigma), staurosporine (Sigma), tetra-

methylrhodamine ethyl ester (TMRE; Invitrogen) and Z-VAD, (Sigma).

Antibodies
The following antibodies were used for western blots: anti-caspase 3,

dilution 1:1000, incubated overnight at 4�C (Cell Signaling catalogue

number 9661 and 9662); cyclophilin D antibody (MitoScience) 1:1000

dilution; anti-gamma-tubulin [T6557, clone GTU-88 (Sigma)], dilu-

tion: 1:5000, incubated 1 h at room temperature; goat anti-rabbit

Immunoglobulin G linked to horseradish peroxidase, dilution:

1:10 000 [81–6520 (Invitrogen)]; and goat anti-mouse Immunoglo-

bulin G linked to horseradish peroxidase, dilution: 1:10 000 [81–6120

(Invitrogen)] used as secondary antibodies and incubated 1 h at room

temperature.

Cell cultures and treatments
Human control and X-linked adrenoleukodystrophy fibroblasts were

obtained after informed consent at the Bellvitge University Hospital.

Cells were grown in Dulbecco’s modified Eagle medium containing

10% foetal bovine serum, 100 U/ml penicillin and 100 mg strepto-

mycin, at 37�C in humidified 95% air/5% CO2, to 80–90% conflu-

ence. To perform our experiments, Dulbecco’s modified Eagle medium

without D-glucose, pyruvate or L-glutamine was used. Cells were cul-

tured in this medium supplemented with 1 g/l of glucose or 1 g/l of

galactose and 10% foetal bovine serum. In these conditions, different

drug effects were tested: general caspase inhibitor Z-VAD (1 mM),

cyclosporin A (5 mM), FK506 (5 mM), N-acetylcysteine (1 mM),

L-Buthionine-sulfoximine (500 mM) and staurosporine (1 mM for 14 h).

Evaluation of intracellular radical
oxygen species
Intracellular radical oxygen species levels were estimated using the

radical oxygen species-sensitive H2-DCFDA probe as described

(Fourcade et al., 2008). Following incubation with 10mM H2-DCFDA

for 30 min, cells were washed twice with PBS and lysated with 1%

TritonTM. The fluorescence of H2-DCFDA-stained cells was measured

with a spectrofluorimeter (excitation wavelength 493 nm, emission

wavelength 527 nm).

Adenosine triphosphate measurement
At different time points (12, 24, 36 and 40 h) after changing the

medium to galactose, ATP levels were measured by a chemilumines-

cence system using ATPlite 1step (PerkinElmer), according to the

manufacturer’s protocol. ATP levels were normalized by total protein

concentration.

Cell death measurements
After the indicated treatments, human fibroblasts viability was quanti-

fied using CytoTox-ONETM Homogeneous Membrane Integrity Assay

(Promega), according to the manufacturer’s instructions.

Nuclear chromatin condensation
X-linked adrenoleukodystrophy fibroblasts nuclei were stained with

Hoechst 33342 (10mg/ml) as described (Lizard et al., 1995), and the

nuclei were observed using confocal microscopy.

Evaluation of reduced glutathione
Reduced glutathione was estimated using monochlorobimane (excita-

tion wave length 360 nm, emission wave-length 460 nm) as described

(Fourcade et al., 2008).

Inner mitochondrial membrane potential
quantification by flow cytometry
Treated cells were washed with PBS and incubated with 50 nM of

TMRE (Molecular Probes) in pre-warmed PBS for 30 min at 37�C.

Cells were trypzinized, centrifuged at 1000 g for 5 min and resus-

pended in pre-warmed PBS. All samples were captured in a

FACSCantoTM recording 20 000 cells for each condition and genotype

tested. Histograms showing the percentage of depolarized cells were

obtained after gating live cells. Data were analysed with FlowJo Tree

Star software.

Mono-dimensional electrophoresis and
western blotting
After the required treatments, control and X-linked adrenoleukodystro-

phy fibroblast samples were trypsinized and washed twice with PBS.

Tissues samples were removed from euthanized mice and flash frozen

in liquid nitrogen. Frozen tissue samples were homogenized in radio-

immunoprecipitation assay buffer using a motor-driven grinder

(Sigma-Aldrich) and then sonicated for 2 min at 4�C in an ultrasonic

processor UP50H (Hielscher-Ultrasound Technology). Fibroblast sam-

ples were also sonicated for 2 min at 4�C in the ultrasonic processor

UP50H. Both kinds of samples were centrifuged at 1000g for 10 min at

4�C, and supernatant protein concentration was measured with BCA

Protein Assay Reagent (Pierce/Thermo). Samples (10–100 mg) were

loaded onto each lane of 10–15% polyacrylamide gels for 70 min at

120 mV. Resolved proteins were transferred to nitrocellulose.

Secondary antibody for protein detection was conjugated with horse-

radish peroxidase, detected with chemiluminescence enhancer Luminol

and followed by exposure to CL-XPosureTM Film (Thermo Scientific).

Autoradiographs were scanned and quantified using GS800 densitom-

eter (Bio-Rad).

Electron microscopy
The medium and the cells cultured in the required conditions were

collected and centrifuged at 1500g for 10 min to obtain the pellet of

all the cells in the culture. The pellets were washed with PBS and

centrifuged again at 1500g for 10 min. Supernatants were discarded

and pellets were fixed with 2% paraformaldehyde/2% glutaraldehyde

in 0.1 M PBS for 1 h at room temperature. The pellets were washed

three times with 0.1 M PBS and maintained in paraformaldehyde 2%

in 0.1 M PBS and then post-fixed by immersion in 1% osmium tetrox-

ide, embedded in EPON-812 and cut with an ultramicrotome. Ultra-

thin sections were stained with toluidine blue, and finally selected

sections were collected on copper grids and stained with uranyl acet-

ate and Reynold’s lead citrate. Sections were directly visualized with a

Jem-1011 transmission electron microscope (Jeol).
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Bidimensional electrophoresis and
western blotting
Redox proteomics for the identification of oxidized cyclophilin D in

human X-linked adrenoleukodystrophy fibroblasts were performed as

previously described (Galino et al., 2011) with some modifications.

After the first dimension steps, the equilibrated strips were loaded

onto 15% SDS-PAGE gels (20 � 20 cm) and run at 250 V for 4.5 h

at room temperature. Bidimensional gels were performed in parallel,

one for Coomassie staining and the other to be transferred to nitro-

cellulose membrane. To detect oxidized proteins (oxyblot), the mem-

brane was incubated with antibody against 2,4-dinitrophenylhydrazine

(D9659, Sigma, dilution 1:500) (Robinson et al., 1999). For immuno-

detection of cyclophilin D, the same membrane was incubated with

antibody against cyclophilin D (Molecular Probes). For Coomassie

staining, bidimensional gels were fixed for 1 h in a 30% ethanol/

70% glacial acetic acid solution. Then, the fixing solution was replaced

with Coomassie solution (Brilliant Blue R, B0149, Sigma) and incubated

overnight at room temperature. After gel washing, the cut spots were

digested, and peptides were analysed with mass spectrometry as pre-

viously reported (Galino et al., 2011). The Swiss-Prot database was

used to identify proteins from a spectrum generated by liquid chro-

matography coupled to tandem mass spectrometry (Supplementary

Table S1). Briefly, we applied a taxonomy filter (Homo sapiens) and

obtained 20 407 sequences that were used to match with our experi-

mental data using a significance threshold P5 0.05. We obtained an

identity score of 34, which lies under the score provided by the liquid

chromatography coupled to tandem mass spectrometry (46.5), thus

providing high reliability to the identification.

Human brain samples
Brain tissues from patients with cerebral adrenomyeloneuropathy and

healthy age matched male control subjects were obtained from the

Brain and Tissue Bank for Developmental Disorders at the University of

Maryland, Baltimore, as described (Schluter et al., 2012). Informed

written consent was obtained from all patients or their legal represen-

tatives, and the local ethics committee approved the studies.

Mouse breeding
The generation and genotyping of Abcd1- mice has previously been

described (Lu et al., 1997; Pujol et al., 2002, 2004). Mice used for

experiments were of a pure C57BL/6 J background and were all male.

Animals were sacrificed, and tissues were recovered and conserved at

–80�C. All methods used in this study were in accordance with the

Guide for the Care and Use of Laboratory Animals published by the

US National Institutes of Health (NIH Publications No. 85–23, revised

1996) and with the ethical committee of The Bellvitge Institute of

Biomedical Research and the government of Catalonia.

Treatment of mice
�-Lipoic acid (0.5% w/w) was mixed into AIN-76A chow from Dyets.

N-acetylcysteine (1%) was dissolved in water (pH 3.5) (Lopez-Erauskin

et al., 2011). Eight-month-old animals were randomly assigned to

one of the following dietary groups for 4 months. Group I: wild-type

mice (n = 8) received only normal AIN-76A chow; Group II: Abcd1�

mice (n = 8) received only normal AIN-76A chow; and Group III:

Abcd1� + antioxidant mice (n = 6) were treated with chow containing

�-lipoic acid and with N-acetylcysteine in drinking water

(Lopez-Erauskin et al., 2011).

Statistical analysis
Data are given as mean � standard deviation. Significant differences

were determined by one-way ANOVA followed by Tukey’s Honestly

Significant Difference post-test after verifying normality (*P5 0.05,

**P5 0.01, ***P5 0.001) or Student’s t-test (*P5 0.05,

**P5 0.01, ***P5 0.001). Statistical analyses were performed

using SPSS 12.0 program (SPSS Inc.).

Results

X-linked adrenoleukodystrophy
fibroblasts display mitochondrial
impairment
Mitochondrial dysfunction has been reported in a wide array of

diseases characterized by oxidative stress, energy failure, inner

mitochondrial membrane depolarization and cell death (Lin and

Beal, 2006; Du et al., 2008; Thomas et al., 2011). Recent evi-

dence obtained in our laboratory suggested energetic failure with

reduced NADH and ATP levels, as a result of oxidation of key

components of tricarboxylic acid and glycolysis in Abcd1� spinal

cords (Galino et al., 2011).

As a means to directly assess mitochondria function within intact

cells, we cultured human X-linked adrenoleukodystrophy

fibroblasts, usually grown in 1 g/l of glucose medium, in 1 g/l gal-

actose medium. This is a common practice applied in molecular

genetics laboratories as a diagnostic tool when a mitochondriopa-

thy is suspected. Cells grown in glucose produce their ATP by

glycolysis, largely bypassing the mitochondria. However, when

the same cells are grown in media supplemented with galactose

as opposed to glucose, they are forced to produce ATP through

oxidative phosphorylation, as galactose is used in the glycolytic

pathway at a much slower rate than glucose (Robinson et al.,

1992; Hofhaus et al., 1996; Ghelli et al., 2003; Acin-Perez

et al., 2009). If mitochondrial damage exists, cell viability is

compromised.

Indeed, we observed that galactose induced X-linked adreno-

leukodystrophy fibroblast cell death at 40 h, but not at earlier

times (e.g. 24 and 36 h), indicating mitochondrial dysfunction in

these cells (Fig. 1A).

To dissect the events occurring before cell death, we measured

the level of radical oxygen species and ATP content as described

(Fourcade et al., 2008; Galino et al., 2011; Lopez-Erauskin et al.,

2011). Also, we measured inner mitochondrial membrane poten-

tial with TMRE and analysed the results by flow cytometry. TMRE

is a voltage-sensitive red–orange fluorescent indicator for mito-

chondrial transmembrane potential (Zhou et al., 2010).

Mitochondrial depolarization (disrupting or decreasing membrane

potential) results in a loss of dye from the mitochondria and a

decrease in fluorescence intensity.

We observed that culture in galactose provoked (i) an increase

in intracellular radical oxygen species level compared with glucose

conditions, both in control and X-linked adrenoleukodystro-

phy fibroblasts (Fig. 1B); (ii) energetic failure in X-linked adreno-

leukodystrophy fibroblasts as shown by lowered levels of ATP
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(Fig. 1C); and (iii) depolarization in X-linked adrenoleukodystrophy

fibroblasts (Fig. 1D). All these events preceded cell death.

However, once cell death was observed (40 h), reactive oxygen

species and ATP levels dramatically dropped (Supplementary

Fig. 1A and B), and the inner mitochondrial membrane potential

was completely disrupted (Fig. 1D), coinciding with a shift of

the whole cell population to a smaller size region (Supplementary

Fig. 1C).

Galactose-induced cell death occurs
independently of caspase activity
We next evaluated the type of cell death induced by galactose in

X-linked adrenoleukodystrophy fibroblasts. To discriminate be-

tween types of cell demise, we inhibited caspase activation using

the general caspase inhibitor Z-VAD. Interestingly, we observed

no prevention of galactose-induced cell death (Fig. 2A). Moreover,

Figure 1 Mitochondrial dysfunction in X-linked adrenoleukodystrophy fibroblasts. Cell death (A), intracellular radical oxygen species

levels (B), ATP content (C) and inner mitochondrial membrane potential (D) were quantified in control and X-linked adrenoleukodystrophy

fibroblasts cultured in presence of 1 g/l glucose or glucose-free medium containing 1 g/l galactose (*P50.05; **P50.01; ***P50.001;

n = 4/genotype and condition). In D, the numeric values above the line correspond to the percentage of polarized cells on the right-hand

and depolarized cells on the left-hand of each panel. CTL = control; ROS = radical oxygen species; X-ALD = X-linked

adrenoleukodystrophy.

3588 | Brain 2012: 135; 3584–3598 J. López-Erauskin et al.
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galactose treatment did not generate cleavage of caspase 3, the

caspase active form, in contrast with cleavage observed with

staurosporine, a classical apoptosis inducer and caspase 3 activator

(Fig. 2B). Further, we examined nuclear chromatin condensation

using the Hoechst 33342 dye as described (Lizard et al., 1995).

We thus compared galactose-induced chromatin condensation

pattern with (i) H2O2-treated cells as positive control for necrotic

cell death (Lee and Shacter, 2000) and (ii) staurosporine-treated

cells as positive control for apoptotic cell death (Seo and Seo,

2009) (Fig. 2C). Galactose-induced nuclear morphology presented

more similarities with H2O2-treated cells than with the classical

apoptotic chromatin condensation phenomenon observed in

staurosporine-treated cells. In addition, electron microscopy

analysis of X-linked adrenoleukodystrophy fibroblasts treated

with galactose showed that these cells had features of necrosis,

such as vacuolization, and non-apoptotic chromatin condensation,

instead of the classical apoptotic morphology (Fig. 3A–D).

Collectively, these data support the notion that galactose induces

necrotic cell death in X-linked adrenoleukodystrophy fibroblasts.

Galactose-induced cell death is
oxidative stress dependent
We have previously shown that a cocktail of antioxidants,

including N-acetylcysteine, �-lipoic acid and vitamin E, or

Figure 2 Galactose induces necrotic cell death in X-linked adrenoleukodystrophy fibroblasts. Control and X-linked adrenoleukodystrophy

fibroblasts cultured in glucose or galactose were treated with general caspase inhibitor Z-VAD, and cell death was measured (A). Cleaved

caspase 3 was analysed in different conditions by western blot (B). Staurosporine (1 microM during 14 h) was used as a positive control of

caspase 3 activator (***P50.001; n = 4/genotype and condition). The pattern of chromatin condensation induced by galactose was

analysed using Hoescht 33342 staining (C). H2O2 (10 mM for 3 h) and staurosporine (2 mM for 6 h) were used as positive control for

necrotic and apoptotic cell death, respectively. X-linked adrenoleukodystrophy fibroblasts of six different patients were analysed, and

25 cells per condition were scored. Representative pictures and quantification are shown. CTL = control; X-ALD = X-linked

adrenoleukodystrophy.
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N-acetylcysteine and �-lipoic acid alone, reversed oxidative

damage to proteins and DNA, mitochondrial energetic metabolism

impairment, immunohistological signs of axonal degeneration and

associated locomotor disability in an X-linked adrenoleukodystro-

phy mouse model (Galino et al., 2011; Lopez-Erauskin et al.,

2011).

To evaluate whether oxidative stress plays a role in galactose-

induced cell death, we cultured X-linked adrenoleukodystrophy

fibroblasts in the presence of galactose and the antioxidant

N-acetylcysteine. The treatment induced cell survival (Fig. 4A),

led to the recovery of normal levels of ATP (Fig. 4B), and reversed

mitochondrial depolarization (Fig. 4C), demonstrating that oxida-

tive stress plays a central role in the mitochondrial dysfunction

observed under these conditions.

We and others have previously reported that C26:0 excess pro-

vokes decrease of the reduced glutathione (Fourcade et al., 2008;

Baarine et al., 2012b), the major antioxidant barrier of the cell

(Harvey et al., 2008). Considering that N-acetylcysteine is the

precursor of reduced glutathione, we wondered whether the posi-

tive effect observed with N-acetylcysteine was due to regeneration

of reduced glutathione, or alternatively, due to other effects (anti-

oxidant or other) of N-acetylcysteine. To answer this question, we

used L-buthionine-sulfoximine, a specific inhibitor of the key

enzyme of reduced glutathione synthesis, the �-gluthamyl-

cysteine-syntetase enzyme, as described (Fourcade et al., 2008).

Galactose-induced cell death of X-linked adrenoleukodystrophy

fibroblasts was not prevented when L-buthionine-sulfoximine

was applied together with N-acetylcysteine (Fig. 4D). Further,

we measured reduced glutathione using monochlorobimane and

confirmed that cell survival was correlated with reduced glutathi-

one amount (Fig. 4E). Taken together, our data indicate that

reduced glutathione synthesis is required to prevent cell death,

and, thus, oxidative stress plays a paramount role in this process.

Mitochondrial permeability
transition pore opening underlies
galactose-induced cell death in X-linked
adrenoleukodystrophy fibroblasts
Mitochondria play a critical role in initiating both apoptotic and

necrotic cell death. A major player in necrosis is the mitochondrial

permeability transition pore, a non-specific pore that opens in the

inner mitochondrial membrane promoting massive swelling of

mitochondria, drop of membrane potential, rupture of the outer

membrane and cell death (Halestrap et al., 2002; Baines et al.,

2005; Bernardi et al., 2006; Du and Yan, 2010). When mitochon-

dria become depolarized, inhibition of oxidative phosphorylation

and stimulation of ATP hydrolysis occur (Du et al., 2008;

Halestrap, 2009).

Figure 3 X-linked adrenoleukodystrophy fibroblasts show necrotic features during galactose-induced cell death. X-linked adrenoleuko-

dystrophy fibroblasts were cultured in glucose (A) (shown at larger magnification in C); or in glucose-free medium containing galactose

(B) (shown at larger magnification in D). After 40 h, cells were collected and analysed by electron microscopy. V = vacuole; arrows indicate

lipid inclusions; arrowheads indicate morphologically normal appearing mitochondria; asterisks indicate swollen mitochondria

(n = 4/condition).
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To study a potential implication of mitochondrial permeability

transition pore opening in galactose-induced cell death in X-linked

adrenoleukodystrophy fibroblasts, we used cyclosporin A, a clinic-

ally used immunosuppressive agent, which among other proper-

ties, acts to inhibit mitochondrial permeability transition pore

opening through its binding to mitochondrial matrix protein cyclo-

philin D (Crompton et al., 1988; Halestrap and Davidson, 1990).

Cyclophilin D is the only existent mitochondrial peptidyl-prolyl

cis-trans isomerase that under pathological conditions is

translocated to the inner mitochondrial membrane, where it is

perceived to interact with the adenine nucleotide translocator

inducing pore formation (Connern and Halestrap, 1994; Crompton

et al., 2002; Halestrap et al., 2002; Zamzami et al., 2005;

Halestrap, 2006).

We observed that cyclosporin A prevented galactose-induced

X-linked adrenoleukodystrophy fibroblasts cell death (Fig. 5A).

However, considering that cyclosporin A can also inhibit calci-

neurin, we used the compound FK506 that inhibits calcineurin

Figure 4 X-linked adrenoleukodystrophy fibroblast cell death and metabolic failure in galactose is oxidative stress dependent. Control and

X-linked adrenoleukodystrophy fibroblasts cultured in glucose or galactose were treated with 1 mM of N-acetylcysteine. Cell death (A),

ATP content (B) and inner mitochondrial membrane potential (C) were measured. In C, the numeric values above the line correspond to

the percentage of polarized cells on the right-hand and depolarized cells on the left-hand of each panel. Fibroblasts cell death was

quantified under the same conditions with L-buthionine-sulfoximine (500 mM) treatment (D). Reduced glutathione amount was quantified

fluorimetrically using monochlorobimane in X-linked adrenoleukodystrophy fibroblasts cultured in glucose or in galactose under N-

acetylcysteine and/or L-buthionine-sulfoximine treatments (E) (*P50.05; **P5 0.01; ***P50.001; n = 4/condition). BSO = L-

buthionine-sulfoximine; CTL = control; GSH = reduced glutathione; NAC = N-acetylcysteine; X-ALD = X-linked adrenoleukodystrophy.
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activity, but shows no binding to cyclophilin D, as a negative

control (Friberg et al., 1998). The treatment of X-linked adreno-

leukodystrophy fibroblasts with FK506 compound did not prevent

galactose-induced cell death, indicating that induction of cell death

occurs through mitochondrial permeability transition pore forma-

tion (Fig. 5A).

In addition, the presence of cyclosporin A counteracts reduction

in ATP (Fig. 5B) and inner mitochondrial membrane potential

dissipation (Fig. 5C) induced by galactose in X-linked adrenoleu-

kodystrophy fibroblasts. Moreover, we observed mitochondrial

swelling in galactose-treated X-linked adrenoleukodystrophy fibro-

blasts by electron microscopy preparations (Fig. 3B and D). Taken

together, these data indicate that mitochondrial permeability tran-

sition pore opening underlies the cell death of X-linked adrenoleu-

kodystrophy fibroblasts on galactose.

Cyclophilin D expression is
modulated by oxidative stress in
X-linked adrenoleukodystrophy in vitro
and in vivo
Cyclophilin D is the only firmly established mitochondrial perme-

ability transition pore component and plays an essential role in its

formation (Baines et al., 2005; Nakagawa et al., 2005; Schinzel

et al., 2005). As accumulation of cyclophilin D under pathological

conditions in several disorders and in ageing has been described

(Du et al., 2008; Gandhi et al., 2009; Martin, 2010), we decided

to study cyclophilin D expression in X-linked adrenoleukodystro-

phy fibroblasts. We found more marked cyclophilin D expression

in X-linked adrenoleukodystrophy compared with control fibro-

blasts at baseline levels, when cells were cultured in glucose

(Fig. 6A). Galactose incubation (Fig. 6B) and incubation with the

very long-chain fatty acid C26:0 (Fig. 6C) induced cyclophilin D

overexpression in control fibroblasts. Treatment with the

antioxidant N-acetylcysteine reduced cyclophilin D to control

levels in X-linked adrenoleukodystrophy fibroblasts (Fig. 6D).

Cyclophilin D is oxidized in X-linked
adrenoleukodystrophy human fibro-
blasts, and N-acetylcysteine counteracts
this effect
We earlier reported an increase in oxidized proteins in Abcd1-

mice spinal cord and in X-linked adrenoleukodystrophy fibroblasts

(Fourcade et al., 2008; Galino et al., 2011; Lopez-Erauskin et al.,

2011). Wondering whether cyclophilin D could also be oxidized in

Figure 5 Galactose-induced mitochondrial dysfunction and cell death in X-linked adrenoleukodystrophy fibroblasts is caused by mito-

chondrial permeability transition pore opening. Control and X-linked adrenoleukodystrophy fibroblasts cultured in glucose or galactose

were treated with 5 mM of cyclosporin A or 5mM of FK506, and cell death was measured (A). In the same conditions with cyclosporin

A treatment, ATP content (B) and inner mitochondrial membrane potential (C) were quantified (*P50.05; **P5 0.01; ***P50.001;

n = 4/genotype and condition). In C, the numeric values above the line correspond to the percentage of polarized cells on the right-hand

and depolarized cells on the left-hand of each panel. CsA = cyclosporin A; CTL = control; X-ALD = X-linked adrenoleukodystrophy.
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X-linked adrenoleukodystrophy, we performed redox proteomic

experiments with human fibroblasts. We observed a significant

increase in cyclophilin D oxidation in X-linked adrenoleukodystro-

phy fibroblasts (Fig. 7A and B). Interestingly, antioxidant

treatment with N-acetylcysteine reversed cyclophilin D oxidation

(Fig. 7A and B). These data suggest a plausible molecular mech-

anism underlying the beneficial action of antioxidants in mitochon-

drial permeability transition pore opening, which deserves further

testing in relevant models (Petrosillo et al., 2009; Greco et al.,

2011; Loor et al., 2011).

Cyclophilin D expression is increased in
patients with X-linked adrenoleukody-
strophy and in a mouse model of
X-linked adrenoleukodystrophy, and its
expression is reduced by antioxidants
in vivo
Evidence for oxidative damage underlying neurodegeneration in

X-linked adrenoleukodystrophy patient brains abounds (Gilg

et al., 2000; Powers, 2005; Fourcade et al., 2008; Ferrer et al.,

2010; Galea et al., 2012). We therefore assessed cyclophilin D

expression in the brains of patients with cerebral adrenomyelo-

neuropathy. We found accumulation of cyclophilin D in the

affected white matter areas (Fig. 8), although no significant dif-

ferences in the non-demyelinated areas were found.

The mouse model of X-linked adrenoleukodystrophy presents

long tract axonopathy in spinal cords, along with microgliosis

and astrocytosis, accompanied by peripheral nerve conduction

impairment and motor disability �20 months of age, thus allowing

for a wide window for monitoring the pathogenic cascade and for

therapeutic intervention (Pujol et al., 2002, 2004). However, oxi-

dative damage to proteins appears early, �3 months of age

(Fourcade et al., 2008). No changes in cyclophilin D levels were

observed at this early age in wild-type and Abcd1- mice spinal

cord (Supplementary Fig. 2A). However, later in time, but

before disease onset, at 8 months of age, we observed increased

cyclophilin D levels when compared with wild-type littermates

(Fig. 9A). In addition, cyclophilin D levels were unchanged in

brain cortex and liver of 8-month-old mice (Supplementary

Fig. 2B and C), suggesting that cyclophilin D expression induction

is target-organ specific and precedes axonal degeneration.

We have previously shown that a combination of antioxidants,

including N-acetylcysteine and �-lipoic acid, reversed metabolic

failure and axonal degeneration in an X-linked adrenoleukodystro-

phy mouse model (Galino et al., 2011; Lopez-Erauskin et al.,

2011). To investigate whether these antioxidants were effective

counteracting cyclophilin D overexpression, we treated 8-month-

old Abcd1� mice with a combination of N-acetylcysteine and

�-lipoic acid for 4 months and found that the levels of cyclophilin

D were normalized by antioxidants (Fig. 9B).

Discussion
Neurodegenerative disorders are often linked to oxidative stress

and mitochondrial dysfunction, including pathological mitochon-

drial permeability transition pore opening (Lin and Beal, 2006;

Su et al., 2009). In the present report, we have uncovered

Figure 6 Cyclophilin D expression is modulated by oxidative stress. Cyclophilin D levels were quantified in control and X-linked

adrenoleukodystrophy fibroblasts at basal levels (A), in control fibroblasts after culture in galactose for 24 h (B) and with C26:0 (50 mM)

for 7 days (C), and after treating X-linked adrenoleukodystrophy fibroblasts with N-acetylcysteine (0.5 mM) for 6 days (D) (*P50.05;

**P50.01; ***P50.001; n = 5/genotype and condition). CTL = control; CypD = cyclophilin D; ETOH = ethanol;

NAC = N-acetylcysteine; X-ALD = X-linked adrenoleukodystrophy.
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novel links between oxidative stress, mitochondrial depolarization,

ATP loss and ensuing cell death in X-linked adrenoleukodystrophy.

We found that enforcement of mitochondrial metabolism by cul-

turing X-linked adrenoleukodystrophy fibroblasts in galactose was

sufficient to promote cell death. Although control and X-linked

adrenoleukodystrophy fibroblasts underwent oxidative stress

under galactose conditions, only X-linked adrenoleukodystrophy

fibroblasts displayed the loss of ATP and mitochondrial depolariza-

tion that preceded cell death, in an oxidative stress-dependent

manner. These data suggest that X-linked adrenoleukodystrophy

cells are particularly sensitive to oxidative stress, and that an

excess of radical oxygen species production is responsible for the

opening of the mitochondrial permeability transition pore and re-

sulting cell death. We propose that high levels and/or increased

oxidation of cyclophilin D mediate or contribute to this sensitivity.

Moreover, we conclude that the oxidative stress that emerges

from the accumulation of very long-chain fatty acids (Fourcade

et al., 2008; Baarine et al., 2012a) triggers necrotic cell death in

X-linked adrenoleukodystrophy fibroblasts. We show that this is

associated with non-apoptotic chromatin condensation (absence

of cells with totally condensed and/or fragmented nuclei), ATP

drop and mitochondrial swelling, and it does not involve caspase

activation. Along the same lines, and although formal proof for

necrosis in neural tissue is lacking, we had formerly shown lack of

caspase-3 activation in spinal cords of both Abcd1 null and

Abcd1/Abcd2 null mice (Pujol et al., 2004). Interestingly, very

long-chain fatty acids, such as C24:0 or C26:0, also provoke nec-

rotic cell death in cultured oligodendrocytes (Kahn et al., 2011).

These results offer the opportunity of future studies aiming to

delve deeper into characterization of specific forms of necrosis,

such as necroptosis. This is a form of cell death frequently asso-

ciated with bioenergetic stress and which requires RIPK1 or RIPK3

proteins (Degterev et al., 2008).

The vulnerability of X-linked adrenoleukodystrophy fibroblasts

to mitochondria-dependent energy production invites the specula-

tion that specific neural cell types, which largely depend on

mitochondria for their energy supply, may be preferentially

exposed and jeopardized in vivo. Indeed, axons have high meta-

bolic demands and unusual length that renders them susceptible

to oxidative damage, ischaemia or mitochondrial defects, as seen

in multiple sclerosis (Lassmann, 2011) or amyotrophic lateral scler-

osis (Shi et al., 2010). It follows that malfunctioning mitochondria

could be an important factor accounting for the long-tract axono-

pathy of spinal cords observed in patients with adrenomyeloneuro-

pathy and the X-linked adrenoleukodystrophy mouse models.

Although the consequences of the mitochondrial permeability

transition pore opening have been extensively studied in many

laboratories, its exact molecular identity remains unknown.

Knockout-based studies have confirmed that cyclophilin D plays

an essential role regulating mitochondrial permeability transition

pore opening and necrotic cell death, although cyclophilin D is

neither a structural component of the pore nor a transmembrane

protein (Baines et al., 2005; Nakagawa et al., 2005; Schinzel

et al., 2005). Cyclophilin D, located in the mitochondrial matrix,

has been suggested as helping in the correct folding of proteins

(Matouschek et al., 1995). However, in response to pathological

insults, such as calcium overload and/or oxidative stress, cyclophi-

lin D is translocated to the inner mitochondrial membrane to

induce mitochondrial permeability transition pore formation

(Connern and Halestrap, 1994).

One major consequence of mitochondrial permeability transition

pore opening is that the inner mitochondrial membrane no longer

maintains a barrier to protons, which leads to dissipation of the

proton motive force. The resulting uncoupling of oxidative phos-

phorylation not only prevents mitochondria from making ATP,

and produces cytotoxic radical oxygen species, but also the

proton-translocating ATP synthase goes into reverse, consuming

ATP, due to futile cycles in an effort to restore the inner mito-

chondrial membrane potential, thereby further contributing to cel-

lular damage (Halestrap, 2009; Zorov et al., 2009). In this study,

we have demonstrated that oxidative stress leads to energetic fail-

ure and necrotic cell death mediated by opening of mitochondrial

Figure 7 Antioxidant treatment halts cyclophilin D oxidation in X-linked adrenoleukodystrophy fibroblasts. Oxyblot and western blot with

specific antibody against cyclophilin D were performed to compare control and X-linked adrenoleukodystrophy fibroblasts treated or not

with 1 mM of N-acetylcysteine. Three independent experiments were performed for each condition. Representative blots are shown (A).

Relative protein oxidation levels were quantified and expressed as a percentage of control and referred to cyclophilin D expression (B)

(*P50.05; ***P5 0.001; n = 3/genotype and condition). CTL = control; CypD = cyclophilin D; NAC = N-acetylcysteine; X-ALD = X-

linked adrenoleukodystrophy.
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permeability transition pore, concomitant with cyclophilin D over-

expression and oxidation, in fibroblasts of patients with X-linked

adrenoleukodystrophy. Mitochondrial dysfunction characterized by

ATP drop, inner mitochondrial membrane potential dissipation and

cell death is prevented with both cyclosporin A (inhibitor of cyclo-

philin D) and the antioxidant N-acetylcysteine in this system.

Taken together, these results show that (i) mitochondrial per-

meability transition pore opening is implicated in cell death and

(ii) oxidative stress is the main inducer of mitochondrial permeabil-

ity transition pore opening-induced cell death in X-linked adreno-

leukodystrophy fibroblasts. Additionally, we have demonstrated

that cyclophilin D is more markedly carbonylated in X-linked adre-

noleukodystrophy fibroblasts, and that antioxidants reverse these

oxidative modifications. Recently, cyclophilin D has been sug-

gested as a redox sensor where oxidation would change its con-

formation, translocating it to the inner mitochondrial membrane

and forming the pore (Linard et al., 2009; Nguyen et al., 2011).

We therefore propose cyclophilin D as a key molecule in X-linked

adrenoleukodystrophy physiopathology and a prime novel thera-

peutic target for intervention.

Given the positive correlation of cyclophilin D expression with

mitochondrial permeability transition pore opening (Karlsson et al.,

2004; Baines et al., 2005; Brown et al., 2006; Du et al., 2008), we

predict that cells with increased expression of cyclophilin D may be

primed for mitochondrial permeability transition pore formation

and the ensuing consequences. Interestingly, we observed

increased expression of cyclophilin D in X-linked adrenoleukody-

strophy mouse model spinal cord and an induced cyclophilin D

expression in control human fibroblasts after placing them on gal-

actose or excess of C26:0, in an oxidative stress-dependent

manner. Also, we found elevated cyclophilin D expression levels

in affected zones in brains of patients with cerebral adrenomielo-

neuropathy, in a similar manner to the increased cyclophilin D

levels that were observed in affected brain regions of patients

with Alzheimer’s (Du et al., 2008) and Huntington’s disease

(Shirendeb et al., 2011). Moreover, higher levels of cyclophilin

D have been found preceding axonal degeneration of the

Wallerian type (Barrientos et al., 2011).

Further, antioxidant treatment decreases cyclophilin D expres-

sion levels in both in vitro and in vivo models of X-linked adre-

noleukodystrophy, which confirms that oxidative stress regulates

cyclophilin D expression. In agreement with this, it has recently

been reported that mitochondria-targeted antioxidants, such as

MitoQ, and resveratrol significantly decrease cyclophilin D

Figure 8 Cyclophilin D is accumulated in affected white matter brain zones of cerebral adrenomyeloneuropathy patients. Cyclophilin D

levels were analysed in control and in different areas of brains in patients with cerebral adrenomyeloneuropathy (**P50.01; n = 4/

genotype and condition). A = affected; cAMN = cerebral adrenomyeloneuropathy; CTL = control; CypD = cyclophilin D;

NA = non-affected.

Figure 9 Antioxidant treatment prevented cyclophilin D increase in Abcd1� mice spinal cord. Cyclophilin D expression levels were

quantified in wild-type and Abcd1� mice spinal cord at 8 months (A) and at 12 months after an antioxidant cocktail treatment (B)

(*P50.05; **P50.01; ** P5 0.001; n = 5/genotype and condition). Antx = antioxidants; CypD = cyclophilin D; WT = wild-type.

Oxidized CypD in adrenoleukodystrophy Brain 2012: 135; 3584–3598 | 3595



expression levels in primary hippocampal neuron cultures from

amyloid-b precursor protein transgenic mice (Tg2576 line), pro-

tecting cells against amyloid-b toxicity (Manczak et al., 2010).

Of note, we show here for the first time that chronic oral treat-

ment with a combination of classical antioxidants is able to lower

both cyclophilin D expression and oxidation levels in the CNS

in vivo.

Our findings emphasize the importance of cyclophilin D as

target for neurodegenerative diseases. Indeed, blockade of cyclo-

philin D by genetic abrogation or pharmacological inhibition pro-

tects mitochondria in many age-related chronic neurological

disease models, such as Alzheimer’s disease (Du et al., 2008,

2011), Parkinson’s disease (Gandhi et al., 2009; Thomas et al.,

2011), amyotrophic lateral sclerosis (Karlsson et al., 2004; Martin

et al., 2009; Martin, 2010) and multiple sclerosis (Forte et al.,

2007; Martin, 2010). The latter studies suggest that cyclophilin

D-dependent mechanisms are critical in the neurodegenerative as-

pects of demyelinating and motor neuron diseases. Thus, mol-

ecules crossing blood–brain barrier able to target cyclophilin D

expression or activity hold great promise in the treatment of cyclo-

philin D-dependent diseases of the nervous system, including

X-linked adrenoleukodystrophy. As cyclosporin A and non-

immunosuppressive derivatives show poor CNS penetration

(Begley et al., 1990), drug modification and use of barrier-

permeable delivery vehicles may need to be taken into account,

as well as drug targeting to mitochondria (Camara et al., 2010).

In summary, the present study unveils cyclophilin D as a

plausible effecter preventing axonal degeneration in X-linked adre-

noleukodystrophy and as a molecular target for antioxidant

actions. This emphasizes the rationale for mitochondria-targeted

antioxidant strategies in other neurodegenerative and non-

neurodegenerative cyclophilin D-dependent disorders.
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