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Abstract
Genes for complex disorders have proven hard to find using linkage analysis. The results rarely reach the desired level of significance

and researchers often have failed to replicate positive findings. There is, however, a wealth of information from other scientific approaches

which enables the formation of hypotheses on groups of genes or genomic regions likely to be enriched in disease loci. Examples include

genes belonging to specific pathways or producing proteins interacting with known risk factors, genes that show altered expression

levels in patients or even the group of top scoring locations in a linkage study. We show here that this hypothesis of enrichment for

disease loci can be tested using genome-wide linkage data, provided that these data are independent from the data used to generate

the hypothesis. Our method is based on the fact that non-parametric linkage analyses are expected to show increased scores at each

one of the disease loci, although this increase might not rise above the noise of stochastic variation. By using a summary statistic and

calculating its empirical significance, we show that enrichment hypotheses can be tested with power higher than the power of the linkage

scan data to identify individual loci. Via simulated linkage scans for a number of different models, we gain insight in the interpretation

of genome scan results and test the power of our proposed method. We present an application of the method to real data from

a late-onset Alzheimer’s disease linkage scan as a proof of principle.
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Introduction

In complex disorders where variations in more than one gene

are expected to contribute to disease risk, researchers often

hypothesise that particular groups of genes or genomic

locations are enriched with true disease-susceptibility genes,

based on various lines of evidence. For example, groups of

genes found to be differentially expressed in a case-controlled

microarray experiment or the human loci syntenic to those

identified by linkage in a mouse disease model are likely to

be enriched in susceptibility genes. One can also hypothesise

disease gene enrichment based on functional data. It can be

suggested, for example, that the genes involved in glutamate

neurotransmission are enriched with schizophrenia-

susceptibility genes, or — combining more than one line

of evidence — that differentially expressed glutaminergic

genes in particular are likely to be enriched. Researchers may

wish to corroborate such hypotheses by testing whether the

members of an identified group of genes are located in

areas showing evidence of genetic linkage to the disease of

interest. Linkage results for complex disorders are often noisy

and hard to interpret, however. We propose a method for

using genome-wide linkage data and the widely used non-

parametric linkage (NPL) score1 to test for the enrichment of

groups of genes or genetic locations in disease-susceptibility

genes.
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The NPL score is designed to have, at any locus, a standard

normal distribution with a mean of 0 and a standard deviation

of 1 under the null hypothesis of no linkage. This means

that, although for any given unlinked locus the expectation is

an NPL score of 0, stochastic variation creates scores that

can take positive or negative values. Under the alternative

hypothesis of linkage, stochastic variation at the true disease

loci is still present, but the expectation is at a value higher than

0. The magnitude of the expected value depends on the

sample size, the available genetic information and the effect

size of the locus. For most complex diseases, it is assumed that

individual risk loci will have small effects. As a result, the

superimposed stochastic variation can mask some truly linked

loci or create signals where no true linkage is present, both

situations leading to errors and/or failed replication studies

for true disease loci. If one could have a priori knowledge of

the true disease loci, one could achieve greater significance by

studying the group of loci in concert because of the consistent

trend for increased scores, even in the absence of significant

scores at each one of the individual loci. As the number of true

loci examined together rises, the noise from the underlying

stochastic variation will asymptotically approach 0 and their

average NPL score will asymptotically approach the average

of their individual expectations, which is greater than 0. By

contrast, for unlinked loci, the individual expectation is 0; as

the number of unlinked loci examined in concert increases,

their average NPL will asymptotically approach 0.

Based on these properties of the NPL score, we can use

linkage analysis data to test whether a pre-defined group of

loci is enriched for true disease-linked loci. This can be done

by calculating the average NPL score of the group of loci

and comparing it against a null distribution of average scores

derived by randomly drawing groups of loci of equal size.

The null hypothesis is that the proportion of true linked loci

among the group of loci tested is not different from the

proportion expected when choosing random loci, while the

alternative hypothesis is that the proportion is greater, and

hence the group is enriched. (Note that, as defined here,

the proportion of true loci in the group tested corresponds to

1 minus the false discovery rate of the group.)

We assessed the power of our proposed method through

simulations using a variety of disease models and varying the

number of errors in location predictions. We showed that this

method can be powerful, even when less than half of the

examined locations are real disease loci. We must note here

that we used the NPL score because it is commonly available

and because its statistical properties make it easier to present

our hypothesis. Since significance is determined via permu-

tations and no distribution is assumed, however, the method

is applicable to any statistic. Also, we are aware that other

summary statistics, such as the product of p-values (more often

used to show the presence of at least one true locus in a

group), can serve for the same purpose. Assessment of other

statistics will be the subject of future work.

Materials and methods

Generation of simulated linkage scans
We assumed a baseline risk for the disease of 0.9 per cent,

representing non-genetic factors. We used the ‘- -simulate’

function in the Merlin analysis package2 to generate genome-

wide marker data for nuclear families (two parents and four

offspring), including five, ten or 20 biallelic (disease) loci

carrying risk alleles of frequency p that independently increase

the risk of disease two- or threefold (this corresponds to

their relative risk). The disease allele frequency p was equal for

all loci and was empirically adjusted to provide a population

prevalence of 3 per cent. This corresponds to 70 per cent

heritability (genetic/total variance), consistent with reports

for many complex disorders. After generating data for a

large number of families (up to 200,000 — or 1.2 million

individuals), the genotypes at the disease loci for each

individual were examined, the risk was determined based on

those genotypes and disease status was assigned with a

probability corresponding to the risk. For example, a person

carrying four risk alleles with a relative risk of 2 had a

probability of 24 £ 0.009 ¼ 0.144 of being affected. Sufficient

families were generated every time to ascertain 1,000 sibling

pairs and 60 sibling triads (1,180 sibling pairs in total) or 500

sibling pairs and 30 sibling triads (590 sibling pairs). This ratio

of pairs to triads corresponds to the most efficient choice,

given the observed simulated families, but it is not far from

common sibling size distributions in the complex disease

literature. The genotypes of all markers, excluding the biallelic

disease loci, were used for genome scans for linkage using the

Merlin software2 to calculate NPL scores across the genome.

Markers other than the disease loci had six equifrequent alleles,

spaced 10 centimorgans (cM) apart, and there were no missing

data. A total of 359 microsatellite markers were simulated,

starting on each chromosome at genetic position 0 and placing

one marker every 10 cM until the end of the chromosome;

therefore, a genetic length of 0 to less than 10 cM was at the

telomere of each chromosome. All families had a size of six,

with two parents and four offspring. Although this might be

a slightly large family size compared with today’s average in

the Western world, it is less so for families that are ascertained

today through their adult affected offspring. This family size

was also necessary to make the generation of enough pedigrees

for ascertainment computationally feasible. For each simulated

scan, the location of the disease loci varied and these were

placed randomly in the genome, allowing for co-localisation

of more than one disease locus and for zero distance with scan

markers if it so happened by chance.

Models examined
In order to assess the power of our method under many

possible scenarios, we studied multiple genome scans under

multiple disease parameters including: 1) The number of disease
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genes was set to five, ten or 20; 2) The increase in risk from

each risk allele was set to 2 or 3 relative to the baseline risk; 3)

The number of ascertained families was 500 pairs þ30 triplets
or 1,000 pairs þ60 triplets. For each of the 12 possible sets of
parameters, 25 genome scans were generated. For each

genome scan, we examined a number of different scenarios

regarding the number of true and non-true disease loci in the

group to be tested. When some non-true locations, or not

all the real locations, were included, the groups were chosen

100 times at random to account for the stochastic variation

inherent to the selection. In order to determine significance

for each of the 100 selected groups, the average NPL of

each was compared with the null distribution formed by the

average scores of 1,000 random groups of equal size — that

is, groups chosen without taking into account whether or

not the included loci correspond to disease gene locations.

The 2,500 empirical significance values obtained from 25

scans £ 100 group permutations were used to determine the
power for each model (each cell on Table 1). Since in these

simulated data the alternative hypothesis (as stated above)

is always true, the number of times that the empirical

significance is less than the desired significance level, a,
corresponds to the power.

Results

Table 2 summarises our general observations from the simu-

lated genome scans with 1,180 affected sibling pairs. A linkage

peak was considered to contain a real disease locus if the NPL

scores between the original location of the binary disease

marker and the observed peak did not drop by more than one

unit less than the score at the peak. Even with five loci of

relative risk 3, the top NPL score did not reach genome-wide

significance on most scans (25 scan average ¼ 4.22), according

to the criteria proposed by Lander and Kruglyak3 (for the

genome-wide significant p ¼ 2.2 £ 1025, an NPL score of 4.4
is required), in accordance to what has been observed in real

data analyses4 and predicted by Risch and Merikangas.5 It is

notable and encouraging, however, that, across the models we

tested, 40–92 per cent of scans showed strongest linkage at a

real locus. We also observed that even when there are only five

true loci on average, one of these loci is not among the top

ten peaks of a scan and would therefore not be detected.

Again, this observation is very much in agreement with the

experience from linkage studies of complex disorders, as many

linkage findings that have been considered to carry strong

evidence have often not been replicated in subsequent studies

of different pedigrees. As expected, the NPL scores and the

fraction of true positives among the top linkage peaks decrease

as the number of disease loci increases and as their relative

risk decreases. An increase in the fraction of true findings is

counter-intuitively observed as the number of true disease loci

and the number of top linkage peaks examined increases to 20;

however, this does not correspond to an increase in the frac-

tion of real genes identified. When looking at Table 2, the

reader should keep in mind that when there are only five real

genes and a set of 20 loci is tested, the maximum possible

fraction of true loci in the set is 5/20 ¼ 25 per cent. Overall,

our observations confirm that our confidence in the linkage

peaks of a single scan should be somewhat reserved until

we observe replication, but also that non-replication of a

linkage finding does not necessarily discredit a positive finding.

In other words, it will take more than a few linkage scans to

develop strong confidence in the location of true susceptibility

loci for a complex disorder.

Table 1 presents an evaluation of the power of the approach

we propose here for examining multiple genomic locations for

linkage using a summary statistic, namely the average NPL

score. In particular, it shows the power to detect enrichment

by examining the average NPL score at levels of a ¼ 0.05 and

0.01 and for different disease models calculated through our

computer simulations. For a 1,180 sibling pair scan, and at

the nominal level of a ¼ 0.05, it is of interest that for a

relative risk of 3 and for as many as ten disease loci, we can

observe significance with power .80 per cent even if only
one-third of the locations in the group are true. For a relative

risk of 2, we have 80 per cent power if half of the locations in

the group are true. For 20 segregating loci and a relative

risk of 3, we can only tolerate ten non-real locations in a

group that includes all 20 correct locations if we wish to have

80 per cent power. As expected, the power is reduced with

smaller sample sizes. Figure 1 provides a three-dimensional

graph showing how power increases when there are fewer real

loci contributing to the risk and when more of these are

included in the group. As the group gets larger and the fraction

of true loci that are included is reduced, however, the

power decreases.

Based on our observations on the true positive enrichment

of the top linkage peaks (Table 2) and on the power of aver-

aging NPL scores (Table 1), we decided to test our approach

on real data. Our simulations indicate that, as expected, the

group of top findings of a linkage scan is enriched in true

disease locations. Therefore, provided that there are not too

many true loci with too small effects, when this group of top

linkage peaks is tested against an independent linkage scan,

it should show a significantly elevated average NPL score. We

used our genome scan data on late-onset Alzheimer’s disease

(LOAD) to test this hypothesis. This scan was peformed on a

previously described collection of pedigrees from the National

Institute of Mental Health genetics initiative,6 for which we

have previously reported genome scan results.7 The one gene

known to be involved in LOAD is APOE,8 and its behaviour

in terms of risk is very similar to our simulated models.9,10 It

has been suggested that another 4–5 loci with effects similar to

APOE may be involved in LOAD.11 Adopting a study design

that enabled us to keep most variables equal and yet have two

independent scans, we sorted the pedigrees by their assigned
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identification numbers (signifying collection site and

collection sequence) and split them at the point that gives two

sample sets (sets A and B) of equal numbers of sibling pairs

(296 pairs each). We then ran a genome-wide linkage

analysis on both sets, ranked the top scoring 30 locations from

scan A, selected groups of five, ten, 15 . . . 30 locations starting

from the top and tested their average NPL in scan B. We note

that splitting the data has no benefit for gene discovery, but

Table 1. The power of our method for different simulated models (five, ten or 20 disease loci, 1,180 or 590 sibling pairs, relative risk

(RR) of 2 or 3) different levels of enrichment for true loci and different levels of significance.

# Real

loci

Group

composition

Power: 1,180

sibling pairs,

RR 5 3%

Power: 1,180

sibling pairs,

RR 5 2%

Power: 590

sibling pairs,

RR 5 3%

Power: 590

sibling pairs,

RR 5 2%

Real loci False a 5 0.05 a 5 0.01 a 5 0.05 a 5 0.01 a 5 0.05 a 5 0.01 a 5 0.05 a 5 0.01

5 0 100 100 100 92 100 96 100 84

5 3 100 98 90 71 94 88 80 51

5 5 99 94 81 58 93 79 70 40

5 5 10 95 76 69 42 84 58 53 25

3 0 100 95 88 72 97 88 82 52

3 2 94 78 71 43 84 61 57 30

3 5 80 52 54 27 67 37 38 16

10 0 100 100 100 92 100 92 72 48

10 5 99 92 89 63 88 64 54 29

10 10 94 77 78 48 75 48 46 22

10 20 80 54 58 30 60 30 35 14

10 5 0 90 72 75 48 77 44 48 20

5 3 75 49 56 28 53 26 32 13

5 5 68 42 49 24 47 21 29 11

5 10 53 28 35 15 35 16 22 7

20 0 100 76 68 44 65 35 32 12

20 10 80 49 56 31 47 23 26 10

20 20 67 37 47 21 40 18 24 10

20 40 49 24 36 16 31 14 17 6

15 0 84 58 61 35 53 26 29 13

20 15 10 64 34 45 20 40 16 23 9

15 20 51 23 36 15 29 13 18 7

15 30 41 19 29 12 26 9 14 5

10 0 67 40 47 23 41 18 25 9

10 5 51 24 38 15 32 13 19 6

10 10 41 19 31 11 26 9 16 6

10 15 35 14 24 9 23 8 15 5
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we did this here as an exercise to show proof of principle

because it provided us with a hypothesis that we could readily

test using our method, namely that the peaks of a genome

scan are enriched in true loci. Given the small sample sizes

(296 sibling pairs per scan), our power might have been low,

since the underlying model is unknown; however, we viewed

this analysis as exploratory. Table 3 shows the empirical

significance obtained by selecting the best five and up to 30

locations from the top linkage peaks based on scan A, and

testing their average NPL against the data from scan

B. Although the mean NPL of the five top locations was not

significantly high, once the number was raised to ten and 15,

the scores were significant, suggesting enrichment in disease

gene locations. We consider that this not only validates our

method but that it is also very encouraging regarding the

validity of the findings of our genome scan, suggesting that

the top linkage peaks are indeed enriched in real disease loci to

a significant degree. Although some might consider this

notion to be obvious, it is contingent on the underlying dis-

ease model and might not necessarily be true. Based on the

observations from the simulated linkage scans, and the

expected low power of this test on 296 sibling pairs, this also

suggests that the number of substantial disease loci is not too

great and that their relative risks are not too small. As we

performed comparisons in six groups, we next wanted to

see if our findings were significant at the study-wide level.

The strong correlation between the tested groups makes

Bonferroni correction too conservative, so we tested this

empirically. We chose 10,000 groups of 30 loci and tested

inclusive subgroups of five, ten, 15 . . . 30 members, as we did

with the real data against the scan B results. A p-value of 0.016

or smaller in any sub-group was obtained 606 times, providing

a study-wide significance of 0.06.

Discussion

We have shown how one can test for the enrichment of a

group of genomic locations for disease loci using linkage

genome scan data. Candidate groups of genomic locations can

arise from multiple types of data. For example, one can

compare the results of two independent genome scans, as

described here for Alzheimer’s disease, in the same or different

organisms. Alternatively, one can test prior results of

expression studies or genome-wide association analyses,

or genes belonging to specific pathways or interacting with

a suspected disease gene. The method could be extended

to applying weights to individual locations based on the

strength of prior evidence. This is highly intuitive for testing

locations that carry a score or a significance value (such as

Table 2. Results of simulated scans with 1,180 sibling pairs regarding their success in identifying the disease gene locations.

S
im

u
la
te
d

m
o
d
e
l

#
D
is
e
a
se

lo
c
i

Number of top findings

1 3 5 10 20

Real loci (%) Real loci (%) Real loci (%) Real loci (%) Real loci (%)

Average NPL Average NPL Average NPL Average NPL Average NPL

H
=
0
.7
,
K
�
0
.0
3
,
R
R
=
3 5 0.92 (92%) 2.28 (76%) 3.16 (63%) 4.04 (40%) 4.4 (22%)

4.22 3.70 3.36 2.86 2.29

10 0.72 (72%) 2.12 (71%) 3.24 (65%) 4.8 (48%) 6.32 (32%)

3.55 3.22 2.98 2.58 2.12

20 0.52 (52%) 1.48 (49%) 2.24 (45%) 4.24 (42%) 8.04 (40%)

3.15 2.87 2.71 2.41 2.03

H
=
0
.7
,
K
�0

.0
3
,
R
R
=
2 5 0.75 (75%) 1.54 (51%) 1.96 (39%) 2.79 (28%) 3.58 (18%)

3.24 2.91 2.68 2.34 1.93

10 0.56 (56%) 1.44 (48%) 2.16 (43%) 3.32 (33%) 5.08 (25%)

3.10 2.83 2.62 2.30 1.91

20 0.4 (40%) 1 (33%) 1.64 (33%) 3.24 (32%) 5.56 (28%)

2.79 2.54 2.39 2.12 1.76

Simulation parameters: H ¼ heritability, K ¼ prevalence, RR ¼ relative risk for each risk allele. The number of simulated disease loci is shown. For the one, three, five, ten and 20
top scoring loci for each of the 25 simulated genome scans, we show how many coincided with true disease loci (and their percentages), as well as their average
non-parametric linkage (NPL) score.
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linkage, expression or association results) but less so for other

types of groups (interacting proteins, members of a functional

group, etc). One could also extend the approach by testing

groups on data other than linkage results, yet such approaches

require further method development because there can be a

number of issues that need to be addressed.

The use of sum statistics for SNP association data has been

described previously by Wille et al.,12 Hoh et al.13 and Kim

et al.14 The goals of these investigators, however, were

different to ours. These authors sought methods to test for

associations in multilocus disorders, with the notion of

increasing power to detect associations with any one of the

loci by examining groups of SNPs or other DNA markers

in concert. By contrast, we sought to develop a method

specifically for testing the hypothesis that a group of

pre-selected genomic locations is enriched for disease loci.

Our method is suitable for testing any group of genes or

locations on pre-existing data. In fact, our method could

complement and add to the validity of the findings from other

SNP set association studies.

There is one important pitfall about which investigators

need to be cautious. It is necessary to make sure that the

linkage data used for testing the enrichment hypothesis were

not in any way used to generate the hypothesis. For example,

if one tests genes that have been reported to be associated

with a disease, it is necessary to use linkage data generated

and/or published after the associations, as there is a strong bias

towards association testing in linked regions. If the linkage

data were known before the association studies, the genes

might have been examined because of the positive linkage

scores and testing their scores on the same linkage scan is

certain to give a false positive result. For example, there are

numerous association studies on Alzheimer’s disease and

we could have used our linkage data to test whether the group

of positive findings is enriched for true genes. The pedigrees

used in our study, however, have been publicly available

and used for genome scans since 1999.15 Many association

studies that followed were biased towards examining linked

regions and thus the positive findings would have a similar

bias. We would need results from an unbiased genome screen

for association to perform a valid test for enrichment. One

Figure 1. Power of our method when using a linkage scan of

1,180 sibling pairs and five (A), ten (B) or 20 (C) loci with a

relative risk of 3. X-axis: Number of real loci included in the

tested group; Y-axis: Fraction of real loci in the group; Z-axis:

Power to detect the enrichment.

Table 3. Application of our method to real data. Two sets of

pedigrees were used for scans A and B. Groups of top linkage

peaks from scan A (their size is shown in column 1) were then

tested for enrichment on the results of scan B. Column 2 shows

the empirical p-values for these groups.

Top locations from scan A Significance on scan B

5 0.220

10 0.016

15 0.048

20 0.077

25 0.089

30 0.094
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also needs to consider that although the power of the method

is substantial, it will quickly diminish if multiple hypotheses

of little merit are examined, as this will require substantial

correction for multiple comparisons. Additionally, as the true

underlying disease model is not known, negative results cannot

be taken as evidence against a hypothesis and must be inter-

preted with caution. Although failing to reject the null

hypothesis might suggest that the alternative is wrong, it might

also be due to decreased power resulting from the small effect

of individual genes, the large number of genes involved,

insufficient enrichment of the selected locations in true disease

genes or the small number of pedigrees in the linkage study.

Regarding the last point, the approach could be extended to

simultaneous examination of two or more linkage scans to

increase power without the need to combine the genotype

data with all the inherent difficulties of doing so. One can

simply perform permutations of the same group of random

loci on both scans and examine the distribution of the com-

bined average NPL score against the observed average of the

two scans for the tested group.

Our simulation data can provide some guidance on the

optimal selection of group size. As Figure 1 shows, when less

than 50 per cent of the loci in the group are real, the power

starts to diminish. Significant loss of power is also observed

when less than half of all true loci are included in the group

(Table 1); thus, we suggest using the maximum group size

that does not exceed twice the predicted number of true loci.

Our data on LOAD support this, as the predicted number

of loci conferring a relative risk of 2–3 is five,11 and we

obtained our strongest finding with a group of size of ten.

When information on an expected number of disease genes is

available, we suggest avoiding multiple comparisons by

defining a priori the size of the tested group to roughly

twice that number. If one wishes to test multiple group sizes,

correction for the multiple correlated comparisons is required

using empirical methods. As we observed in our example in

Alzheimer’s disease, the predicted group of ten loci would

have provided the highest significance, while testing six groups

resulted in a study-wide p-value of 0.06. Variations in group

size can be useful in determining the most enriched group,

yet it might be best to perform this analysis after significance

has been established.

Our example using Alzheimer’s disease linkage data showed

how positive findings can not only confirm a hypothesis — in

this case, confirm that a significant proportion of disease loci

are amidst the top linkage findings — but also lead to insight

regarding the possible underlying model. It has been pre-

viously proposed that about five loci, each conferring a relative

risk of 2–3 for LOAD, segregate in the population.11

According to Table 2, for 1,180 sibling pairs and five loci with

a relative risk of 3, we would expect that 3.2 of the top five

and four of the top ten linkage peaks would be real. These

numbers would be 2.5 and 3.4, respectively, for 590 sibling

pairs. If we compared these against a linkage scan of 590

sibling pairs, extrapolating from Table 1, we would expect to

have somewhat more than 80 per cent power to detect this

degree of enrichment. Although our sample for both genome

scans was about half the size of this sample and presumably

had significantly less power, we detected the enrichment in

our data. Having a positive finding in this analysis that is

consistent with the proposed number of loci and relative risks

is very encouraging, as it suggests that linkage analysis has

pointed to some truly linked regions in our Alzheimer’s

genome scan.

The analytical approach we propose here is simple and,

since it calculates the significance of findings based on

permutations, robust to type I errors, provided that the

prediction of the genomic locations to be grouped and

analysed is in no way biased by the linkage data on which the

test will be performed. We showed that the approach has

substantial power under disease models with a moderate

number of risk genes and moderate relative risks. We believe

that as more and more diverse data accumulate through the

various high-throughput technologies, it is increasingly

important to devise more methods of combining and cross-

validating the resulting information that will help us succeed

in our effort to understand complex disorders.
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