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Abstract

We describe the morphological, biological, and molecular characteristics of Cryptosporidium pig
genotype Il and propose the species hame Cryptosporidium scrofarumn. sp. to reflect its
prevalence in adult pigs worldwide. Oocysts of C. scrofarum are morphologically
indistinguishable from C. parvum, measuring 4.81-5.96 um (mean = 5.16) x 4.23-5.29 ym (mean
= 4.83) with a length to width ratio of 1.07 + 0.06 (n = 400). Oocysts of C. scrofarum obtained
from a naturally infected pig were infectious for 8-week-old pigs but not 4-week-old pigs. The
prepatent period in 8-week-old Cryptosporidium-naive pigs was 4-6 days and the patent period
was longer than 30 days. The infection intensity of C. scrofarumin pigs was generally low, in the
range 250-4000 oocysts per gram of faeces. Infected pigs showed no clinical signs of
cryptosporidiosis and no pathology was detected. Cryptosporidium scrofarum was not infectious
for adult SCID mice, adult BALB ¢ mice, Mongolian gerbils (Meriones unguiculatus), southern
multimammate mice (Mastomys coucha), yellow-necked mice (Apodemus flavicollis), or guinea
pigs (Cavia porcellus). Phylogenetic analyses based on Small subunit rRNA, actin, and heat shock
protein 70 gene sequences revealed that C. scrofarum is genetically distinct from all known
Cryptosporidium species.
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1. Introduction

Porcine cryptosporidiosis, which was first described in the USA (Bergeland, 1977; Kennedy
et al., 1977), has been reported to occur worldwide. Cryptosporidium parvum was initially
considered to be the causal agent based on experimental infection studies undertaken in the
1980s (Moon and Bemrick, 1981; Tzipori et al., 1982; Vitovec and Koudela, 1992).
Subsequent molecular epidemiology and experimental infection studies revealed the
susceptibility of pigs to a number of species including C. parvum, C. hominis, C. suis, C.
felis, and C. meleagridis. Cryptosporidium murisand C. tyzzerialso have been isolated from
pigs; however, infectivity could not be confirmed experimentally (Kv&c et al., 2012). In
addition to the named species, genotypes including Cryptosporidium sp. Eire w65.5,
Cryptosporidium rat genotype, C. suis-like, and Cryptosporidium pig genotype 11, have been
reported in pigs (Langkjer et al., 2007; Zintl et al., 2007). Among these species and
genotypes, only C. suis (Morgan et al., 1999; Ryan et al., 2004) and Cryptosporidium pig
genotype Il appear to be adapted to pigs. Ryan et al. (2003) identified Cryptosporidium pig
genotype 11 based on its unique small subunit rRNA (SSU) gene sequence; however, no
biological data have been reported.

Cryptosporidium oocysts have been detected in the faeces or slurry of pigs in Australia
(Johnson et al., 2008; McCarthy et al., 2008; Ryan et al., 2003), Brazil (Fiuza et al., 2011),
Canada (Budu-Amoako et al., 2012; Farzan et al., 2011; Guselle et al., 2003; Olson et al.,
1997; Sanford, 1987), China (Chen et al., 2011; Wang et al., 2010; Yin et al., 2011), Croatia
(Bilic and Bilkei, 2006), Czech Republic (Jenikova et al., 2011; Kv&c et al., 2009a,c;
Vitovec et al., 2006), Denmark (Langkjar et al., 2007; Maddox-Hyttel et al., 2006), England
(Featherstone et al., 2010), Germany (Epe et al., 2004; Wieler et al., 2001), Ireland (Zintl et
al., 2007), Italy (Canestri Trotti et al., 1984), Japan (Izumiyama et al., 2001), Korea (Rhee et
al., 1991), Nigeria (Yatswako et al., 2007), Norway (Hamnes et al., 2007), Spain (Nunez et
al., 2003; Quilez et al., 1996; Reinoso and Becares, 2008; Villacorta et al., 1991),
Switzerland (Ebeid et al., 2003), Taiwan (Hsu et al., 2008), Trinidad and Tobago (Adesiyun
etal., 2001), and USA (Atwill et al., 1997; Bergeland, 1977; Kennedy et al., 1977; Tacal et
al., 1987; Xiao et al., 1994; Xiao et al., 2006). Cryptosporidium pig genotype Il was
reported in domestic pigs in nine countries. In addition, wild boars, calves, marine fish, and
humans have been reported as natural hosts of this genotype (Table 1) (Kvac et al.,
2009a,b,c; Némejc et al., 2012; Ng et al., 2011; Reid et al., 2010).

Differences in the age of pigs infected with C. suisand Cryptosporidium pig genotype 1l
have been reported recently. Cryptosporidium suis appears to infect all age categories of
pigs, though prevalence is lower in older pigs. Conversely, Cryptosporidium pig genotype Il
appears to be specific for older pigs (Jenikova et al., 2011; Kvac et al., 2009a,c; Langkjeer et
al., 2007; Némejc et al., 2012), with a much lower prevalence observed in younger age
categories, primarily in pre-weaned piglets (Table 1).

No other names have been used for Cryptosporidium pig genotype 11 in publications or
GenBank. There are 49 sequences for 6 genes available in GenBank (43, 2, 1, 1, 1, and 1 for
the SSU, actin, HSP70 (heat shock protein 70), COWP ( Cryptosporidium oocyst wall
protein), 15 kDa and 23 kDa sporozoite surface antigen, respectively.

We undertook this study to examine the experimental transmission, oocyst morphology, and
molecular characteristics of Cryptosporidium pig genotype Il. Based on the collective data
from this and other studies, which show that Cryptosporidium pig genotype 1l is genetically
distinct from known Cryptosporidium species and uniquely adapted to adult pigs, we
propose the species name Cryptosporidium scrofarumn. sp.
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2. Materials and Methods

2.1. Source of oocysts for transmission studies

Faecal samples from 3-15-week-old pigs kept on a commercial farm were screened for
Cryptosporidium by microscopic examination of faecal smears stained with aniline-carbol-
methyl violet (ACMV) (Mil&Cek and Vitovec, 1985) and PCR. The naturally infected 9-
week-old pigs (Sus scrofa) were purchased and separately housed. Faecal specimens were
collected daily and stored in a 2.5% potassium dichromate solution. Cryptosporidium
oocysts were purified for morphology, phylogeny, and infectivity analyses using sucrose
gradient (Arrowood and Sterling, 1987) and caesium chloride gradient centrifugation (Kilani
and Sekla, 1987). Purified oocysts were stored for up to 4 weeks in PBS with antimycotics
and antibiotics at 4°C in darkness. The parasite was confirmed to be the Cryptosporidium
pig genotype Il by sequence analysis of the SSU gene using previously described methods
(Jenikovéa et al., 2011; Jiang et al., 2005). The number of oocysts administered to animals
was determined by hemacytometer counting. The viability of oocysts was examined using
an assay previously described by Kvac et al. (2007a). Briefly: the viability of oocysts was
determined by propidium iodide (PI) staining (Sauch et al., 1991). Examined oocysts were
washed in distilled water (DW; 1x10° oocysts in 100 ul) and mixed with 10 pl of Pl (1%
solution, SIGMA). After 30 min of incubation at room temperature in the dark, the oocysts
were washed twice with DW. Oocyst viability was examined using fluorescence microscopy
(filter 420 nm, Olympus 1X70). A total of 5x100 oocysts was counted.

2.2. Oocyst morphology

Oocysts were examined using differential interference contrast (DIC) microscopy,
brightfield microscopy following ACMV staining, and epifluorescence microscopy
following labelling with genus-specific FITC-conjugated antibodies ( Cryptosporidium |F
Test, Crypto cel, Medac) (Olympus IX70 microscope; Olympus CZ, Czech Republic).
Morphology and morphometry were determined using digital analysis of images (M.1.C.
Quick Photo Pro v.1.2 software; Optical Service, Czech Republic) collected using an
Olympus Camedia C 5060 WIDEZOOM 5.1 megapixel digital camera (Optical Service). A
20 pl aliquot containing 100,000 purified oocysts was used for each measurement. Length
and width of oocysts (h = 100) were measured under DIC at x 1,000 magnification. The
shape index and length-to-width ratio of each oocyst was calculated. As a control, the
morphometry of C. parvum (n = 100) from a naturally infected 30-day-old Holstein calf was
measured by the same person using the same microscope. A photomicrograph of C.
scrofarum oocysts observed by DIC, ACMV and IFA was deposited as a phototype at the
Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic.

2.3. DNA extraction and molecular analyses

Total DNA was extracted from 200 mg of faeces, 50 pl of purified oocysts, or 200 mg of
tissue by bead disruption for 60 s at 5.5 m/s using 0.5 mm glass beads in a FastPrep®-24
Instrument (MP Biomedicals, CA, USA) followed by isolation/purification using a
commercially available kit in accordance with the manufacturer’s instructions (QlAamp!
DNA Stool Mini Kit or DNeasy! Blood & Tissue Kit, Qiagen, Hilden, Germany). Purified
DNA was stored at —20°C prior to being used for PCR.

A nested PCR approach was used to amplify a region of the SSU (~ 830 bp; Jiang et al.,
2005; Xiao et al., 1999) and HSP70 genes (~ 325 bp; Morgan et al., 2001). A semi-nested
PCR was used to amplify the actin gene (~ 619 bp; this study). Three primers were designed
using the pig genotype Il sequence in Genbank (EF012374). The forward primer for both
primary and secondary reactions was ScrofActinFA (TGT AGG TGA CGA GGC TCA
ATC CAA). ScrofActinRA (ATC GAT TGG AAA GTG GTC TCG CCA) and
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ScrofActinRB (TTC TGG GCA CCT AAA TCT CTC GCT) were used as reverse primers
in the primary and secondary reactions, respectively. The primary PCR reactions were
carried out in a volume of 100 pl containing 1 pl of DNA template (or water as a negative
control), 1X PCR buffer, 1.5 mM MgCl,, 200 uM dNTPs, 0.2 uM of each primer, and 2.5U
of Tag DNA polymerase (Promega GoTaq Flexi). Secondary reactions were carried out
under similar conditions with the exception that 2 pl of primary product was used as
template. PCR reactions were run in a thermo cycler (Eppendorf Mastercycler gradient) with
an initial denaturation of 94°C for 5 min, followed by 35 cycles of 94°C for 45 s, 57°C for
45 s, 72°C for 1 min. A final elongation step of 72°C for 10 min was included to ensure
complete extension of amplified products. Conditions were the same for both primary and
secondary reactions. In order to distinguish C. scrofarumfrom C. suis in mixed infections, a
C. scrofarum-specific forward primer was used in secondary PCR amplifications (Jenikova
etal., 2011). DNA from C. scrofarum and C. hominis were used as positive and negative
controls, respectively. Secondary PCR products were detected by agarose gel (1.5%)
electrophoresis, visualized by ethidium bromide staining (0.2 ug/ml), and extracted using
QIAquick! Gel Extraction Kit (Qiagen). Purified secondary products were sequenced in both
directions with an ABI 3130 genetic analyser (Applied Biosystems, Foster City, CA) using
the secondary PCR primers and the BigDyel Terminator V3.1 cycle sequencing kit (Applied
Biosystems, Foster City, California) in 10 pl reactions. The identity of C. parvum used for
morphological analyses was verified using sequencing of SSU (data not shown).

2.4. Phylogenetic analyses

The nucleotide sequences of each gene obtained in this study were edited using the
programme ChromasPro 1.5 (Technelysium, Pty, Ltd.) and were aligned with each other and
with reference sequences from GenBank using ClustalX 2.0.6. Alignment adjustments were
made manually to remove artificial gaps using BioEdit. Phylogenetic analyses were
performed using the software MEGAS (Tamura et al., 2011). Neighbour joining (NJ),
maximum parsimony (MP), and maximum likelihood (ML) trees were constructed. All
ambiguous positions were removed for each sequence pair. The reliability of branches in
trees was assessed using the bootstrap analysis with 1000 pseudo-replicates, with values
above 50% reported. Phylograms were drawn using the MEGAS and were manually
adjusted using CorelDrawX5. SSU, actin, and HSP70 sequences have been deposited in
GenBank under the accession numbers JX424840, JX424841, and JX424842, respectively.

2.5. Transmission studies

2.5.1. Animals—TFive 8-week-old adult SCID mice (strain C.B-17), BALBc mice (Charles
River, Germany), Mongolian gerbils (Meriones unguiculatus) (Charles River, Germany),
southern multimammate mice (Mastomys coucha), yellow-necked mice (Apodemus
flavicollis), guinea pigs (Cavia porcellus) (Institute of Parasitology, Biology Centre of the
Academy of Sciences of the Czech Republic, Czech Republic), and 4- and 8-week-old pigs
(Sus scrofa) (3 animals per group; purchased from the farm operated by the Faculty of
Agriculture, University of South Bohemia in Ceské Budgjovice, Czech Republic) were used
for experimental infection studies.

2.5.2. Experimental design—To prevent environmental contamination with oocysts,
laboratory rodents were housed in plastic cages with sterilized wood-chip bedding situated
in flexible film isolators (BEM, Znojmo, Czech Republic) with high-efficiency particulate
air filters. The mice were supplied with a sterilized diet (TOP-VELAZ, Prague, Czech
Republic) and water ad /libitum.

Pigs were individually housed in 5 m? pens with concrete walls and floor in an isolated
building. Water and feeding mixture were available ad /ibitum. Rodents (five animals per
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group) were each inoculated orally by stomach tube with 1,000,000 purified oocysts
suspended in 200 pl of dH,0. Pigs (three animals in each category) received the same
infection dose in a 20 ml suspension via syringe.

Faecal samples from all experimental animals were collected daily for 30 days post infection
(DPI). Samples were stained with aniline-carbol-methyl violet (Milacek and Vitovec, 1985)
and the presence of Cryptosporidium specific DNA was confirmed using nested PCR
targeting the SSU gene. Infection intensity was reported as the number of oocysts per gram
(OPG) of faeces as previously described (Kvac et al., 2007b).

2.5.3. Clinical and pathomorphological examinations—A complete examination of
all gastrointestinal organs was conducted at necropsy. Tissue specimens of the
gastrointestinal tract were sampled and processed for histology according to Kvac and
Vitovec (2003) and for PCR analyses (see chapter 2.3.). Histology sections were stained
with haematoxylin and eosin (HE), Wolbach’s modified Giemsa stain, alcian blue, and
genus-specific FITC conjugated monoclonal antibodies targeting Cryptosporidium oocyst
wall antigens (Cryptosporidium |F Test, Crypto cel, Medac).

2.5.4. Animal care—Animal caretakers wore new disposable coveralls, shoe covers, and
gloves every time they entered the buildings. All wood-chip bedding, pig faeces, and
disposable protective clothing were sealed in plastic bags, removed from the buildings and
incinerated. All housing, feeding, and experimental procedures involving pigs, laboratory
mice of different strains, Mongolian gerbils, southern multimammate mice, yellow-necked
mice, and guinea pigs were conducted under protocols approved by the Institute of
Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and
Institute and National Committees (Protocol No. 071/2010).

3.1 Experimental transmission studies

Cryptosporidium scrofarum was not detected by microscopy or PCR in the faeces of 4-
week-old pigs following experimental infection. Conversely, sporadic oocyst shedding was
detected in 8-week-old pigs beginning at 67 DPI and continuing for the duration of the
study. Cryptosporidium scrofarum DNA was detectable in faeces by PCR beginning at 3
DPI and continuing for the duration of the study. Infection intensity was generally less than
2000 oocysts per gram of faeces (Figure 1). Infected pigs showed no clinical signs of disease
and pigs necropsied at 30 DPI showed no macroscopic signs of intestinal cryptosporidiosis.
Histological examination of the gastrointestinal tract of animals infected with C. scrofarum
revealed the presence of developmental stages primarily attached to the microvillar border
along small intestine with a predilection for the jejunum and ileum. The ratio of infected to
non-infected glands in in the jejunum and ileum was approximately 1:200. The proportion of
infected glands was much lower or developmental stages were absent in other parts of the
small and large intestine. However, C. scrofarum DNA was detected by PCR (Table 2). No
pathological changes were observed.

Cryptosporidium scrofarum was not detected by microscopy or PCR in the faeces of Mus
musculus (SCID and BALB/c), Meriones unguiculatus, Mastomys coucha, Apodemus
flavicollis, or Cavia porcellus following experimental infection. Histological and molecular
examination of gastrointestinal tract tissue from these rodents did not reveal the presence of
Cryptosporidium developmental stages.

Vet Parasitol. Author manuscript; available in PMC 2014 January 31.
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3.2. Molecular characterization

Isolates from naturally and experimentally infected pigs shared 100% sequence identity at
the SSU, actin, and HSP70 loci. SSU and HSP70 sequences were identical to GenBank
sequences EU331243 and DQ833282, respectively. The actin sequence was identical to a
sequence from a pig isolate in Norway (GenBank: EF012374) with the exception of three
polymorphisms, one of which was non-synonymous. SSU, actin, and HSP70 sequences from
the faeces of positive pigs were 100% identical to sequences from isolates used for infection.
Neighbour joining, maximum likelihood, and maximum parsimony trees constructed from
SSU, actin, and HS70 sequences support the placement of C. scrofarum in a cluster with C.
ryanae, C. xigoi, and C. bovis (Figure 2).

3.3. Oocyst morphology

Oocysts of C. scrofarum were similar in size to C. parvum, measuring 4.81-5.96 um (mean
=5.16) x 4.23-5.29 um (mean = 4.83) with a length-to-width ratio of 1.07 £ 0.06 (n =
4x100) (Fig. 3A and Table 3). Oocysts of C. scrofarum recovered from infected pigs were
morphologically similar to those used for infection (Table 3). Oocysts in faecal smears
showed typical Cryptosporidium ACMV staining characteristics (Fig. 3B). Fixed C.
scrofarum oocysts labelled with FITC conjugated anti- Cryptosporidium oocyst wall
antibody and examined by epifluorescence microscopy displayed typical apple green, halo-
like fluorescence (Fig. 3C).

4. Discussion

Based on morphology, C. scrofarum oocysts obtained from naturally and experimentally
infected pigs in the present study were indistinguishable from C. parvum and larger than
oocysts of C. bovis (4.89 x 4.63 um), C. ryanae (3.16 x 3.73 um), and C. xiaoi (3.94 x 3.44
um) (Fayer and Santin, 2009; Fayer et al., 2005, 2008). Other C. scrofarum oocyst
characteristics including wall thickness and inner structure were not different from the C.
parvum oocysts examined in this or other studies (Upton and Current, 1985; Vitovec et al.,
2006).

It is unclear whether C. scrofarum can be distinguished from C. suis, the other pig-adapted
species, based on oocyst morphology alone. Ryan et al. (2004) reported that C. suis oocysts
had a similar morphology to C. parvun, however, Vitovec et al. (2006) found that C. suis
oocysts were larger than C. parvum and, by extension, would be larger than C. scrofarum.

Cryptosporidium scrofarum, previously named Cryptosporidium pig genotype |1, has been
detected in domestic pigs and wild boars in at least 19 countries (see introduction). Most
reported infections have been in pigs, with the exception of sporadic infections in a human, a
calf, and Western school whiting (Kvag et al., 2009b; Ng et al., 2011; Reid et al., 2010). We
have shown that a number of rodents are not susceptible to experimental infection with C.
scrofarum. These data collectively support a conclusion that C. scrofarum is relatively
specific for pigs. Furthermore, experimental data from the present study show that 8-week-
old but not 4-week-old pigs are susceptible to infection. These data verify the age specificity
hypothesis that was predicated on molecular epidemiology studies (Jenikova et al., 2011;
Johnson et al., 2008; Kvac et al., 2009a,c; Langkjer et al., 2007).

Cryptosporidium scrofarum has a prepatent period of 4-6 DPI, which is longer than the
prepatent periods observed in its closest relatives including C. xiaoi (-8 DPI), C. ryanae
(11 DPI), and C. bovis (16 DPI) (Fayer and Santin, 2009; Fayer et al., 2008; Fayer et al.,
2005). The reported prepatent period of C. suisin pigs ranges from 2-9 days (Enemark et
al., 2003; Vitovec et al., 2006; Xiao et al., 1994). In agreement with previous observations,
pigs infected with C. scrofarum showed no clinical signs of disease. Similar to C. ryanae, C.

Vet Parasitol. Author manuscript; available in PMC 2014 January 31.



1X31-)lew1a1ems 1X31-){Jewiaremsg

1Xa1-)lewarems

Kvac et al.

Page 7

scrofarum infections are characterised by shedding of a low number of oocysts (Fayer et al.,
2008).

Phylogenetic analyses based on SSU, actin and HSP70 gene sequences show that C.
scrofarum is genetically distinct from C. swisand forms a cluster with C. ryanae, C. bovis
and C. xiaoi. At the SSU locus, C. scrofarumis 97.3%, 97.4%, and 97.6% similar to C.
ryanae, C. xigoi, and C. bovis, respectively. In contrast, C. scrofarumand C. suis are only
92.9% similar at the SSU locus. These similarities are less than the similarities between
recognized Cryptosporidium species including C. andersoniand C. muris (99.1% at the SSU
locus), and C. parvumand C. tyzzeri (99.0% at the SSU locus). At the actin locus, C.
scrofarumwas 85.3%, 87.0%, 87.2%, and 86.6% similar to C. suis, C. ryanae, C. xiaoi, and
C. bovis, respectively. This compares to the 99.0% similarity between C. andersoniand C.
muris and 99.1% similarity between C. parvumand C. tyzzeri. At the HSP70 locus, C.
scrofarumwas 81.1%, 86.6%, 88.2%, and 87.3% similar to C. suis, C. ryanae, C. xiaoi, and
C. bovis, respectively. This compares to the 98.1% similarity between C. andersoniand C.
muris and the 99.3% similarity between C. parvumand C. tyzzeri at this locus.

In conclusion, oocyst morphology, nucleotide sequence, and infectivity data demonstrate
significant biological and taxonomic differences between Cryptosporidium pig genotype Il
and recognized Cryptosporidium species. According to ICZN and criteria for naming
Cryptosporidium species (Xiao et al., 2004) we propose the name Cryptosporidium
scrofarum.

Taxonomic summary

Cryptosporidium scrofarum n. sp.

Diagnosis: Oocysts are shed in faeces fully sporulated. Sporulated oocysts (n = 4x100)
measure 4.81-5.96 um (mean = 5.16) x 4.23-5.29 um (mean = 4.83) with a length-to-width
ratio of 1.07 £ 0.06. Four sporozoites are present in each oocyst. Endogenous stages are
unknown.

Type host: Pig (Sus scrofa).

Other natural hosts: Human (Homo sapiens) (KVac et al., 2009b), calf (Bos taurus) (Ng et
al., 2011), wild boar (Sus scrofa) (Némejc et al., 2012), and Western school whiting (Siflago
vittata) (Reid et al., 2010).

Experimental transmission: Attempts to infect common laboratory mice (Mus musculus),
Mongolian gerbils (Meriones unguiculatus), southern multimammate mice (Mastormys
coucha), yellow-necked mice (Apodemus flavicollis), and guinea pigs (Cavia porcellus)
were unsuccessful.

Prepatent period: 4-6 days (this study).
Patent period: More than 30 days (this study).

Age specificity: Cryptosporidium scrofarumn. sp. is infectious for post-weaned piglets only
(this study).

Typelocality: Czech Republic.
Other localities: Worldwide.

Site of infection: Duodenum, jejunum, ileum, caecum, and colon.

Vet Parasitol. Author manuscript; available in PMC 2014 January 31.
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Material deposited: A phototype, description of oocysts and DNA are deposited at the
Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic.

DNA sequences: partial sequences of SSU, actin, and HSP70 genes were submitted to
GenBank under the accession numbers JX424840, JX424841, and JX424842, respectively.

Etymology: this species was first named Cryptosporidium scrofarum from the Latin noun
“scrofa” (meaning a breeding sow) according to ICZN Article 11.9.1-3 as a plural in the
genitive case; as it appears to be adapted to adult pigs.
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Figure 1.

Course of infection of Cryptosporidium scrofarum in 4- and 8-week-old pigs based on
coprological examination of faeces.
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Phylogenetic relationships between Cryptosporidium scrofarum (highlighted and
underlined) and other Cryptosporidium spp. as inferred by a neighbour-joining analysis of
A) the SSU (753 base positions in the final dataset), B) actin (586 base positions in the final
dataset) and C) Heat Shock Protein 70 (323 base positions in the final dataset) genes. The
percentage of replicate trees in which the associated taxa clustered together in the bootstrap
test (1,000 replicates). Numbers at the nodes represent bootstrap values for the nodes
gaining more than 50% support. Scale bar included in each tree.
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A

Figure 3.

Cryptosporidium scrofarum oocysts in A) differential interference contrast microscopy and
stained by B) aniline-carbol-methyl violet and C) anti- Cryptosporidium FITC-conjugated
antibody. Bar = 10 um.
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