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SUMMARY
Meiotic recombination and de novo mutation are the two main contributions towards gamete
genome diversity, and many questions remain about how an individual human’s genome is edited
by these two processes. Here, we describe a high-throughput method for single-cell whole-genome
analysis which was used to measure the genomic diversity in one individual’s gamete genomes. A
microfluidic system was used for highly parallel sample processing and to minimize non-specific
amplification. High-density genotyping results from 91 single cells were used to create a personal
recombination map, which was consistent with population-wide data at low resolution but
revealed significant differences from pedigree data at higher resolution. We used the data to test
for meiotic drive and found evidence for gene conversion. High throughput sequencing on 31
single cells was used to measure the frequency of large-scale genome instability, and deeper
sequencing of eight single cells revealed de novo mutation rates with distinct characteristics.

INTRODUCTION
Gametogenesis is a biological process by which precursor cells undergo cell division and
differentiation to form mature haploid gametes. Human gametogenesis occurs by mitotic
division of gametogonia, followed by meiotic division of gametocytes into various gametes.
During this process the gamete genome experiences both programmed and spontaneous
changes, among which meiotic recombination shuffles the two haploid somatic genomes to
create a unique hybrid haploid genome for each gamete cell, while accumulated replication
errors contribute point mutations which may affect the gametes’ functionality. This results in
an enormous variety of new genomes being created in the gametes, thereby enables one’s
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children to add to the genetic diversity of the human race in a more complex manner than
simply mixing and matching entire parental chromosomes. The genome-wide recombination
activity and de novo mutation rate have been directly characterized in many model
organisms. However, due to ethical and technological challenges, it has been unclear how an
individual human’s genome is edited during gametogenesis.

Using pedigree data and statistical methods, deCODE (Kong et al., 2010) and the
International HapMap Consortium (The International HapMap, 2005) have been able to
create high-resolution recombination maps at the population level. However, such maps only
show average results across a population and cumulative results throughout evolutionary
history (Jeffreys et al., 2005), and it is not clear what the relationship is between these
population maps and the personal recombination processes for any given individual,
especially since these focus only on meiotic products that yield successful offspring
(Tiemann-Boege et al., 2006). The 1000 Genome Project measured the mutation rate in two
family trios (Conrad et al., 2011). However, their results are limited to measuring only a
single meiosis per individual, and in general such an approach probes only viable offspring,
is limited by the number of offspring per family and requires access to parental genome
data.

Here, we describe a single-cell whole-genome analysis method to characterize the genomic
changes from gametogenesis. Using this technique, we analyzed the whole genomes of over
one hundred single human sperm cells. Recombination data from 91 single sperm cells
presented a comprehensive landscape of personal recombination activity. Genome-wide
meiotic drive and gene conversion were also directly tested. Single cell whole genome
sequencing further revealed primary information about human sperm genome instability and
mutation rate.

RESULTS
Microfluidic Single-Sperm Whole-Genome Amplification

We developed a strategy to perform parallel analysis of the haploid genomes of many
individual sperm cells by employing single sperm whole genome amplification on a
microfluidic device (Figure 1). Previously, we used microfluidic automation to perform
whole-genome haplotype analysis by amplifying individual chromosomes at a rate of one
cell per device (Fan et al., 2011), and demonstrated high fidelity single chromosome
amplification. We have now extended that principle both in parallelization and in
complexity of the starting material. The device described here enables the random
dispensing of cell aliquots into 48 separate chambers, leading to typically half of them
holding exactly one cell. We performed high fidelity amplification of the entire genome in
each chamber, followed by whole genome genotyping and high-throughput sequencing
analyses.

We collected a sperm sample from a 40-year-old Caucasian individual whose genome has
been sequenced (Pushkarev et al., 2009), clinically annotated (Ashley et al., 2010) and
haplotype phased (Fan et al., 2011) (P0). The patient has healthy offspring and normal
clinical semen analysis results. Before the amplification reaction we verified which
microfluidic chambers held sperm cells with optical microscopy (Figure 1). With the
products of each of the 125 single cell amplification attempts, we performed 46-loci
genotyping Taqman PCR to evaluate the amplification performance (a total of 5,750 PCR
reactions, a subset of which is shown in Figure 2A). Across the 125 samples, the mean call
rate is 76.5% (4398 out of 5750), and 98 samples yielded call rates above 70%, indicating
effective whole genome amplification (Figure 2B). 8 samples gave signals in less than 30%
of the PCR assays (Figure 2A, chamber 11), suggesting amplification failure or mis-
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identification of sperm cells by imaging. Because of the haploid nature of sperm cells,
amplification products from single sperm cells should give only homozygous genotyping
result regardless the polymorphism status of the diploid genome. As expected, 99.4% of the
positive PCR reactions yielded signals from only one allele, and the allele combinations
from multiple amplification products at each position match the genomic genotype at that
locus. The 26 heterozygous calls (0.6% of 4398) reside in 11 of the 125 single cell
experiments (ranging from 1 to 7 per cell), and we interpreted these heterozygous calls as
the consequence of multiple cells in the chamber or other DNA contamination (Figure 2A,
chamber 23). These results show that it is possible to obtain large numbers of high quality
single cell genome amplification products using an automated microfluidic device and the
products can be used for downstream genomic analysis (Table S1).

Whole-Genome Sperm Typing from 91 Single Cells Gave a Personal Recombination Map
We selected 93 amplification products with high yield and no heterozygous genotyping calls
for an additional round of MDA, followed by Illumina Omni1S whole-genome genotyping
(Table S1). Each single cell yielded successful calls at ~30–50% of the 1.2 million SNPs
tested (Figure 2C), of which 83.2% were called as homozygous. The lower call rate on the
bead array as compared to genotyping PCR is due to amplification bias from MDA. The
abundance variation across different regions of the genome exceeds the dynamic range of
microarray, and the underrepresented loci are not detected. Taqman PCR, which has much
larger dynamic range, gave >70% call rate and this reveals the true extent of coverage of the
amplification products. The heterozygous false positive rate is due to similar effects. Within
the 0 to ~3 Illumina signal intensity spectrum, the mean intensity of homozygous calls was
1.27 while the mean of heterozygous calls was 0.12, which is barely above the default noise
cutoff value of 0.1. These results, together with those from qPCR, reveal that the the
heterozygous calls are false positives due to low signal intensity. To improve the genotyping
accuracy, we applied a stringent noise cut-off on the raw genotyping calls to remove the low
intensity signals and hence eliminate the heterozygous calls.

By mapping the genotyping results from each sperm cell to the two somatic haplotypes
obtained by microfluidic direct deterministic phasing (DDP) of single lymphocytes (Fan et
al., 2011), we detected single chromosome deletions in two cells (Figure 5A), whereas the
other 91 cells gave a total of 2,075 autosomal crossover events (22.8±0.4 SE (±3.7 SD) in
each sperm) (Figure 2D and Table S2). The sizes of crossovers range from a few hundred
base pairs to over 1 Mbp, with 59%, 37% and 13% of the total events localized to intervals
of 200 kb, 100 kb and 30 kb respectively, comparing to 70%, 51% and 20% from previous
Hutterite pedigree data for the same intervals. The fact that P0 has a low number of
heterozygous loci in the genotyping panel, in combination with the genotyping calling rate,
contributed to the slightly lower resolution of our data. The collection of all these
recombination events yields a personal recombination map for P0. To our knowledge, this is
the first reported high-resolution genome-wide personal recombination map for an
individual.

Personal Recombination Map Recapitulates Population Results at Broad Scale
At a genome-wide scale, the recombination rate of 22.8±0.4 SE (±3.7 SD) events per cell
agrees well with the average male results implied from other methods, such as cytological
imaging (49.8±0.4 SE (±4.3 SD) MLH1 loci within the tetraploid spermatocytes (Sun et al.,
2004)) and data inference (24.0±0.2 SE (±2.7 SD) from Caucasian pedigrees (Cheung et al.,
2007)). The slightly lower recombination level in P0 is consistent with his genotype of
RNF212 (T/T at rs3796619), which is associated with a 5% lower recombination level than
average (Kong et al., 2008). When comparing the number of recombination events within
each chromosome, we found similar discrepancies between chromosome length in base pairs
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and recombination rate (Table S3) as have been previously reported by both cytological and
pedigree studies (Sun et al., 2004; The International HapMap, 2005).

Non-uniformity in the probability of recombination events also occurs within each
chromosome. Our data show telomere-weighted distributions that are qualitatively similar to
those found in population genetics studies (Kong et al., 2010; Myers et al., 2005). With a 5-
Mb window size, we detected a correlation of 0.85 between P0 and deCODE male data, and
0.76 between P0 and HapMap data, while the correlation between deCODE male and
HapMap data is 0.85 (Figures 3 and S1). We observed an 87 Mb median distance between
adjacent recombination events, comparing with the 49 Mb expected value after we randomly
shuffled the recombination events (permutation test, p<10−4), which demonstrates positive
recombination interference as has been previously observed (Sun et al., 2004). Taken
together, P0’s personal recombination map shows that recombination events within an
individual recapitulate the general broad scale features from population data. Our results for
the first time experimentally demonstrate general concordance between an individual and
the population-average, which can be thought of as an analogy to the ergodic principle from
statistical physics.

High-Resolution Analysis Revealed Personal Specific Recombination Activity
When one compares our results and the population data at higher resolution, differences
emerge. The telomere-weighted bias is stronger in our results than in HapMap or deCODE
data, resulting in large regions near the centromere without recombination (Figure S1). For
example, no recombination was detected within any ~8 Mb region symmetrically crossing
the 17 metacentric chromosome centromeres in P0 (p-value 0.028 based on deCODE male
data). The relative activities on the p-arms of some chromosomes are also higher than
population-wide results (Figure S1). These differences suggest some potential individual
specific features that may be diluted by population-wide averaging, and we therefore
performed a more extensive comparison at a finer scale. A sliding window of 2 Mb was
applied to P0’s recombination map with 1 Mb increments, and the resulting windows for
which P0’s recombination rate was at least triple the genome-wide average (3 cM/Mb) were
compared with deCODE male activity. Within the total of 66 such windows, 3 showed
significantly higher activity than the deCODE male data in the corresponding regions. We
refined the boundaries of these regions and summarized the activities in Table 1 (Sliding
Window Scanning).

Both the deCODE and HapMap projects have made extensive catalogues of recombination
hotspots at the population level (Kong et al., 2010; The International HapMap, 2005).
Previous sperm studies have demonstrated that some particular hotspots are used
idiosyncratically among individuals, but have not had the ability to measure genome-wide
activity for an individual (Tiemann-Boege et al., 2006; Webb et al., 2008). Data from a
Hutterite pedigree suggested inter-individual variation in hotspot usage (Coop et al., 2008)
and supported a hypothesis that the meiosis specific histone methyltransferase PRDM9 may
act as a universal regulator for recombination distribution (Baudat et al., 2010).
Polymorphisms in PRDM9, to some extent, correlate with the level of historical hotspot
usage. However, the small number of meioses each individual has in the pedigree data, as
well as uncertainty from statistical haplotype inference, led to extensive overlapping of the
hotspot usage percentage between individuals (95% confidence interval of single
measurement covering ±25–40%). Consequently, the power of PRDM9 explaining hotspot
usage variation is still under debate.

Sanger sequencing showed that P0 has the homozygous A/A PRDM9 genotype (allele
naming from (Baudat et al., 2010)), which correlates with the highest historical hotspot
usage. We employed the likelihood method from the Hutterite study (Coop et al., 2008) on
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the portion of P0’s recombination data which matched their criteria (specifically the 274
events with 30kb or smaller size) and determined that only 58% of P0’s recombination
events coincide with HapMap hotspots. The 10 times larger sample size in our data led to
higher accuracy than the previous results, revealed by our 95% confidence interval of
hotspot overlap fraction as ±10%. These high-accuracy measurement of P0’s usage of
historical hotspot reveals that even with the most active and hotspot-correlated variant of
PRDM9, an individual still generates a substantial proportion of recombination events
outside historical hotspots.

We then analyzed the reference human genome for the PRDM9 13-bp degenerate DNA
sequence motif which was previously shown to be enriched in HapMap hotspots (Myers et
al., 2010; Myers et al., 2008). The motif is significantly (p<10−3) enriched in P0
recombination regions compared to the genome background. However, 50 out of 162
recombination regions smaller than 30 kb do not contain the motif. When we focused on
recombination smaller than 10 kb, the enrichment was not significant (p=0.29) due to the
low motif occurrence. We performed a de novo motif search within those regions without
the 13-bp motif. All five hits reside in transposon sequences, and are significantly enriched
in P0’s recombination regions (p<0.05 by simulation). This is consistent with the PRDM9
motif, which is also often located in transposon regions. These results suggest that PRDM9
binding may not be directly required for recombination, and other regulatory mechanisms
may exist, such as homologous DNA pairing within transposons.

Among the 2075 recombination events in P0, 940 overlap with at least one another event.
These 940 overlapping events form 324 distinct sets, with 2–14 overlapping events in each
set. A simulation based on HapMap activities showed significant higher level of self-
overlapping in P0 (permutation test, p-value 0.001), suggesting that these recombination
clusters are new hotspots. To confirm that P0 does have high recombination activities within
these regions, we selected two regions with manageable sizes for allelic PCR and 2-loci
digital haplotyping (Figure S2) and independently verified their high activities in P0 (Table
1, Self-Overlapping Sets, chr16:7,988,699–7,990,230, and chr9:1,864,696–1,868,831). By
comparing to the deCODE male data, we found that most of these clusters are also active in
the population. However, three regions showed significant higher activities than deCODE
(Table 1, Self-Overlapping Sets). Considering the small number of recombination events we
detected in P0 comparing with the historical hotspots pool, such a high level of overlap
demonstrates P0’s preference for only a subset of historical hotspots.

135 of P0’s recombination events do not overlap with any HapMap hotspots. Despite being
all singlets, 38 of these events showed statistical significance relative to the activities
measured in the deCODE male data, even after multiple comparison adjustment. Such a set
as a whole is likely enriched with new recombination spots which can serve as targets for
further analysis with traditional sperm typing methods. To demonstrate this, we selected two
further regions for allelic specific PCR sperm typing (Figure S2) and discovered that one of
them is a new personal hot spot (Table 1, Non-Hotspot Overlapping, chr3:197,249,108–
197,250,198 and chr4:18,404,324–18,406,601).

Meiotic Drive and Gene Conversion
Mendel’s laws propose that the two alleles at a genetic position are transmitted to offspring
with equal probability. However, results from specific regions and the whole genome have
suggested transmission biased toward one allele (Williams et al., 1993; Zöllner et al., 2004),
an effect which can in part be explained by the phenomenon of meiotic drive and which can
be directly tested in our data.
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We first investigated if the meiotic drive happens at the whole chromosome level. Because
of the general absence of recombination near centromeres, we can accurately define the
haplotype across these regions, where kinetochores assemble for mechanical segregation.
None of the 22 autosomes presented transmission ratio which significantly deviated from an
equal distribution (p>0.7, binomial distribution). Pearson correlation test between different
chromosomes didn’t detect any co-transmission of centromere haplotypes. Then we divided
the whole genome into 100-kb haplo-blocks and studied if any block showed meiotic drive.
Even though many blocks had some evidence for bias, none of them reached genome-wide
significance level (Figure 4A). Together with the centromere data, our haplotype block
results demonstrate that meiotic drive does not appear as a large haplotype. We then turned
to measure the transmission ratio of individual SNPs, where we found obvious difference
between our data and simulations of equal transmission (Figure 4B). A putative reason for
this pattern is gene conversion.

Meiotic gene conversion is the transfer of information between homologues without
reciprocal recombination. While effectively contributing to genome diversity equally as a
pair of closely spaced crossovers, gene conversion is less well studied in human due to its
small size relative to genetic marker density. Gene conversion at specific loci has been
studied by sperm typing and population genetics data (Gay et al., 2007; Jeffreys and May,
2004), but direct whole-genome measurements have not been conducted for humans.

As shown in Figure 2D, some SNPs have the genotypes the opposite to the haplotype they
resided in and therefore serve as good candidates for gene conversion detection. To
eliminate potential errors in genotyping, we performed high throughput sequencing on 8 of
these cells (Table S1, samples 23, 24, 27, 28, 101, 113, 135 and 136). 6–8× average
coverage was obtained with Illumina 2×100 read pairs from each sample, covering ~30–
50% of the haploid genome. The less than expected physical coverage based on Poisson
statistics is mainly due to amplification bias from MDA. Since the sperm genomes are
haploid, one can make highly confident allele calls with substantially lower coverage than
the 30× standard genome sequencing depth. To test the accuracy of this genotype calling
method, we performed quality control analysis by mapping the sequencing data to the two
P0 somatic haplotypes. We correctly detected 184 of the 193 crossover events in these eight
cells without false positives, and the nine missing events all reside near the tips of the
chromosomes and had low sequencing coverage.

For each gene conversion candidate SNP covered by high-throughput sequencing, we
compared the genotypes of the same SNP across different single cells as well as P0 genomic
DNA sequencing data (Pushkarev et al., 2009) to confirm genotying and haplotyping
accuracy. From the 568 candidates, we confirmed 90 converted SNPs (Table S4). Most gene
conversions presented as single SNP, whereas five groups of nearby SNPs gave out gene
conversion regions whose sizes from 1 to 22 kbp. This size range is comparable to what was
found in yeast (Mancera et al., 2008) but not in human (Jeffreys and May, 2004). More
interestingly, when we aligned the converted SNP to historical recombination hotspots, only
ten out of the 90 SNPs reside in hotspot regions. This is substantially different from the 58%
hotspot overlapping of P0 recombination events. We did not find a strict relationship
between gene conversion and recombination level, but generally, cells with more crossovers
ended with fewer gene conversions, or vice versa (Figure 4C).

Single-Cell Sequencing Results Reveal Sperm Genome Instability
We chose 8 sperm cells which clearly passed the SNP-PCR assay (“normal”) and 23 further
sperm cells which had marginal or failing scores on the assay (“abnormal” and not within
the 93 samples for the recombination study) for high throughput sequencing (Table S1) and
obtained 0.02× coverage of the genome. After mapping the sequence reads to the human

Wang et al. Page 6

Cell. Author manuscript; available in PMC 2013 January 20.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



reference genome, we found a discrete distribution of relative sequencing tag density in each
chromosome in which chromosomes were typically either present at a uniform level or
completely absent (Figure 5B and S3). All the 8 “normal” cells and 17 “abnormal” cells
exhibited such patterns with one of the two sex chromosomes missing, while another four
“abnormal” cells had clear aneuploidy. Two cells displayed complex, continuous
distributions of chromosome representation (Figure 5B and S3). Additional genotyping
results confirmed the sequencing findings. The results of these 6 abnormal cells cannot be
explained by the known bias mechanisms in MDA (Marcy et al., 2007), and our previous
study on single chromosome amplification showed no bias for particular chromosomes or
sharp coverage drops in any region (Fan et al., 2011). Therefore the most likely source of
missing sequencing reads in the present results is genomic abnormality in the individual
sperm cells. The six abnormal samples (Figure 5B), together with the other 2 samples from
the recombination analysis (Figure 5A), represent ~7% of the 116 single cell amplifications
with high-resolution analysis, which agrees with literature results on aneuploidy of ~2–10%
measured with FISH (Luetjens et al., 2002; Macklon et al., 2002).

Human reproduction is well known to be inefficient, with monthly fecundity rates of only
30–40%, and a large number of conceptions fail before the women are aware of the
pregnancy (Macklon et al., 2002). This early determination of pregnancy fate was further
confirmed by results showing the ability to predict embryo development by the 4-cell stage,
before embryonic genome activation (EGA) (Wong et al., 2010). The importance of
cytokinesis dynamics in embryo development strongly suggests genome integrity as a key
factor, since genome instability will induce cell cycle arrest. Although the aneuploidy rate
for oocytes (20%–30%) is higher than that found in sperm (2%–10%), male genome defects
are still a significant contribution to conception failure. Even if the embryo does develop
correctly, gamete genome abnormality may impose increased risk to certain diseases. For
example, the large-scale deletion of chromosome 13 long arm (13q) found in two of our
sperm samples (Figure S3B) may induce 13q deletion syndrome with malformations of
craniofacial region and skeletal abnormalities (QuÈlin et al., 2009).

de novo Mutations in Primary Sperm Cells
Sequencing data from the gene conversion study also offered the opportunity to measure de
novo germline mutations. The recombination detection performed above demonstrated
robust genotyping by single cell sequencing and we further evaluated the error rate for
mutation detection. We selected high confidence homozygous positions in the P0 somatic
genome based on previous sequencing and genotyping (Pushkarev et al., 2009), and
calculated the first alternate allele calling frequency in sperm sequencing reads at the same
positions. Histogramming these frequency data revealed a decreasing number of positions
extending from the perfect agreement side of the discordance axis (Figure S4A). This long
tail of background noise represented an amplification/sequencing error rate of 2.7×10−4 per
read per position.

A distinct group of loci with 100% discordance with somatic DNA clearly stand out from
the amplification error background (Figure S4A). These data are not statistically consistent
with any of the measured amplification or sequencing errors and are strong candidates for de
novo mutations in the sperm. After excluding signals from repetitive regions or with low
alignment confidence, we detected 25 to 36 candidate point mutations in each sperm cell
(Table 2 and S5). We selected 19 mutations for PCR-Sanger sequencing and were able to
obtain PCR products from 16 regions. The Sanger results from these 16 regions all
confirmed our original calls, thus ruling out the possibility of sequence or alignment errors.
Since these loci are inconsistent with the statistical distribution of amplification errors, we
conclude that they are de novo mutations.
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P0’s mutation rate (2–4×10−8) is higher than that obtained from genome sequenced pedigree
data (~1×10−8) (Conrad et al., 2011), but it is consistent with evolutionary studies which
have revealed ~4–5x more mutations in male than in female, possibly due to the larger
number of germline cell division in male (Crow, 2000; Makova and Li, 2002). The results
from the pedigree study identify the variation of germline mutation levels transmitted to
each offspring, but are not able to identify the source of such variation. Our results from the
eight individual sperm cells have a high degree of internal consistency between their
respective mutation levels (Figure S4B), which suggests inter- rather than intra-individual
variation. Within each cell, most mutations reside in intergenic or intronic regions (Table 2).
However, we detected three missense mutations, a category which was not observed in the
pedigree genomes. The transition to transversion ratio of P0 mutations is 5.6, as compared to
a population average of 2.1. The main reason of more transition than transversion is
generally thought to be deamination of methylated cytosine, primarily at CpG and
potentially in other sequence contexts. The higher level of transition we observed is
consistent with this as 21% of C->T mutations correlated with CpApG, althougth only 8%
were at CpG sites.

DISCUSSION
Despite the advances in personal genomics thus far (Ashley et al., 2010; Levy et al., 2007;
Pushkarev et al., 2009; Wheeler et al., 2008), gamete genome variation within individuals,
especially fine scale personal recombination activity and germline mutation rates, have been
as yet generally inaccessible. Bulk analysis of sperm cells with PCR offers high-resolution
and sensitivity (Jeffreys et al., 2005; Webb et al., 2008) and has been used to demonstrate
variable usage of historical recombination hotspots, but is limited to investigating focused
areas within the genome. Cytological approaches can be used to study recombination-related
effects in individuals, but these studies use gamete progenitor cells instead of sperm and
have several limitations: (1) the sample collection requires invasive biopsies, (2) the analysis
is performed before the completion of meiosis, so it is not clear if all of the synaptonemal
complexes proceed to fully recombine and each progenitor cell analyzed by this method
predicts an average result from four future sperm cells, and (3) cytological staining does not
allow high resolution molecular analysis such as genotyping or sequencing.

There has been increasing interest in performing single cell genome analysis in human
cancers, and one can compare the methods and results used in cancer with those used here
for human gamete genomes. One group used FACS to sort individual nuclei from human
breast tumors (Navin et al., 2011). The genomes from these nuclei were amplified in
microliter volumes and lightly sequenced to ~0.2x coverage. This data was sufficient to
construct a rough cell lineage map but did not allow calling of individual bases; rather, low-
resolution structural variants were used. Another group used mouth-pipetting to isolate
individual cells from hematopoietic and kidney tumor (Hou et al., 2012; Xu et al., 2012),
whose genomes were then amplified in microliter volumes. Rather than performing whole
genome analyses, these samples were then put through exome amplification and sequencing
- effectively obtaining 30x coverage of only 1% of the genome. That data was also used to
establish lineage relationships between the cells, this time on the basis of point mutations.
Their work reveals one of the challenges of performing single cell analyses on diploid
genomes - only 57% of the diploid calls were correct. Without the ability to examine a
significant proportion of the whole genome, the studies mentioned above had to rely on high
mutation rate to distinguish single cells. As a consequence, none of the methods have been
applied to samples other than late stage cancers.

In this study, we applied microfluidics to single-cell whole-genome amplification. This
technique not only presents great parallelization, but also improved amplification
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performance. MDA is sensitive to environmental contamination and extensive sample
purification is required for traditional bench-top whole-genome amplifications (Hou et al.,
2012; Jiang et al., 2011; Xu et al., 2012). More sensitive assays even revealed contamination
in the MDA reagents (Blainey and Quake, 2010). By incorporating the amplification into
microfluidic chips, we reduced the reaction volume, and hence the contamination, by ~1000
fold.

Amplification error has been a concern for single cell whole-genome analysis. Previous
microliter volume single cell exome studies have shown 2–3×10−5 false discovery rates
from MDA (Hou et al., 2012; Xu et al., 2012). Using our microfluidic approach on haploid
cells, we have reduced the error rate to 4×10−9 with 5× coverage (binomial probability with
per read error rate). An important feature of single molecule MDA is its repetitive usage of
the originating genuine template molecule. Even if an amplification error happens in the
initial stage, there will still be a large fraction of products preserving the correct base
information from the original template, and the power of statistics from multiple coverage
discriminates these errors from true genomic variation.

Using this microfluidic MDA approach, we reported the first genome-wide single cell
analysis of human sperm. We were able to create a personal recombination map for an
individual and to measure the rate of de novo mutations in this individual’s germline. The
advantage of sampling a large set of meioses from single individual for fine scale analysis
allowed us to uncover individual specific features potentially buried under population data.
P0’s preference for a subset of historical hotspots suggests how individual features
contribute to the population diversity, and a potential solution for the hotspot paradox. We
propose that this partially overlapping feature is also the general pattern in individuals:
everyone is using a different subset of the historical hotspots; while some hotspots are dying
in some people, new recombination activities evolve to refill the hotspot pool; the partially
overlapping patterns of individuals give rise to the population results, with hotspots (still
active in many people) and deserts (used by fewer people). Support to this theory comes
from single cell analysis. While P0 has on average 58% overlap with the historical hotspots,
this ratio range from 0 to 100% for his single cells (Figure S2D). The partially overlapping
patterns between individual cells produce P0’s personal recombination landscape.

Transmission distortion has long been known but the key factors behind it are not clear.
Biased segregation during meiosis, different ability to achieve fertilization and different
postzygotic viability can all contribute to this phenomenon. Specifically if meiotic drive
exists, the molecular mechanism is not known. Our data from 91 cells showed that meiotic
drive does not generally appear as whole haplotype blocks, but may occur at individual SNP
loci. The most intuitive explanation for this result would be gene conversion. Indeed, we
found 5–15 gene conversions in each genome sequenced cell. This represents a lower bound
for the total number of conversions in each single human sperm, since there is a limited
heterozygous SNP density. If both crossover events and gene conversion originate from
double strand breaks and share a recombination mechanism, then they should have the same
hotspot overlapping ratio. If we match the number of gene conversion at hotspots and further
assume there are 1.5 million heterozygous SNP in the genome, the total number of gene
conversion in a single cell would be ~250–800, which is 10–35× of crossovers. Previous
sperm typing studies have suggested 4–15× gene conversions over crossovers, based on data
from 3 hotspots (Jeffreys and May, 2004), but this value apparently changes across the
genome (Gay et al., 2007).

Evolutionary studies have estimated the germline mutation level (Makova and Li, 2002) but
recent results from 1000 Genome Project (Conrad et al., 2011) are not consistent with the
previous findings. The combination of data from our study and the 1000 Genome Project
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suggest that the germline mutation rate can vary greatly among different individuals but not
different cells from the same individual. This may explain why the male mutation rate is not
always higher than the female. DNA methylation also affects genome instability (Li et al.,
2012) and C->T point mutation levels, but in opposite ways. A fine tuned methylation level
is therefore required for high quality sperm genome. The high germline mutation rate at
CpA regions (Conrad et al., 2011; Miyoshi et al., 1992) at least suggests a methylation
profile different from the somatic genome. The fact that cytosine deamination is less well
repaired at CpA than at CpG also explains our findings (Wang and Edelmann, 2006).

The ability to study a large numbers of single sperm cells has offered several new insights in
meiosis biology. Studying the germline genome is but one application of single cell
genomics and we expect that the method described here will find applications in many other
fields, including cancer, aging, immunology and developmental biology.

EXPERIMENTAL PROCEDURES
Sample Collection

Semen sample was collected from P0 in Stanford Reproductive Endocrinology and
Infertility Center, and analyzed with a computer assisted semen analyzer following clinical
standards.

Single Cell Whole Genome Amplification
Whole genomes from P0’s single sperm cells were amplified on a microfluidic device using
multiple strand displacement amplification (Repli-g midi, QIAGEN), yielding a gain of ~104

fold. Amplification products from single sperm cells were subjected to 46-loci Taqman
genotyping PCR assays (Applied Biosystems) to evaluate the amplification performance.

Public Data Set Access
Human reference genome sequence and annotation were downloaded from UCSC Genome
Bioinformatics (http://genome.ucsc.edu/). The P0 somatic genome and genotyping data were
from previous study. Population recombination data were from HapMap Project (http://
hapmap.ncbi.nlm.nih.gov/, rel22) and deCODE genetics (http://www.decode.com/).

Personal Recombination Map
93 samples with high amplification efficiency were re-amplified by MDA and genotyped on
Illumina’s Omni1S Bead Array. Raw genotyping data were processed by Illumina
GenomeStudio for genotype calling and further filtered to remove low intensity calls.
Haploid genome from each sperm cell was aligned to the two P0 somatic haplotypes (Fan et
al., 2011). Recombination events were called by a MATLAB script and further manually
confirmed. Distribution of P0 recombination events along the genome was compared with
population-wide data from deCODE (male non-carrier) and the HapMap Project. Statistical
analysis with population data was based on binomial distribution, followed by Bonferroni
correction. Recombination frequency in selected regions with recurrent crossover events was
measured using allelic specific digital PCR (BioMark, Fluidigm).

Meiotic Drive Measurement
Centromere boundaries were extracted from UCSC chromosome band table and were
extended by 5Mbp to include enough heterozygous SNP. Chromosome haplotype was
defined as the haplotype of its centromere. Allele frequency of each autosome was measured
based on recombination data of 91 single cells. Pearson correlation coefficient was
calculated for each pair of chromosomes to detect potential co-transmission of chromosome
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haplotypes. The whole genome was further divided in 100kbp blocks and the haplotype of
each block was assigned based on chromosome-wide recombination results. Blocks
overlapping with recombination events were excluded to avoid haplotype ambiguity within
the recombination region. Binomial distribution was used for no distortion simulation. We
studied the allele frequency of single SNP with the same approach.

Gene Conversion
For each of the 8 single cells, SNPs with allele pointing to the other haplotype of the block
they reside in were extracted for further examination. The same 8 cells were sequenced on
Illumina HiSeq2000 with 2×100 paired-end read option. Raw sequencing data were
processed by Illumina software and aligned to human reference genome hg18 with BWA.
Alignment was refined with GATK realignment tool and piled up with samtools. For each
gene conversion candidate SNP covered by high-throughput sequencing, we set three
requirements for gene conversion calling. The SNP must have sequencing support for its
allele call; the SNP must have sequencing support from other single cells or P0 genomic
DNA for its heterozygosity; the SNP must have support from other single cell for its
haplotyping. SNP failed to meet any of the above three requirements would be cataloged as
low coverage or genotyping error, low heterozygosity and haplotyping error.

Single Cell Genome Instability Measurement
Single sperm samples with bulk sperm genomic DNA were subjected to multiplex Illumina
library construction with NuGEN Encore NGS kit and briefly shotgun sequenced on an
Illumina GAII with 1×36 read option. Raw sequencing data were processed by Illumina
software and aligned to human reference genome hg18 with CASAVA 1.6.0. Sequencing
tag density in every 500-kb non-overlapping window was counted and normalized with
sperm genomics DNA control. Genome abnormality was analyzed based on sequencing tag
density distribution.

de novo Mutation Detection
To eliminate random errors induced by MDA and sequencing, we used a binomial test to
detect high-confidence mutations. Specifically, false positive rate from MDA and
sequencing was measured by using high-confidence homozygous loci in P0 from genotyping
and somatic sequencing. The probability of observing given number of mutation calls under
given sequencing depth was calculated for each position with a Binomial Distribution.

A complete description of the materials and methods is provided in Supplemental
Experimental Procedures.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• A microfluidic system for high-throughput single cell whole-genome
amplification

• Personal recombination map by single sperm whole-genome analysis

• Genome-wide meiotic drive and gene conversion tests

• de novo germline mutations with distinct molecular characteristics
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Figure 1.
Microfluidic device designed for the whole genome amplification from single sperm cells.
Device layout and operation pipeline are slightly modified from a similar device used to
measure haplotype. A single sperm cell highlighted by the red square is recognized
microscopically and captured in the cross region. In the overview image of the device,
control channels are filled with green dye, and flow channels are filled with red dye. See
also Table S1.
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Figure 2.
Whole-genome single sperm typing.
(A) Evaluation of amplification performance using 46-loci PCR. This table represents
results from a subset of sperm cells being amplified. Each row represents the content from a
microfluidic chamber, and each column represents a locus, with specified chromosome
number and coordination (NCBI b36). The genotypes of genomic DNA control are also
shown. The two alleles of a SNP are highlighted in red and green. Heterozygous loci are
labeled in blue. Sample 11 shows a genotyping profile similar to no-template WGA control,
indicating mis-identification of sperm cell before amplification. Sample 23 shows
heterozygous genotype on chromosome 14 and sex chromosome, suggesting multiple cells
during amplification.
(B) 46-loci PCR genotyping call rates.
(C) Whole genome genotyping call rates of 91 single sperm samples from Illumina
HumanOmni1S Bead Array.
(D) Detection of recombination from a single sperm sample. The two columns in each
chromosome represent the two somatic haplotypes, and blue lines show the genotyping calls
of heterozygous SNPs from the sample. Each switch of haplotype block indicates a
recombination event.
See also Table S2.
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Figure 3.
Recombination map from chromosome 1, 7, 13 and 21.
Each dot represents a recombination event with color code for resolution. Solid black lines
connect recombination events from the same sperm cell. Red and blue lines show the
cumulative recombination rates from deCODE (male) and HapMap, respectively. See also
Figure S1 and Table S3.
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Figure 4.
Meiotic drive and gene conversion.
Allele frequency histograms of 100-kb haplotype blocks (A) and individual heterozygous
SNP (B). Green columns represent experiment data and red columns represent simulation
results assuming no transmission distortion. Solid lines are normal distribution fitting results
in log scale.
(C) Gene conversion statistics of single cells.
See also Table S4.
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Figure 5.
Germline genome instability.
(A) Whole-genome genotyping results of cell 112. Two columns in each chromosome
represent the two haplotypes and each horizontal bar shows the genotype of a SNP.
Chromosome 14 showed very low call rates, suggesting its complete deletion.
(B) Cell 23 and 27 are shown as normal controls, with 23 chromosomes clustered by
normalized tag density and one sex chromosome dropped. Cells 59, 60, 63 and 64 had whole
chromosome aneuploidy. Cell 49 and 61 displayed complex, continuous distributions of
chromosome representation.
See also Figure S3.
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