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Single-Molecule Observation of the Induction of k-Turn RNA Structure on
Binding L7Ae Protein
Jia Wang, Tomá�s Fessl, Kersten T. Schroeder, Jonathan Ouellet, Yijin Liu, Alasdair D. J. Freeman,
and David M. J. Lilley*
Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee, United Kingdom
ABSTRACT The k-turn is a commonly occurring structural motif that introduces a tight kink into duplex RNA. In free solution, it
can exist in an extended form, or by folding into the kinked structure. Binding of proteins including the L7Ae family can induce the
formation of the kinked geometry, raising the question of whether this occurs by passive selection of the kinked structure, or
a more active process in which the protein manipulates the RNA structure. We have devised a single-molecule experiment
whereby immobilized L7Ae protein binds Cy3-Cy5-labeled RNA from free solution. We find that all bound RNA is in the kinked
geometry, with no evidence for transitions to an extended form at the millisecond timescale of the camera. Furthermore, real-
time binding experiments provide no evidence for a more extended intermediate even at the earliest times, at a time resolution of
16 ms. The data support a passive conformational selection model by which the protein selects a fraction of RNA that is already
in the kinked conformation, thereby drawing the equilibrium into this form.
INTRODUCTION
The kink-turn (k-turn) is a widespread structural motif found
in many functional double-stranded RNA species that intro-
duces a tight kink into the duplex axis with an included
angle of close to 60� (1). Most k-turn sequences comprise
a three-nucleotide bulge flanked on the 30 side by G,A
and A,G pairs, and frequently further nonWatson-Crick
basepairs (termed the NC-helix; see Fig. 1). The G,A pairs
are trans sugar-edge/Hoogsteen-edge basepairs that direct
the minor groove edges of the two adenine bases into the
minor groove of the opposing duplex (termed the C-helix).
The kinked geometry is stabilized by A-minor interactions
in the core of the k-turn, resulting in the formation of
a number of well-conserved hydrogen bonds (2,3).

Many k-turns act as specific binding sites for proteins. For
example, most k-turns found in both ribosomal subunits are
bound to different proteins (4,5). These include L7Ae,
which is bound to Kt-15 in the Haloarcula marismortui
50S ribosomal subunit (4). This is a member of a family
of related proteins, including the ribosomal protein L30e,
yeast Snu13p, and human 15.5 kDa proteins (6,7) as well
as a bacterial homolog YbxF (8). In addition to the role in
the ribosome, protein binding to k-turns occurs as a critical
initial step in the formation of the box C/D and H/ACA
complexes that mediate site-specific modification of RNA
in archaea and eukaryotes (9,10), and the 15.5 kDa protein
binds U4 snRNA in the U4-U6.U5 tri-snRNP involved in
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the biogenesis of the spliceosome (7). Crystal structures
are available for the complexes of Archaeoglobus fulgidus
and Methanococcus jannaschii L7Ae and box C/D RNA
(11,12), M. jannaschii L7Ae and box H/ACA RNA (13)
as well as that of the human 15.5 kDa protein and the U4
snRNA (14).

In free solution, the k-turn can exist in two alternative
conformations. One is the kinked structure that has been
observed in a number of crystal structures of ribosomes, ri-
boswitches, and other species. However, in free solution in
the absence of proteins or added metal ions, the RNA adopts
a less-kinked structure, which is typical of that normally
found for a three-nucleotide bulge (15,16). We have found
three ways in which the formation of the kinked conforma-
tion occurs.

First, for many k-turn sequences, particularly where the
sequence approximates that of the consensus k-turn, addi-
tion of metal ions such as 100 mM Mg2þ induces the popu-
lation to adopt the well-characterized kinked structure (16).

Second, we have recently shown that tertiary interactions
within a more complex RNA molecule can stabilize a k-turn
structure that is unable to fold in isolation by the addition of
divalent metal ions (17).

Third, the binding of proteins such as L7Ae can also
induce the formation of k-turn conformation in the popula-
tion (3,18,19).

We have found that A. fulgidus L7Ae binds to
H. marismortui Kt-7 with very high affinity, with Kd ¼ 10
pM, inducing the formation of the kinked geometry of the
k-turn (3). This is a clear example of a protein-induced
structural transition, but the observation raises the question
of how this occurs at the molecular level. Two possible
mechanisms can be envisaged: one dynamic (induced fit
(20)) and the other static (conformational selection (21)).
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FIGURE 1 The sequence of Kt-7. (Upper part) Sequence and basepair-

ing in Kt-7, with the nucleotide positions labeled according to the standard

k-turn nomenclature. (Lower part) Sequence of the RNA duplex containing

a central Kt-7 sequence (boxed) used in the FRETexperiments. The RNA is

50-labeled with Cy-5 and Cy-3.
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This has been discussed previously for macromolecule-
ligand, protein-protein, and protein-nucleic acid interactions
(22–27). Most of those cases involve relatively small-
scale accommodation of nucleic acid structure, as exem-
plified by the binding of U1A RNA to the U1A protein
(28,29). By contrast, the protein-mediated folding of the
k-turn occurs on a rather larger scale. In the induced-fit
mechanism, the protein is envisaged to interact with the
extended form, somehow mechanically inducing the kinked
conformation in situ. In conformational selection, the
protein would bind selectively to RNA in a preformed
kinked conformation, so displacing the equilibrium to that
structure. This requires an equilibrium between an extended
and a folded k-turn structure to exist in solution, as
previously indicated in our measurement of fluorescent
lifetimes (16). In other systems these possibilities have
been analyzed by computational methods (27,30,31), and
by NMR relaxation (32–36) approaches. In the k-turn
folding process, it is difficult to distinguish these alternative
mechanisms using ensemble methods in solution, and we
have therefore studied L7Ae protein binding events by
fluorescence resonance energy transfer (FRET) in single
RNA molecules, using what is to the best of our knowledge
novel experimental design. These experiments favor the
conformational selection model of k-turn folding on protein
binding.
MATERIALS AND METHODS

RNA synthesis

RNA oligonucleotides were made by chemical synthesis using t-BDMS

phosphoramidite chemistry (37), as described in Wilson et al. (38).

Oligonucleotides were made with 50 amino linkers, and Cy3 and Cy5

fluorophores were conjugated as n-hydroxysuccinimide esters (Amersham

Biosciences, Chandler, AZ). All oligonucleotides were purified by gel

electrophoresis in polyacrylamide, and recovered from gel fragments by

electroelution followed by ethanol precipitation. Fluorescently labeled

RNA was subjected to further purification by reversed-phase HPLC on

a C18 column (MicroBondapak; Waters, Milford, MA) using an acetonitrile

gradient with an aqueous phase of 100 mM triethylammonium acetate

pH 7.0.
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The RNA species used in this study were constructed by hybridization of

two oligonucleotides of sequence (written 50 to 30):

Cy3- CCUGACAUGGGGAGCCACUGACUGG

Cy5- CCAGUCAGUGGCGAAGAACCAUGUCAGG

These were purified by electrophoresis in polyacrylamide gels under nonde-

naturing conditions.
Synthesis of a gene encoding a U1A - L7Ae
fusion, and expression, and purification of the
protein

An in-frame fusion of the genes for U1A and L7Ae was constructed by

ligation of PCR products generated from genes for Homo sapiens U1A

and A. fulgidus L7Ae. The ligated product was subjected to a further round

of PCR, and after restriction cleavage was ligated into the vector pET15b.

The ligated plasmid was transformed into competent XL1-Blue Escherichia

coli cells (Stratagene, La Jolla, CA) and plated onto Luria broth agar

containing 0.1 mg/mL ampicillin. Individual colonies were checked by

growing in LB medium containing 0.1 mg/mL ampicillin. pET15b contain-

ing the complete gene for the U1A-L7Ae fusion protein with a hexahistidine

tag was transformed into E. coliBL21-Gold (DE3) pLysS cells (Stratagene),

and protein expression was induced by the addition of IPTG to 1 mM.

Cleared cell lysate was applied to a Ni2þ-chelated HiTrap column (GE

Healthcare, Waukesha, WI) installed on an ÄKTA Purifier (GE Healthcare),

and eluted using 500 mM imidazole. After dilution, the protein was applied

to a HiTrap heparin HP column (GE Healthcare) and eluted using a NaCl

gradient. Pooled fractions were concentrated and applied to a Superdex 75

column (GE Healthcare). The U1A-L7Ae fusion protein was confirmed by

mass spectrometry to comprise both H. sapiens U1A and A. fulgidus L7Ae

proteins. Full experimental details are provided in the Supporting Material.
Total internal reflection single-molecule
microscopy

Fluorescence intensities at donor and acceptor wavelengths were acquired

from Cy3-Cy5-labeled RNA bound to U1A-L7Ae fusion protein. The slides

were mounted on the stage of an inverted microscope (model No. IX70,

Olympus, Melville, NY) and excited via the evanescent field generated

by the total internal reflection of light from a solid-state 532-nm laser

(Crystalaser, Reno, NV) via a quartz prism. Fluorescent emission was

collected by a 1.2 numerical aperture 60� water immersion objective

lens (Olympus), and separated by a 645-nm dichroic mirror (Chroma

Technology, Bellows Falls, VT) into the donor and the acceptor fluores-

cence. These were focused side-by-side into a back-illuminated, electron

multiplying charge-coupled device camera (iXON EMCCD; Andor Tech-

nology, SouthWindsor, CT) (39). Hundreds of molecules could be recorded

simultaneously using an image area of 8.2 � 8.2 mm (512 � 512 active

pixels). Data were acquired using software written in Visual Cþþ (Micro-

soft, Redmond, WA), where each frame had a duration of 33 ms for the

population histograms and 16 ms for the real-time binding experiments.

Measurements were performed at room temperature. Single-molecule

fluorescence resonance energy transfer (FRET) efficiency after background

correction was approximated by EFRET ¼ IA/(IA þ ID), where IA and ID are

the fluorescence intensities of the acceptor and donor, respectively. Because

the quantum yields and detection efficiencies of Cy3 and Cy5 are very

close, EFRET closely matches the true efficiency of energy transfer.

However, the spectral overlap separation of Cy3 and Cy5 is not absolute

and the 645-nm separation led to ~10% of Cy3 leakage into the Cy5

channel. This gives an apparent EFRET of ~0.1 for a single active Cy3

fluorophore in the absence of Cy5 acceptor.

Data analysis was carried out using laboratory-written analysis routines

developed in MATLAB (The MathWorks, Natick, MA). Single-molecule

FRET histograms were obtained using the whole FRET trace, while the
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population histograms were obtained by averaging frames 11–20 for every

individual molecule after manually filtering photobleaching and blinking

effects. Filtering involved removal of time-traces in which:

1. the fluorescence intensity of the acceptor was lower than 50–55 (caused

by the absence of Cy5 fluorescence);

2. the total intensity was higher than 550–700 (indicating the presence of

multiple fluorophores);

3. absence of anticorrelation between both fluorescence intensities during

a blinking, dynamic, or a photobleaching event;

4. the total intensity was irregular over the length of the time-trace; and

5. multiple photobleaching event from the same fluorophore.

Cross-correlation analysis was performed using a program implemented

in MATLAB. Records of donor and acceptor intensities as a function of

time for single junction molecules were analyzed using the equation

GðtÞ ¼
P�

IDðtÞ � ID

�
,
�
IAðt þ tÞ � IA

�

N ,
P

ID , IA
; (1)

where ID and IA are the mean donor and acceptor intensities, respectively,

over the whole data record, normalized by the number of points summed
(N). The function G(t) correlates the donor intensity at time t with acceptor

intensity at time increment t later.
Observation of single k-turn RNA molecules
bound to immobilized L7Ae U1A-L7Ae fusion
protein

A cell was constructed using an ultraclean quartz microscope slide drilled

with two holes and a coverslip separated by double-sided adhesive tape to

leave a volume for the sample. This was then washed by injection of water,

followed by 10 mM Tris-HCl (pH 8.0), 5 mM NaCl (T5 buffer). Successive

additions were made of 100-mL volumes of (1) 1 mg/mL of a 1:4 mixture of

biotinylated and unmodified bovine serum albumin (BSA; Sigma Aldrich,

St. Louis, MO), (2) 0.2 mg/mL neutravidin (Thermo Fisher Scientific,

Waltham, MA), (3) 3 nM 50-biotinylated U1A RNA (biotin-dGCAGCGA

AUCCAUUGCACUCCGGAUUCGCUGdC), and (4) 4 nM U1A-L7Ae

protein, with 5-min incubations at room temperature followed by washing

with T5 buffer at each stage. The k-turn RNA was prepared by mixing 20

mL of 80 nM Cy3, Cy5-labeled k-turn RNA with 80 mL imaging solution

comprising 60 mg/mL glucose (Sigma Aldrich), 0.08 mg/mL catalase

(Roche, Basel, Switzerland), 2 mg/mL glucose-oxidase (Sigma Aldrich),

and 0.25 mg/mL Trolox (Sigma Aldrich) in 10 mM Tris-HCl (pH 8.0).

This was introduced into the cell located on the microscope stage in two

successive injections of 50 mM.
Real-time observation of single k-turn RNA
molecules in the act of binding to immobilized
U1A-L7Ae fusion protein

The cell was constructed as above, and the same procedure was used to

attach the RNA and protein components to the surface as in Steps 1–4.

Plastic tubing was attached to the drilled holes in the slide to allow injection

of Cy3, Cy5-labeled k-turn RNA during illumination, and collection of

fluorescence by the objective lens of the microscope. Data acquisition

was initiated simultaneously with injection of fluorescent RNA. Acquired

pictures were digitally postprocessed in real-time to perform background

subtraction followed by data-scaling to increase image contrast. To capture

all binding events, each frame was searched for individual molecules by

applying cluster analysis on a rolling average of ~50 frames. Coordinates

of individual molecules were recorded, sorted, and tested for uniqueness.

Fluorescence intensity time-traces were later extracted and manually

filtered by applying the common criteria (see above).
RESULTS AND DISCUSSION

Attachment of L7Ae protein to the surface
of a quartz slide

The normal procedure for studying nucleic acid-protein
interactions by single-molecule FRET would be to tether
the donor-acceptor-labeled nucleic acid to the surface of
the slide, and then introduce the protein in solution and
allow it to bind, observed in total-internal-reflection micros-
copy using an EMCCD camera. However, this was compli-
cated for the k-turn, since this is essentially a duplex, where
both 50-termini are required for fluorophore attachment. We
therefore opted to immobilize the protein, and deliver the
fluorescent k-turn RNA in solution. This has the additional
merit that the only fluorescent spots observed must corre-
spond to RNA molecules that are bound by the protein.
The RNA used in these experiments consisted of a 25-bp
duplex 50-terminally labeled with Cy3 (acceptor) and Cy5
(donor) and the central sequence of Kt-7 (Fig. 1).

To reduce the possibility of surface-induced denaturation
of the protein we adopted the strategy shown in Fig. 2 A.
This is based on the use of a U1A-binding RNA hairpin-
loop, and a fusion of U1A and L7Ae proteins. The latter
was generated by making an in-frame fusion of the required
genes, and expressing a fusion protein consisting of U1A
and L7Ae at the N- and C-termini, respectively, linked by
a GGGGGGEF peptide. The fusion retained the ability to
induce the folding of Kt-7 in solution, demonstrated as
an increase in FRET efficiency in the Cy3-Cy5-labeled
k-turn as the kinking shortens the distance between the
termini (Fig. 2 B). In the single-molecule procedure, a
50-biotinylated RNA strand with a U1A-binding terminal
loop is attached to biotinylated BSA on the quartz slide
via neutravidin in the normal manner. The U1A-L7Ae
fusion protein is then bound to the hairpin via its U1A
end, leaving the L7Ae-end free to bind its target k-turn
RNA. Thus, the final step is to inject in the fluorescent
Kt-7 RNA and allow it to bind to the immobilized
L7Ae; this is the only stage involving a fluorescent
component. Altogether the surface-attached complex com-
prises quartz-BSA-neutravidin-RNA hairpin-(U1A-L7Ae
fusion)-(Cy3-Cy5-Kt-7 RNA).

In principle, the fluorescent Kt-7 RNA should not be able
to bind to the surface unless all the components of the
assembly are bound correctly. This is demonstrated by the
controls presented in Fig. 2 C, which shows a number of
frames from the total-internal-reflection microscope.
When all the components are assembled together, we
observe a number of immobilized single-fluorescent RNA
molecules, visualized as single points of light, shown here
inverted as black points on a white background. However,
if we leave out any of the components (while always adding
the fluorescent RNA), or replace the fusion protein with
U1A protein alone, we no longer observe immobilization
of k-turn RNA molecules. When the full assembly is in
Biophysical Journal 103(12) 2541–2548
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FIGURE 2 Binding of fluorescent k-turn-con-

taining RNA to L7Ae protein immobilized on

a microscope slide. (A) Schematic of the immobili-

zation scheme. U1A-L7Ae fusion binds the loop of

an RNA hairpin with a 50-biotin that is bound to bio-
tinylated BSA via neutravidin. Cy3-Cy5-labeled

k-turn RNA flows into the cell, and binds to the

L7Ae component of the fusion protein. (B) Induc-

tion of folding of Kt-7 upon binding of the U1A-

L7Ae fusion protein. Protein-induced folding has

been measured in bulk by means of FRET, using

the same Cy3-Cy5-labeled RNA used in the

single-molecule experiments. Folding kinks the

RNA, leading to an increase in the efficiency of

energy transfer between the 50-terminally fluoro-

phores. The plot shows FRET efficiency of Kt-7 as

a function of protein concentration. The data have

been fitted to a two-state model for L7Ae binding

(line) using a stoichiometric binding model. The

fitting indicates Kd < 10 pM, although such high

affinity cannot be reliably estimated by this tech-

nique. The increase in FRETefficiency isDEFRET¼
0.53, i.e., there is a large increase in FRETefficiency

on binding the fusion protein. (C) When all the

components are in place, individual bound RNA

molecules can be visualized as single points of light

(shown inverted as black) at Cy5 emission wave-

length. (1) RNA bound to the complete set of

components. No bound molecules are observed

when the fluorescent RNA is added to (2) BSA

only; (3) BSAþ neutravidin only; (4) BSA, neutra-

vidin, and U1ARNA only; or (5) BSA, neutravidin,

U1A RNA, and U1A protein in place of the fusion.
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place, all the observed points of light correspond to RNA
molecules immobilized by binding to the L7Ae protein.
Kt-7 RNA bound to L7Ae exists in a tightly kinked
geometry

Fig. 3 A shows an example of the intensity of donor and
acceptor emission from one bound k-turn molecule in the
presence of 2 mM Mg2þions, recorded at a 33-ms frame
rate. Initially IA> ID, i.e., the bound RNA adopts the kinked
geometry (high EFRET). At 125 s, there is a clear Cy5 photo-
bleaching event where the Cy5 emission falls to zero, while
the Cy3 increases because it is no longer quenched by
FRET; this shows that before this point, this molecule has
single functional Cy3 and Cy5 fluorophores, and we have
selected such molecules for further analysis. Values of
EFRET for 1185 molecules are plotted as a histogram in
Fig. 3 B. Most molecules are in a high FRET state, forming
a distribution with a mean EFRET ¼ 0.83; thus, the k-turns
are bound to L7Ae in a predominantly folded conformation.
Close examination of the time-trace (Fig. 3 A) reveals no
evidence of transitions to an unfolded (i.e., low EFRET) state,
and this was the case for many similar traces examined
(further examples given in the Supporting Material).
Furthermore, cross-correlation analysis of the data provides
no evidence for fast transitions (Fig. 3 C).
Biophysical Journal 103(12) 2541–2548
It could be argued that Kt-7 will be predominantly folded
in the kinked geometry in the presence of 2 mM Mg2þ even
in the absence of bound protein. We therefore repeated the
analysis in the absence of added divalent cations, where
the structure is predominantly unfolded for protein-free
k-turns. A typical time-trace recorded for Kt-7 in 0 mM
Mg2þ is shown in Fig. 4 A. Analysis of 1312 molecules
generated the histogram of EFRET values shown in
Fig. 4 B. Although the mean FRETefficiency is a little lower
(EFRET ¼ 0.72) than in the presence of 2 mM Mg2þ, it is
clear that the RNA molecules are folded, in contrast to their
largely unfolded state when not bound to protein under these
low-salt conditions. And despite the absence of divalent
metal ions, upon performing close examination of the
time-trace (and many other similar ones not shown; see
the Supporting Material), we could find no evidence for
transitions to an unfolded state, as supported by cross-corre-
lation analysis (Fig. 4 C). This remains true at our fastest
frame rate; there is no evidence for transient excursions of
the bound molecules into the extended conformation.
Real-time observation of L7Ae binding to Kt-7

Although we observe no evidence for L7Ae-bound RNA
molecules undergoing transitions to the extended state, it
is possible that they might initially bind in a less-kinked



A

B

C

FIGURE 3 Kt-7 molecules are bound to L7Ae in a predominantly folded

conformation in the presence of divalent metal ions. (A) ID and IA versus

time for one representative molecule in the presence of 2 mM Mg2þ ions,

at 33-ms frame rate. Cy5 was photobleached at 125 s. Near the end of

the trace (labeled dissoc) the intensities of both fluorophores fall to back-

ground levels; this is most likely due to dissociation of the complex from

the surface, although it could result from Cy3 photobleaching. (B)

Histogram of EFRET values for Kt-7 molecules bound to L7Ae in 2 mM

Mg2þ ions (1185 molecules). Gaussian mixture parameters of data

distribution were estimated using an expectation maximization algorithm

and maximum likelihood estimator in MATLAB, giving a mean value of

EFRET ¼ 0.83. (C) Cross-correlation analysis of a time-trace of ID and IA
for a single k-turn molecule in 2 Mg2þ, calculated from data recorded at

33-ms frame rate. The fit is linear and almost horizontal with an intercept

that is very close to zero, indicating the absence of cross-correlation

between donor and acceptor emission down to the timescale of the data

collection.
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FIGURE 4 Kt-7 molecules are bound to L7Ae in a predominantly folded

conformation in the absence of divalent metal ions. (A) ID and IA versus

time for one representative molecule in the presence of 0 mM Mg2þ ions,

at 33-ms frame rate. Cy5 was photobleached at 210 s. (B) Histogram of

EFRET values for Kt-7 molecules bound to L7Ae in 0 mM Mg2þ ions

(1312 molecules). The mean value of EFRET ¼ 0.72. (C) Cross-correlation

analysis of a time-trace of ID and IA for a single k-turn molecule in 0 Mg2þ,
calculated from data recorded at 33-ms frame rate. The fit is linear and

horizontal with an intercept at zero, indicating the absence of cross-corre-

lation between donor and acceptor emission down to the timescale of the

data collection.
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conformation before becoming converted to a stable kinked
state. We therefore probed the possibility that the RNA
initially binds in an extended state, but is rapidly induced
to switch to the kinked geometry within the binding site
of the protein. To this end, we injected fluorescent RNA
into the cell while simultaneously collecting the emitted
fluorescent light. In this way, we could observe binding
events in real-time and measure EFRET for a given RNA
molecule at the earliest time within the resolution of our
data collection. These experiments were carried out in the
presence of 0 mM Mg2þ, so that before binding the RNA
was predominantly unfolded in free solution, and were
studied with the camera operating at a 16-ms frame rate.
One such time-trace is shown in Fig. 5 (with further exam-
ples in the Supporting Material). At the earliest time there is
no bound RNA, and thus ID and IA are at background levels.
During the binding event both signals rise, with IA > ID
consistent with the tightly kinked conformation. The high
FRET state is achieved within a single frame, i.e., 16 ms.
This has been observed in many similar time-traces. We
have also failed to observe any transient states of lower
EFRET at the highest time-resolution possible using our
EM-CCD camera (8-ms frame), although the noise level
for these data precludes accurate measurement.

We can estimate rates of association and dissociation from
the single-molecule data (Fig. 6).Measurement of the latter is
relatively straightforward, as association and dissociation
events are clearly assigned in many traces (see Fig. 5 and
Fig. S3 in the Supporting Material). The number of fluores-
cent complexes remaining bound after a given elapsed
time is plotted, and fitted to a single exponential function,
giving a dissociation rate of koff ¼ 0.0076 min�1. We have
previously measured the rate of dissociation of unfused
L7Ae from Kt-7 using ensemble FRET measurements,
Biophysical Journal 103(12) 2541–2548



FIGURE 5 Observation of a Kt-7 molecule

binding to L7Ae. A time-trace of ID and IA showing

the increase in both signals on binding of the RNA

to the fusion protein (at 59.5 s) at 16-ms frame rate.

The expansion of the binding region shows

that both intensities rise within a single frame. At

74 s, both ID and IA fall back to their initial levels.

This could be due to dissociation of the complex or

photobleaching of Cy3. Further examples are

shown in the Supporting Material.
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giving koff¼ 0.002 s�1 (3). The rate measured here should be
the sum of rates of dissociation of Kt-7 from the U1A-L7Ae
fusion, the dissociation of the U1A-L7Ae from the U1A
RNA, and any photobleaching of Cy3, so a higher rate would
be expected, as observed. Moreover, the ensemble measure-
ments were made at lower temperature. The association rate
has a greater uncertainty due to imprecision in the timing of
the injection and the timing required for mixing. Neverthe-
less, a plot of the number of bound Kt-7 molecules as a func-
tion of the time interval between injection and observation of
binding (Fig. 6 A) is well fitted by a single exponential func-
tion, giving an observed rate of kobs ¼ 0.002 s�1. The final
Kt-7 concentration in the cell was 0.25 nM, giving a bimolec-
ular rate of association of kon ¼ 8.4 � 106 M�1 s�1. This is
slower than obtained by ensemble measurements, where
rates of kon¼ 5.4� 107 and 2� 108M�1 s�1 were calculated.
The major source of discrepancy is likely to result from the
difference between surface binding in the single-molecule
experiments, and binding in free solution.
CONCLUSION

These experiments have shown that L7Ae-bound k-turn
molecules are only observed in their kinked geometry irre-
spective of the solution conditions. No transient formation
of a more extended state was detectable over long periods
of observation (a total of 326-min duration of the folded
state, summed over 1948 molecules). Furthermore, no
Biophysical Journal 103(12) 2541–2548
extended intermediate structure was observed in the initial
binding process. If extended forms exist transiently, they
have a lifetime shorter than 16 ms. These data are consistent
with the conformational selection mechanism, whereby the
protein selectively binds and stabilizes k-turns that already
exist in the kinked conformation, and thus the formation
of the kinked geometry in the population occurs by drawing
the equilibrium toward this state. However, it remains
possible that some conformational readjustment could
occur at the time of binding, if that happens to be faster
than 16 ms.
SUPPORTING MATERIAL

Five figures and supplementary experimental methods are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(12)01227-1.
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