
OpenMx: An Open Source Extended Structural Equation
Modeling Framework

Steven Boker1, Michael Neale2, Hermine Maes2, Michael Wilde3, Michael Spiegel1, Timothy
Brick1, Jeffrey Spies1, Ryne Estabrook1, Sarah Kenny3, Timothy Bates4, Paras Mehta5, and
John Fox6

1 University of Virginia
2 Virginia Commonwealth University
3 University of Chicago, Argonne National Labs
4 University of Edinburgh
5 University of Houston
6 McMaster University

Abstract
OpenMx is free, full–featured, open source, structural equation modeling (SEM) software.
OpenMx runs within the R statistical programming environment on Windows, Mac OS–X, and
Linux computers. The rationale for developing OpenMx is discussed along with the philosophy
behind the user interface. The OpenMx data structures are introduced — these novel structures
define the user interface framework and provide new opportunities for model specification. Two
short example scripts for the specification and fitting of a confirmatory factor model are next
presented. We end with an abbreviated list of modeling applications available in OpenMx 1.0 and
a discussion of directions for future development.

Structural Equation Modeling: Context and Motivation
Structural equation modeling has a long history dating back to the development of path
analysis by Sewall Wright (Wright, 1921). Path analysis is an algorithmic tool for deriving a
set of predicted covariances between variables which may be connected with either
regression (asymmetric, directional) or correlation (symmetric, non-directional) paths. The
advent of high speed computers and high level programming languages in the 1960's,
together with advances in statistical methodology (Jöreskog, 1967) led to the development
of software for fitting models to observed covariance matrices by maximum likelihood. This
procedure is now commonly known as structural equation modeling (SEM). Several
extensions of this methodology have increased its scope: modeling of means as well as
covariances (Sörbom, 1974); specifying certain paths as observed variables (known as
definition variables in Mx) (Neale, 1998; Neale, Boker, Xie, & Maes, 2006)); and fitting
finite mixture distributions (Eaves, Neale, & Maes, 1996; Everitt & Hand, 1981; McLachlan
& Peel, 2000).

A search of the PsycInfo database for “latent variable” or “latent class” or “structural
equation model” gives an estimate of the increasing popularity of SEM: 1970's, 23; 1980's,

Correspondence may be addressed to Steven M. Boker, Department of Psychology, The University of Virginia, PO Box 400400,
Charlottesville, VA 22903, USA; boker@virginia.edu; or browsers pointed to http://openmx.psyc.virginia.edu..

NIH Public Access
Author Manuscript
Psychometrika. Author manuscript; available in PMC 2012 December 18.

Published in final edited form as:
Psychometrika. 2011 April 1; 76(2): 306–317. doi:10.1007/s11336-010-9200-6.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

http://openmx.psyc.virginia.edu

357; 1990's, 2,794; and 2000-2009, 9,599. These searches underestimate the actual number
of published articles that used this method, as many abstracts do not provide detail about the
statistical methods used. At the same time, the great variety of statistical methods that are
subsumed by SEM including analysis of variance, multiple regression, discriminant analysis,
canonical and partial correlations, factor analysis, principal components analysis and
multilevel analysis, (Marcoulides & Schumacker, 1996; McArdle & Hamagami, 1996;
Longford & Muthén, 1992) further demonstrate its broad utility.

The increased popularity of SEM has been accompanied by two changes in the statistical
analysis of research data. First is that the complexity of the models and methods being used
has increased dramatically. In statistical modeling, problems that were previously regarded
as impossibly complex have become regarded as tractable. This trend is partly driven by
Moore's Law, which states that the complexity of computer circuits (i.e., computing power)
doubles approximately every 18-24 months (Moore, 1965). Both methodological and
substantive researchers have sought to exploit developments in computer architecture with
statistical methods to improve the quality of their scientific output.

The second change is that as data collection methods have become more automated and data
storage has become inexpensive, datasets have dramatically increased in size. As a result,
research projects have become more ambitious, collecting many measurements from large
samples of subjects. SEM, which has made possible a range of complex analyses, has the
potential to be an extremely valuable approach to these new challenges due to i) greater
statistical power (less variance in study outcomes), and ii) greater precision (less bias in the
results).

There is a wide variety of software that allows the estimation of SEM models. Examples
include Amos (Arbuckle, 2009), Calis (PROC CALIS, 2009), EQS (Bentler, 2009), LISREL
(Jöreskog & Sörbom, 2009), Mplus (Muthén & Muthén, 2009), Mx (Neale et al., 2006),
RAMONA (Browne & Mels, 2009), sem (Fox, 2009), and SEPath (SEPath, 2009). Given
this crowded field of SEM software, it is perhaps surprising that there might be room for a
new SEM package. The present article announces the availability of new SEM software that
is substantially different from that currently available. We believe that OpenMx fills an open
evolutionary niche in the extant SEM software ecology.

Why a New SEM Package?
OpenMx is a free, open source, full–featured SEM package that runs inside the R statistical
programming environment (Ihaka & Gentleman, 1996). Although the programming team
includes authors of the original Mx software, OpenMx has been rewritten from scratch using
modern languages and programming techniques. Model specification has been redesigned to
be much more flexible and general than that used by traditional SEM software.

Open Source
OpenMx is open source; thus the source code is available for everyone to view, modify, and
use. We currently have a team of dedicated programmers and a design team determining the
direction of OpenMx. The project itself is organized somewhat like a scientific journal:
Code can be submitted for review by the “editorial board” who read, edit, and test the code.
Code that is accepted for publication as part of the OpenMx package becomes available for
the entire scientific community. We do not place any limits on how readers and users of the
code may use the software and code, but we do expect that code that is part of OpenMx is
cited by people who use it. Authors who contribute code are cited by the project and by
others who use their code.

Boker et al. Page 2

Psychometrika. Author manuscript; available in PMC 2012 December 18.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

In order to help organize an open source community, the OpenMx project maintains a web
site (http://openmx.psyc.virginia.edu) that hosts binary and source versions of the software
and several forms of tutorials and reference documentation. On the web site, a set of open–
access forums have been established to allow the SEM community a place to discuss SEM
models, theory, and methodology. In addition, help on OpenMx is available on the web site
from discussion forums and a community–maintained Wiki. Finally, a set of developer
forums is also hosted in order to allow statistical programmers a place to communicate about
new ideas and patches that may become part of the base OpenMx project.

Sustainability
OpenMx has been written using modular programming techniques in the C and R languages
with the intent that it will be maintained and extended by members of the research
community. Modular programming design means that the code is written so that each
section of code operates independently and is accessed via a well–defined interface. This
means that many programmers can be working on the code simultaneously as long as each
module of code maintains the expected behavior from its interface. In order to work on part
of OpenMx, one does not need to understand the inner workings of all other modules; it is
only necessary to understand and adhere to the interface specifics for that specific module.

The core programming team is working hard to encourage and help statistical and
quantitative researchers to add their research projects to the larger OpenMx SEM
framework. For instance, someone who is working on a particular type of estimation, a
particular type of model, or perhaps a new fit statistic can incorporate his or her research
into a project that is immediately available to a large community of users. One does not need
to write model specification methods, input/output methods, data handling methods, and all
the other parts required before substantive researchers can use the novel software. We
expect that the user interface, estimation methods, and reporting functions for OpenMx will
evolve quickly due to the influx of new ideas and code contributed by the large community
of SEM users.

Rethinking Model Specification and Estimation
SEM models are becoming more difficult to specify and estimate as substantive theory and
data grow increasingly complex. Massive data sets including genome–wide association and
brain imaging are at the leading edge of this evolving research landscape. These data sets are
many orders of magnitude larger than those available when most SEM software was
originally designed and programmed. For instance, an fMRI data set might include 40,000
voxels per frame per person. An SEM model of these data might include hundreds of latent
variables and tens of thousands of free parameters. In such a case, one would need a large
parallel computing grid to estimate the model. OpenMx has been designed from the
beginning with parallel computing in mind, both for use with multicore computers and with
very large grids of computers such as the TeraGrid and Open Science Grid.

Heterogeneous Computing Environments
OpenMx runs on a variety of operating systems including Microsoft Windows, Mac OS-X,
and most popular variants of Linux. OpenMx scripts that are written within one operating
system can be used on other operating systems without modification. This platform–
independence is useful in today's heterogeneous computing environments where each
researcher on a team may have a different preferred computing platform. In addition, this
multi–platform support means that heterogeneous grids of computers can be used to run
OpenMx, a common occurrence in parallel distributed computing environments.

Boker et al. Page 3

Psychometrika. Author manuscript; available in PMC 2012 December 18.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

http://openmx.psyc.virginia.edu

A New Approach to Model Specification
Two methods are currently in use for specifying SEM models in scripts. The first centers
around specifying the matrices that define the covariance and mean structure of the manifest
and latent variables. The second method is based on path analysis and uses a compact
specification for the paths and variables in a path diagram. In the end, both of these methods
produce a set of matrix equations that are used as an objective function (sometimes called a
cost function) that is optimized in order to find parameters such that the objective function is
at a minimum. Popular objective functions include maximum likelihood and several variants
of least squares.

OpenMx implements both matrix–centric and path–centric methods for specifying the
desired structure of the model. Thus, one can use either of these two methods or even a
combination of the two. We will provide a short example of these two methods later in the
article. In addition to providing built–in objective functions such as FIML, OpenMx
provides methods for the user to specify their own custom objective functions.

The data structures that are produced when one creates an OpenMx SEM model are a
departure from the structures produced by other SEM software. We will next describe these
structures and how they fit together. While software has improved, SEM modelers continue
to think about their model structure in ways that have changed very little since the 1960s.
One may use OpenMx without changing one's conception of model building, continuing to
use path specifications or matrix specifications in a serially ordered script. However, the fact
that R is interactive, has powerful vector and matrix operations, and incorporates the flow
control of a full programming language all act to allow one to rethink the way models are
specified. The OpenMx data structures are designed to flexibly accommodate the power of
R. The authors hope that these factors will be sufficient to trigger a paradigm shift in the
way SEM is conceived and taught.

This section begins with a description of three of the basic structures in OpenMx: MxModel,
MxMatrix, and MxAlgebra. We describe how MxModels may contain other Mx-Models in a
tree–like hierarchy, and how references are made within an MxModel hierarchy. We then
briefly discuss how data and objective functions are specified within an MxModel. Finally,
we provide two example specifications of a simple confirmatory factor model.

MxModels and the Objects They Contain
Data structures in OpenMx are implemented as objects, specifically R S4 objects. The
MxModel is the object that contains all of what is necessary in order to specify a structural
model. It is primarily a container for other objects while providing the organization that
allows the contained objects to refer to one another (see Figure 1). Each MxModel has three
slots for metainformation about the model: an internal reference name, a type, and a flag that
indicates whether the model can be estimated independently from other models.

MxModels define a namespace, in other words, a self–contained set of strings that define
either (1) objects or (2) elements in matrices. Each of these names is unique within the
namespace. Therefore, if a name occurs more than once during the specification of an
MxModel, it is taken to mean that the name is referring to the same thing. This turns out to
be very powerful. For instance, if you name two matrix elements “b” then these two
elements are constrained to be equal.

An MxModel may contain: lists of MxMatrices, MxAlgebras, MxConstraints, no more than
one MxData object, and an objective function. There are also slots in the MxModel that
contain a list of optimization options and a list that contains output from the most recent

Boker et al. Page 4

Psychometrika. Author manuscript; available in PMC 2012 December 18.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

optimization run. We note here that MxModels can also contain a list of other MxModels.
This allows one to create a hierarchical tree of MxModels which is subsumed within a root
MxModel container. A hierarchical tree of child and parent MxModels provides a new way
of thinking about constructing SEM models that is surprisingly powerful.

An MxMatrix is an object which contains five separate R matrices and five metainformation
slots: a type, the number of rows and columns; the labels for each row and column (in R this
is called dimnames); and the name by which the matrix is known in its MxModel
namespace. The five matrices in the MxMatrix are all of the same order, but of different R
storage types. The values matrix holds the starting (or estimated) values and is of type
double. The labels matrix is of type character and holds the name of each element of the
matrix. Matrix elements that have the same name are constrained to be equal to one another.
The free matrix is of type logical and if an element is TRUE, then that element is considered
to be a free parameter during estimation. The lbound and ubound matrices are of type double
and contain lower and upper bounds for the free parameters.

An MxAlgebra is an object that contains its name, a formula in R notation, and a result
matrix of type double. The operands in the formula are named objects in the MxModel
namespace that are either an MxMatrix or an MxAlgebra. Matrix operators include most of
the common matrix operations such as addition, subtraction, matrix multiplication, dot
product, Kronecker product, inverse, transpose, augmentation, exponentiation, log, and
many others. A full list of operators can be found on the OpenMx website wiki.

An MxConstraint contains two objects, either of which can be an MxMatrix or MxAlgebra,
and a relation between them, which can be one of >, <, or ==. This allows the specification
of nonlinear constraints which should be satisfied at the end of optimization.

Objective Functions and Data
One of the most flexible parts of OpenMx is the way that the objective functions can be
defined. An objective function for optimization results in a scalar number that is minimized.
Examples of predefined objective functions include maximum likelihood (mxMLObjective)
and full information maximum likelihood (mxFIMLObjective). However, other objective
functions can be specified using the mxAlgebraObjective which allows one to specify a
formula in the same way as an MxAlgebra is specified with the caveat that the result of the
formula must be a 1 × 1 matrix. This allows the possibility of creating objective functions
that perform specific optimizations such as variants of least squares or even various
Bayesian optimizations.

The MxData object contains the data used for optimization. The data object may be raw
data, a correlation matrix, a covariance matrix, a covariance matrix and vector of means, or a
sums of squares and crossproducts matrix. Each column in the raw data or covariance matrix
must have a column name. If the data is an R dataframe or covariance matrix calculated
from a dataframe, these column names are automatically supplied, but these column names
must be defined via dimnames for data supplied from other sources. Named columns in
MxMatrices that match the dimnames in the MxData are automatically mapped to the
correct column in the data.

MxModel Trees
One of the novel features of OpenMx is that models can contain other models as shown in
Figure 3. This allows one to think very naturally about how dependency is structured in an
SEM context. For instance, a model hierarchy can be built that expresses dependency in a
genetic SEM analysis: An ACE model is built that contains matrices common to all groups
and then two submodels are constructed, one for the monozygotic twin pairs and one for the

Boker et al. Page 5

Psychometrika. Author manuscript; available in PMC 2012 December 18.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

dizygotic twin pairs. This approach partitions the problem into submodels that follow the
logical group structure in the data. A Mixture distribution analysis can be set up as a model
tree where the submodels are the elements of the mixture and the top level model expresses
the overall likelihood calculation for the mixture.

Multiple independent models can be grouped together as submodels into a single run for
problems such as bootstrapping or simulations where the top level model can fit an overall
model on the estimation results returned from the independent models. In a case of
independent models, OpenMx uses the facilities of snow and swift to distribute the job over
multiple CPUs The limit to how many models can be structured into a hierarchy is the
memory limit of your computer. We have run cases with tens of thousands of submodels.

A model hierarchy structure allows one to express the logic of an analysis in a
straightforward and simplified manner. This feature of OpenMx is a departure from
traditional SEM specification, and has proven popular among beta testers of OpenMx.

References within MxModels and MxModel Trees
The namespace for an MxModel includes all of the non–independent models in a
hierarchical tree. Thus, for instance, parameters can be constrained between two submodels
as shown in Figure 4. Constraints cannot be made to elements in an independent submodel
— one of the conditions that allows independent estimation of branches of a model tree that
have been marked as independent. In Figure 4 four elements from three matrices across two
submodels have all been constrained to be equal by labeling the corresponding elements as
“d”.

Free elements of MxMatrices can also be constrained to be equal to the results of
MxAlgebras by using labels that include the MxAlgebra name and an index into the result
matrix of the MxAlgebra as shown in Figure 5. This allows matrix elements to be
constrained to be nonlinear functions of free parameters for use in, e.g., logistic regression
or continuous time differential equations models.

Example Scripts
In order to give an introduction to how OpenMx scripts are written, we present a
confirmatory two factor model with simple structure as shown in Figure 6. The model will
be specified using two methods.

Path Analysis Method
First, we will use the path analysis method to specify the model. In this approach, we first
define the variables and then specify the regression, variance, and covariance paths. While
this method is verbose, it is designed to expose all of the parts of the model. Hiding
functionality behind defaults allows a script to be shorter to type, but it can mean that it is
difficult to understand exactly what the model does (the “Black Box” problem). By making
all parts of the model specification explicit, we expose all of the model to inspection. We
have found that this philosophy results in scripts that are easier for i) students to learn and ii)
others to understand.

load the OpenMx package into R
library(OpenMx)
read the data into an R dataframe
factorData <- read.csv(“demoTwoFactor.csv”)

Boker et al. Page 6

Psychometrika. Author manuscript; available in PMC 2012 December 18.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

define which indicators load on each factor
indicatorsF1 <- c(“x1”, “x2”, “x3”, “x4”, “x5”)
indicatorsF2 <- c(“y1”, “y2”, “y3”, “y4”, “y5”)
create a vector of all of the manifest variables
manifests <- c(indicatorsF1, indicatorsF2)
define which indicator is to be used to scale each factor
scaleF1 <- c(“x1”)
scaleF2 <- c(“y1”)
define the names of the factors
latents <- c(“F1”, “F2”)
define the MxModel and store it into “factorModel“
factorModel <- mxModel(“Simple Structure Two Factor”,
type=“RAM”,
manifestVars = manifests,
latentVars = latents,
specify the free factor loadings
mxPath(from=“F1”, to=indicatorsF1, free=TRUE, values=.2),
mxPath(from=“F2”, to=indicatorsF2, free=TRUE, values=.2),
scale the two latent variables
mxPath(from=“F1”, to=scaleF1, free=FALSE, values=1),
mxPath(from=“F2”, to=scaleF2, free=FALSE, values=1),
specify the unique variances
mxPath(from=manifests, arrows=2, free=TRUE, values=.8),
specify the factor variances
mxPath(from=latents, arrows=2, free=TRUE, values=.8),
specify the factor covariance
mxPath(from=“F1”, to=“F2”, arrows=2, free=TRUE, values=.3),
specify the mean structure
mxPath(from=“one”, to=c(manifests, latents), arrows=1, free=FALSE, values=0),
attach the data to the model
mxData(factorData, type=“raw”))
run the factor model
factorModelOut <- mxRun(factorModel)
print a summary of the results
summary(factorModelOut)

Note that we find it convenient to first set up vectors of character strings that define which
indicators are used with which factors and which indicators are used to scale the factors by
fixing their values to 1.0. This allows us to use shorthand to create many loading paths at
once in the mxPath statements — whenever there is a vector of “from variables” or “to
variables”, the mxPath function creates all of the connections at once.

Matrix Method
While the path analysis method may be preferred for some models, it is often either easier or
is necessary to use matrices to specify a model. Many of the advanced models available in
OpenMx have no equivalent path diagram and so their covariance algebra must be specified
via matrices. In addition, matrix specification is frequently more compact than specifying all
of the paths.

Boker et al. Page 7

Psychometrika. Author manuscript; available in PMC 2012 December 18.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

We will respecify the model in Figure 6 as a product of matrices. This model is of factor
analytic form and so the expected covariance matrix of the indicators, R, can be written as

(1)

where A is the matrix of factor loadings, L is the factor intercorrelation matrix, and U is the
diagonal matrix of unique factor variances. This model can be written in OpenMx using the
following script.

load the OpenMx package into R
library(OpenMx)
read the data into an R dataframe
factorData <- read.csv(“demoTwoFactor.csv”)
read the names of the indicator variables from the dataframe
indicators <- names(factorData)
define the MxModel and store it into “factorModel”
factorModel <- mxModel(“One Factor”,
specify the loading matrix including its starting values and which
elements are free mxMatrix(“Full”, nrow=10, ncol=2,
values=c(1,rep(0.2,4),rep(0,10),1,rep(0.2,4)), free=c(FALSE,rep(TRUE,
4),rep(FALSE,10),FALSE,rep(TRUE,4)), name=“A”),
specify the factor intercorrelation matrix
mxMatrix(“Symm”, nrow=2, ncol=2, values=.8, free=T, name=“L”),
specify the matrix of unique factor variances
mxMatrix(“Diag”, nrow=10, ncol=10, values=1, free=T, name=“U”),
specify the algebra that results in the model expectations
mxAlgebra(A %*% L %*% t(A) + U, dimnames = list(indicators, indicators),
name=“R”),
specify a model for the means fixed at zero
mxMatrix(“Full”, nrow=1, ncol=10, values=0, free=FALSE, dimnames=list(NULL,
indicators), name=“M”),
choose the full information maximum likelihood objective function
mxFIMLObjective(covariance=“R”, means=“M”),
attach the data to the model
mxData(factorData, type=“raw”))
run the factor model
factorModelOut <- mxRun(factorModel)
print a summary of the results
summary(factorModelOut)

The trickiest part of this version of the script is the way that the loading matrix, A, is
specified. Note that R stores values into matrices column–wise unless byrow=TRUE is
selected. So, the matrix A ends up as a 10 × 2 matrix with starting values

Boker et al. Page 8

Psychometrika. Author manuscript; available in PMC 2012 December 18.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

(2)

If you look carefully in the script above at the values= line in the specification of the matrix
A, you can see how the values from vector are stored into the A matrix. A similar method is
used to specify which loadings are fixed and which are to be estimated in the matrix A. All
elements with starting values of 0.2 end up designated as free=TRUE whereas all others are
designated as free=FALSE.

Other Specification Styles
Since R is a full programming language and the OpenMx specification structure is flexible,
there are many styles of model specification that could be used to create identical statistical
models. We expect several styles will emerge as users become acquainted with the
possibilities. One style that has become common among the core programming team
members is to specify each of the MxMatrices separately, assigning them to R variables
early in a script. Later, these predefined matrices can be combined into different model
configurations somewhat like using Lego blocks. This method results in scripts that bear
little resemblance to traditional SEM scripts, but these Lego–style scripts can be easier to
write, debug, and maintain.

Summary
The OpenMx project is full–featured, open source, SEM software that runs on most
available operating systems. The software runs in the R statistical computing environment.
The user interface is designed to be: i) flexible in that there are many ways in which models
can be defined; ii) powerful in that models can be specified without relying on hidden
mechanisms; and iii) extensible in that there are facilities to add new objective functions and
optimization methods.

A wide variety of SEM models can be fit with OpenMx. A few of the more popular models
that are in current use include: confirmatory factor analysis, multivariate autoregression with
cross–lags, latent growth curves, latent mediation, multivariate mixed e ects, multigroup
models with constraints, behavioral genetic and genetic epidemiological models,
multivariate ordinal models with threshold estimation, factor mixture models, latent
differential equations, latent class models. All of these models can be (and sometimes must
be) run using full information maximum likelihood estimation.

When independent submodels are specified, OpenMx allows for automatic use of multiple
CPUs in modern multicore systems. When a computer cluster or distributed grid of
computers is available, OpenMx can take advantage of this service to run its independent
submodels on multiple computers simultaneously.

Boker et al. Page 9

Psychometrika. Author manuscript; available in PMC 2012 December 18.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

The current article only briefly covers the many features and facilities of OpenMx. To learn
more, obtain a free download of the software, and participate in the OpenSEM forums
please go to http://openmx.psyc.virginia.edu.

Acknowledgments
Funding for this work was provided by NIH Grant 1R21DA024304–01. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the
National Institutes of Health. The core development team would also like to thank a large group of beta testers
including Dorothy Bishop, Greg Carey, Pascal Deboeck, Emilio Ferrer, Christopher Hertzog, Kevin Grimm, Ken
Kelley, Matthew Keller, Michael Kubovy, Jean-Philippe Laurenceau, Todd Little, Diane Lickenbrock, Gitta Lubke,
John J. McArdle, Sam McQuillin, Sarah Medland, John Nesselroade, Joseph Rausch, William Revelle, Michael
Scharkow, James Steiger, Melissa Sturge-Apple, Stephen Tueller, Jens Vogelgesang, Theodore Walls, Keith
Widaman, Timothy York.

References
Arbuckle, JL. Amos user's guide. SPSS; Chicago: 2009.

Bentler, PM. EQS structural equations program manual. Multivariate Software; Encino, CA: 2009.

Browne, MW.; Mels, G. RAMONA: SYSTAT for Windows. SYSTAT; 2009.

Eaves LJ, Neale MC, Maes HH. Multivariate multipoint linkage analysis of quantitative trait loci.
Behavior Genetics. 1996; 26:519–526. [PubMed: 8917951]

Everitt, BS.; Hand, DJ. Finite mixture distributions. Chapman and Hall; 1981.

Fox, J. sem: Structural Equation Models. (R package version 0.9–19). 2009.

Ihaka R, Gentleman R. R: A language for data analysis and graphics. Journal of Computational and
Graphical Statistics. 1996; 5(3):299–314.

Jöreskog KG. Some contributions to maximum likelihood factor analysis. Psychometrika. 1967;
32:443–482.

Jöreskog, KG.; Sörbom, D. LISREL. Scientific Software International; Chicago: 2009.

Longford NT, Muthén B. Factor analysis for clustered observations. Psychometrika. 1992; 57:581–
597.

Marcoulides, G.; Schumacker, E., editors. Advanced structural equation modeling. Lawrence Erlbaum;
Hillsdale NJ: 1996.

McArdle, JJ.; Hamagami, F. Multilevel models from a multiple group structural equation perspective..
In: Marcoulides, G.; Schumacker, E., editors. Advanced structural equation modeling. Lawrence
Erlbaum; Hillsdale NJ: 1996. p. 89-124.

McLachlan, GJ.; Peel, D. Finite mixture models. Wiley; New York: 2000.

Moore GE. Cramming more components onto integrated circuits. Electronics. 1965; 38(8)

Muthén, LK.; Muthén, BO. Mplus user's guide. Muthén & Muthén; Los Angeles: 2009.

Neale, MC. Modeling interaction and nonlinear e ects with mx: A general approach.. In: Marcoulides,
G.; Schumacker, R., editors. Interaction and non-linear e ects in structural equation modeling.
Lawrence Erlbaum Associates; 1998. p. 43-61.

Neale, MC.; Boker, SM.; Xie, G.; Maes, H. Mx: Statistical modeling. 7th ed.. Department of
Psychiatry, Virginia Commonwealth University; Box 980126 Richmond VA: 2006.

PROC CALIS. SAS Institute, Inc.; Cary, NC: 2009.

SEPath. StatSoft, Inc.; Tulsa, OK: 2009.

Sörbom D. A general method for studying differences in factor means and factor structures between
groups. British Journal of Mathematical and Statistical Psychology. 1974; 27:229–239.

Wright S. Correlation and causation. Journal of Agricultural Research. 1921; 20:557–585.

Boker et al. Page 10

Psychometrika. Author manuscript; available in PMC 2012 December 18.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

http://openmx.psyc.virginia.edu

Figure 1.
An MxModel is a data object that contains metainformation and lists of other Mx objects.

Boker et al. Page 11

Psychometrika. Author manuscript; available in PMC 2012 December 18.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 2.
An MxMatrix is a data object that contains metainformation and five R matrices.

Boker et al. Page 12

Psychometrika. Author manuscript; available in PMC 2012 December 18.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 3.
MxModels can contain lists of submodels.

Boker et al. Page 13

Psychometrika. Author manuscript; available in PMC 2012 December 18.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 4.
Equality constraints can be defined between submodels.

Boker et al. Page 14

Psychometrika. Author manuscript; available in PMC 2012 December 18.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 5.
Labels can be used to constrain a matrix element to be equal to a matrix element from an
algebraic result.

Boker et al. Page 15

Psychometrika. Author manuscript; available in PMC 2012 December 18.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Figure 6.
A simple confirmatory factor analysis model as a RAM–style path diagram.

Boker et al. Page 16

Psychometrika. Author manuscript; available in PMC 2012 December 18.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

