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Wanted: A Positive Control for Anomalous Subdiffusion

Michael J. Saxton*
Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, California

ABSTRACT Anomalous subdiffusion in cells and model systems is an active area of research. The main questions are whether
diffusion is anomalous or normal, and if it is anomalous, its mechanism. The subject is controversial, especially the hypothesis
that crowding causes anomalous subdiffusion. Anomalous subdiffusion measurements would be strengthened by an experi-
mental standard, particularly one able to cross-calibrate the different types of measurements. Criteria for a calibration standard
are proposed. First, diffusion must be anomalous over the length and timescales of the different measurements. The length-
scale is fundamental; the time scale can be adjusted through the viscosity of the medium. Second, the standard must be theo-
retically well understood, with a known anomalous subdiffusion exponent, ideally readily tunable. Third, the standard must be
simple, reproducible, and independently characterizable (by, for example, electron microscopy for nanostructures). Candidate
experimental standards are evaluated, including obstructed lipid bilayers; aqueous systems obstructed by nanopillars;
a continuum percolation system in which a prescribed fraction of randomly chosen obstacles in a regular array is ablated;
single-file diffusion in pores; transient anomalous subdiffusion due to binding of particles in arrays such as transcription factors

in randomized DNA arrays; and computer-generated physical trajectories.

INTRODUCTION

Much work is being done on anomalous subdiffusion in the
plasma membrane, cytoplasm, and nucleus of cells, and in
model systems. The main experimental questions: Is diffu-
sion anomalous or normal, and what are the parameters
describing it? The main theoretical question: What mecha-
nism makes the diffusion anomalous? The main question
linking these: How can the various mechanisms be
distinguished experimentally?

Anomalous diffusion mechanisms and their identification
are both highly active areas of research. A recent starting
point in that literature is Magdziarz and Weron (1).

The area is controversial, especially the hypothesis that
crowding causes anomalous subdiffusion. Hofling and Fra-
nosch (2) refer to “cellular crowding...identified by slow
anomalous transport as its most distinctive fingerprint... .”
Supporting this view are several sets of experiments on
various model systems ((3-5); see also Hellmann et al.
(6)). In the other view, Dix and Verkman (7) argue that
“the notion of universally anomalous diffusion in cells as
a consequence of molecular crowding is not correct...”
and point out that subdiffusion may be an artifact of revers-
ible photophysical processes, cell autofluorescence, or
complexities in beam and cell geometry. Supporting this
view are experiments on crowding models in which fluores-
cence correlation spectroscopy (FCS) results were explicitly
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found to be consistent with normal diffusion (8-10). The
most direct comparison of methods was in recent NMR
work by Shakhov et al. (11), who found normal diffusion
in crowded dextran solutions like those in which Banks
and Fradin (3) found anomalous subdiffusion by FCS.
This NMR work has almost succeeded in making the
NMR and FCS length scales overlap. Overlapping length-
scales will make it possible to distinguish a crossover
from an inconsistency between methods.

The experimental evidence on both sides has a major
limitation. Those arguing against anomalous subdiffusion
have no positive control, and those arguing for it have no
calibration standard. In current practice, a control is done
in a simple liquid to give normal diffusion, and then subdif-
fusion is or is not observed in the experimental system. A
high priority for the entire field is devising a positive control
for anomalous subdiffusion. In work on model crowding
systems, differences in diffusion may be the result of differ-
ences in length scales, concentrations, tracers, crowders, or
the relative sizes of tracers and crowders, or they may be the
result of experimental artifacts. Having a common calibra-
tion would be advantageous in sorting out the other
complexities. In work on cells, a physical calibration stan-
dard would reduce the need to use unfamiliar cell lines
and proteins to resolve differences among laboratories.

This review emphasizes fluorescence measurements:
FCS (12-14), fluorescence recovery after photobleaching
(FRAP) (15,16), and single-particle tracking (SPT) (17-20).
We assume the usual diffraction-limited length scales for
these measurements. Pulsed-gradient spin-echo (PGSE),
also known as pulsed field gradient (PFG), NMR measure-
ments will not be discussed in detail here, but it will eventually
be highly important to include them because they are an inde-
pendent (orthogonal) measure of diffusion and they are
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potentially label-free. PGSE NMR measurements of anoma-
lous diffusion are reviewed by Kérger and Stallmach (21).

ANOMALOUS SUBDIFFUSION

Anomalous subdiffusion is hindered diffusion in which the
hindrances change the actual form of the time dependence,
not just the numerical value of the diffusion coefficient. The
mean-square displacement (r?) is

(r*) Dyt (1)

for normal diffusion,

<r2>OCt"‘,a<1 2)

for pure anomalous subdiffusion, and
2 *
e

for transient anomalous subdiffusion. Here ¢ is time, Dy is
the diffusion coefficient, « is the anomalous subdiffusion
exponent, and #cg is the crossover time. In other words,
for anomalous subdiffusion the time dependence is non-
linear, specifically a power law; the diffusion coefficient is
time dependent; and the conditions of the central limit
theorem are not met (22).

Destainville et al. (23) brought up an important point about
artifactual anomalous subdiffusion. To rephrase their
comment (23) and my reply (24), there are two types of tran-
sient anomalous subdiffusion, transitional and true. In the
transitional type, one mechanism operates at short times
and another at long times. For example, in the Kusumi
picket fence model of membrane corrals (25), there is fast
short-range normal diffusion within the corral at a rate deter-
mined by lipid viscosity, and slow long-range normal diffu-
sion determined by the corral size and the jump rate
between corrals. As Destainville et al. (23) point out, there
is necessarily a period of apparent anomalous subdiffusion
between these two limits. A monotonic continuous curve of
(%) versus t with these limits necessarily has a region of
slope < 1 in a log-log plot. But in the true type, varying
some parameter increases the duration of anomalous subdif-
fusion, and in the appropriate limit yields pure anomalous
subdiffusion. For example, for a random walk on an ob-
structed lattice, as the obstacle concentration increases to
the percolation threshold, diffusion becomes more anoma-
lous over longer times. At the percolation threshold, diffusion
becomes anomalous at all times, with a known exponent.

In principle, transient anomalous subdiffusion is common,
and is the result of obstructed diffusion with an obstacle
concentration below the percolation threshold; binding
models in which there is a deepest trap, and correspondingly,
alongest escape time; and correlations that are long-time but
not infinite. Unfortunately, few tools are available to detect it.

for t < tcg

for t>>tcx 3)
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It would be useful to have an experimental system with
a tunable crossover in order to examine the effects of tran-
sient anomalous subdiffusion in FRAP, FCS, and PGSE
NMR, and to verify its detectability in SPT.

Why does anomalous subdiffusion matter? First, it affects
reaction kinetics through D(7). If D is assumed to be
constant but is in fact time dependent, the analysis of the
time dependence of reactant concentrations is compro-
mised. Second, anomalous subdiffusion is a probe of submi-
croscopic organization, though unfortunately far from
uniquely invertible.

REQUIREMENTS

A calibration standard must meet a number of requirements:

Requirement 1

The standard must operate over the same length and time-
scales as the usual biophysical measurements. So diffusion
must be anomalous over several um and s for the optical
measurements, shorter lengths for superresolution optical
measurements (26,27), and longer lengths for fringe pattern
FRAP and many PGSE NMR measurements. The length
scale is fundamental; the timescale can be tuned via the
viscosity of the medium.

If 1 is the wavelength of light in the optical measure-
ments, we need structures with feature sizes <A. In perco-
lation simulations, I have often used a 256 x 256 lattice
with periodic boundary conditions. If the experimental
lattice constant is taken to be 10 nm, the corresponding
percolation cluster is 2.56 um on a side, in the appropriate
range for FRAP and FCS measurements. If the features
are 5 nm diameter on 10 nm centers, the number density
is 1 x 10"*/cm? to relate to pore densities and feature densi-
ties in the literature, or 6.35 x 10"?/in? to relate to the terabit
per square inch densities in the semiconductor literature
(terabit can be 10'? or 2*°). This pore size is within the mes-
oporous range as defined by the International Union of Pure
and Applied Chemistry (IUPAC), 2-50 nm (28). For PGSE
NMR, a high-field, high-gradient magnet gave a length-
scale ~100 nm and was used to study the liquid-ordered/
liquid-disordered phase separation in bilayers (29). A very
specific aspect of the problem was pointed out by Cherdhir-
ankorn et al. (30) for FCS in an inverse opal structure. If the
void size is similar to the beam size, the result of any one
measurement is highly sensitive to the exact position of
the beam relative to the void.

A lower limit on size is that the structures ought to be
macroscopic enough that the interaction of tracers and
obstacles can be simply approximated, without atomistic
modeling. The choice of feature size is thus a tradeoff. Small
features give better averaging over feature structure in
a diffusion measurement, but the interactions may become
more complex to represent.
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Requirement 2

The standard must be theoretically well understood, with
a known anomalous subdiffusion exponent, ideally readily
tunable. Well-understood mechanisms include percolation,
the continuous-time random walk and the related finite hier-
archy mechanism, single-file motion in a pore, synthesized
motion, and fractional Brownian motion (though its micro-
scopic mechanism is still an active area of research). The
mechanism should not be a major research problem in its
own right, such as reptation in a polymer melt.

In my opinion, crowding is an incompletely understood
mechanism. Important experimental work has been done
in several laboratories (3-5,11), but theory and modeling
studies are still incomplete. One needs to know the exponent
and the crossover length as a function of mobile obstacle
concentration, size, and polydispersity, and the effect of
immobile obstacles. Using crowding as a calibration stan-
dard is a circular argument, but crowding would still be
useful for comparisons among techniques and laboratories,
say using one anomalous system from Banks and Fradin
(3) and one normal system (8—10). Diffusion of both tracer
and crowder ought to be measured.

Requirement 3

The standard ought to be simple, reproducible, and noncryo-
genic. The standard ought to be independently characteriz-
able—a stable nanostructure that can be characterized by
some form of electron microscopy, or a statistically well-
defined structure. If crowding becomes well enough under-
stood to be used as a standard, the materials used ought to be
commercially available and well defined in terms of compo-
sition, molecular weight, and polydispersity.

Requirement 4

If transient anomalous subdiffusion occurs, the anomalous

regime ought to extend over two or three orders of magnitude,

so the anomalous regime is distinct from transitional regions.

Both the normal and anomalous regimes ought to be readily

detectable. Ideally, the crossover would be tunable. Data

should be analyzed in terms of a time-dependent exponent
d In{r?)

) =~ @)

to show the width of transitions.

Requirement 5

For cross-calibration, the tracer must be detectable by both
fluorescence and NMR. It would be advantageous to do the
optical and NMR measurements on the same system but the
differing concentration requirements make that difficult
(31). FCS and SPT require low concentrations, FRAP
requires moderate ones, and NMR requires high.
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Requirement 6

The medium ought to be transparent and nonfluorescent.
Insolubility would be advantageous, so that refractive index
matching can be used to eliminate light scattering. An addi-
tional benefit is that index matching eliminates the van der
Waals forces between the medium and the tracer (32).

Requirement 7

Spatial homogeneity is advantageous except in the case of
anomalous subdiffusion due to a fractal substrate, where
inhomogeneity on all length scales is of the essence.
Multiple environments complicate interpretation of the
results, as Sanabria et al. (33) pointed out in their work using
silica sol-gels as obstructed diffusion models.

Requirement 8

The fluorophore should not enter long-lived dark states.

Comments

A key idea in this review is tunability—the ability to contin-
uously vary some parameter that determines the anomalous
diffusion exponent or the crossover time. As already
mentioned, the tuning parameter for a random walk on an
obstructed lattice is the obstacle concentration. A compre-
hensive example of tuning by obstacle concentration was
given by Hofling et al. (34) for a three-dimensional con-
tinuum Lorentz model. In their simulations, a tracer moved
by Newtonian dynamics among random overlapping obsta-
cles, and underwent hard-sphere collisions with the obsta-
cles. Motion was ballistic at short times, subdiffusive at
intermediate times, and at long times diffusive or localized,
depending on the obstacle concentration. These simulations
yielded an entire family of curves of log <12) versus log t,
showing clearly the various regimes and how they changed
with obstacle concentration. We need similar results for
anomalous subdiffusion due to crowding.

A standard idea in the literature is that the FCS curve for
anomalous subdiffusion is difficult to distinguish from the
curve for normal diffusion of a two-component mixture
(35-37). These two cases can be distinguished by maximum
entropy analysis (38,39). For a heterogeneous system, the
maximum entropy algorithm yields the widest distribution
of diffusion coefficients consistent with the FCS data. This
algorithm was used to analyze experiments in terms of anom-
alous and two-component diffusion (3,33). A consistency
check is in order, in which maximum entropy analysis is
used to test the homogeneity of candidate calibration stan-
dards, and the calibration standard is used to test maximum
entropy analysis. However circular this argument may sound,
it is an improvement over experimental tests based only on
normal diffusion in one- and two-component systems.

Biophysical Journal 103(12) 2411-2422
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CROSS-CALIBRATION

A few articles have reported cross-calibration of optical and
NMR measurements of normal diffusion, or between optical
methods. Febo-Ayala et al. (40) compared PGSE NMR and
FRAP in membranes. Griinwald et al. (41) showed that SPT
and FCS diffusion coefficients for two proteins in aqueous
solution agreed quantitatively. Gendron et al. (42) measured
diffusion of various rhodamine labels in water by NMR to
solve a key experimental problem in FCS—determination
of the illuminated volume. This is commonly done using
a known fluorophore as a calibration standard (12). In addi-
tion, Stasevich et al. (43) cross-calibrated FRAP and FCS to
quantify photobleaching effects, and Adkins et al. (44)
compared FRAP and FCS diffusion measurements in cells.

An important recent article by Feil et al. (31) compared
NMR and SPT measurements of a rhodamine fluorophore
in a nanoporous glass specially synthesized for this experi-
ment. This work was undertaken as an experimental test of
the ergodic hypothesis, and showed that the time-averaged
D from SPT is the same as the ensemble-averaged D from
pulsed field gradient NMR. As the authors discuss in detail,
SPT requires low concentrations of tracer and pulsed field
gradient NMR requires high concentrations, so the measure-
ments could not be made at overlapping concentrations. But
this work is as close a comparison as we have, with a concen-
tration gap of only one order of magnitude.

CANDIDATE STANDARDS: ANOMALOUS

Length limitations do not allow detailed discussion in the
text of candidate experimental standards for anomalous
subdiffusion or hindered normal diffusion. Here we give an
overview. In the Supporting Material, we review possible
experimental systems in detail, bringing together work
from the nanotechnology, biophysics, soft matter physics,
and engineering literature. We discuss geometries, length-
scales, and diffusion measurements, and provide keywords
and starting points in the literature. Where possible, we use
biophysical examples. The discussion here and the discus-
sion in the Supporting Material follow the same outline.
Extensive references are given in the Supporting Material.
For anomalous subdiffusion, we discuss mostly the two-
dimensional case for optical-scale systems. For obstructed
normal diffusion, we consider the three-dimensional case.

NANOFABRICATION

The first type of candidate system is based on nanofabrica-
tion, which provides a wide variety of structures for
obstructed diffusion. We consider arrays of nanodots, nano-
pores, and nanopillars to be equivalent here. In many cases,
any one of these can be used as a template or mask to
make another. At the level of this review, it is sufficient to
identify an array with the appropriate feature size, spacing,
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and randomness. The emphasis is on the obstacles, not the
required fluid phase.

For a tracer of nonzero radius, obstructed diffusion is
controlled by the excluded area fraction, not just the area
fraction of obstacles, so obstruction can be tuned by varying
the size of the diffusing species. Near the percolation
threshold, diffusion is highly sensitive to the size depen-
dence of obstruction.

Regular lattice

Nanospheres on a flat substrate can self-assemble into a
triangular lattice in which the ordering is driven by capillary
forces during drying. The nanosphere array can be used as
a mask for deposition of metal or etching of substrate.
The resulting two-dimensional corral-like structures are ex-
pected to give free normal diffusion within the corrals and
slow normal diffusion among the corrals, with anomalous
subdiffusion over a limited length scale, tunable by varying
the tracer size.

Regular arrays of parallel electrochemically etched pores
can be generated. They may be useful as templates for nano-
pillars, or to allow FRAP experiments on a large number of
single-file diffusion systems in parallel.

Perturbed lattice

To extend the length scale of anomalous subdiffusion,
we consider perturbed lattice structures. One possibility is
self-assembly of polydisperse nanospheres into irregular
corrals. Another possibility is self-assembly of block copol-
ymers. Diblock copolymers are a type of amphiphile con-
sisting of two different immiscible polymer chains
covalently linked end-to-end. The covalent linkage forces
the separation of immiscible polymers to be on the length
scale of the polymer chains. Some block copolymers form
locally regular arrays of micelles that can be used to make
a corresponding array of metal dots. Semiconductor fabrica-
tion is the main intended application, so the goal in the
literature is to make a lattice of uniform metal dots homoge-
neous over the length scale of a silicon wafer. The condi-
tions for regularity have been studied in detail. For the
calibration problem, the regularity must be reduced.

Random nanostructures

We next consider random structures. An ideal random struc-
ture for calibration is a percolation cluster exactly at the
threshold—a system studied extensively in the physics liter-
ature. Diffusion is anomalous at all length scales and the
exponent is known.

Obstructed lipid bilayer

A highly biophysical approach is a supported bilayer with
immobile obstacles, say gel-phase lipid domains,
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immobilized transmembrane proteins, or nanofabricated
structures that exclude the bilayer.

Randomly adsorbed nanospheres

So far, we have considered ordered and perturbed arrays
of nanospheres, but another possibility is to use random depo-
sition of nanospheres on a substrate sticky enough that the
spheres cannot anneal to form an locally ordered structure.

Percolation by sputtering

One of the early experimental realizations of a percolating
cluster was sputtered metal on a flat substrate. The electrical
conductivity of the system was measured as a function of the
amount of metal deposited, and the conductivity increased
sharply at the percolation threshold.

Nanopillars

Extensive work has been done on so-called nanopillar
forests of carbon fibers or carbon nanotubes, including
very interesting measurements of diffusion in an aqueous
phase obstructed by nanopillars.

Continuum percolation in an obstacle lattice

We propose a percolation problem of continuum percolation
in an obstacle lattice, related to standard percolation but
adapted to facilitate nanofabrication. Initially, a large
regular lattice of obstacles is made by standard techniques
of nanotechnology such as two-dimensional interference
patterns in the extreme ultraviolet. Then randomly chosen
obstacles are selectively ablated, for example by focused
ion beam milling. Finally, diffusion is measured for a tracer
large enough that it is trapped when it is in an intact patch of
obstacles. As the fraction of ablated obstacles is increased,
the range of diffusion increases, and eventually the system
reaches the percolation threshold. The percolation threshold
can be found by standard Monte Carlo methods, and anom-
alous subdiffusion can be characterized. An important
experimental feature is that diffusion can be varied by
varying the ratio of the tracer size to the obstacle lattice
spacing. If the system is at the percolation threshold for
tracers with diameter just below the lattice spacing, then
smaller tracers will show transient anomalous subdiffusion
and larger tracers will be trapped locally.

Pinholes
A thin film with random pinholes can be used as a mask to
make obstacles.

Commercial membranes

Commercial membranes for filtration are manufactured by
nuclear track etching or anodization of alumina. Unfortu-
nately, the densities of pores are too low for the calibration
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problem, so custom-made membranes would be required.
Similar work on nanowire arrays has been optimized for
high density, and may be more applicable.

Three-dimensional fractals

Structures with three-dimensional fractal pores have been
made by self-assembly of a three-dimensional random
fractal, which is then used as a template to generate the
porous solid.

Arbitrary patterns

The last sets of nanotechnology methods considered are the
well-established ones able to make arbitrary patterns. These
would have the great advantage that one could make nano-
structures for which the anomalous diffusion properties are
well understood from computer simulations, such as a perco-
lation cluster. The disadvantage is that photolithography is
limited by spatial resolution, and electron-beam lithography
is limited by throughput.

BINDING

A second type of candidate system is based on binding to
a finite hierarchy of binding sites in which weak binding
sites are common and strong binding sites are rare. Diffusion
is transiently anomalous, and adding layers of deeper traps to
the hierarchy makes diffusion more anomalous for longer
times. Biologically relevant arrays of binding sites such as
DNA, protein, and aptamers can be made by standard
methods to give the required distributions of concentrations
and binding energies. One special requirement here is that
the arrays must be random at the molecular level, not ar-
ranged as blocks of identical binding sites. The other special
requirement is an initial state in which the tracer is out of
thermal equilibrium with the binding sites. This nonequilib-
rium state could be produced by fast mixing of the tracer
with the array of binding sites, or by photoactivation of the
binding site on the tracer. If the tracer is equilibrated with
the binding sites, diffusion is slow but normal at all times.

SINGLE-FILE DIFFUSION IN PORES

The third type is based on single-file diffusion in pores,
which gives one-dimensional anomalous subdiffusion with
a fixed exponent of 1/2. Diffusion is anomalous due to corre-
lations. If the particles are required to move in single file, the
motion of one particle requires the collective motion of
many of its neighbors.

SYNTHETIC MOTION

The fourth type is synthetic motion, in which one generates
the anomalous subdiffusion directly by mounting a stable

Biophysical Journal 103(12) 2411-2422
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point fluorophore on a piezo stage and driving the stage
using some anomalous subdiffusion algorithm. The advan-
tages of this approach are that the different theoretical
mechanisms for anomalous subdiffusion can be used, the
actual response function of the entire optical system is
tested, and the synthetic motion tests the effect of off-axis
aberrations.

POLYMER SOLUTIONS

The final type of system uses polymers as a tracer, an
obstacle, or both, specifically a labeled polymer chain in
solvent, a fluorescent sphere in a polymer solution, or a
labeled polymer chain in a polymer solution. Limitations
are the short range of anomalous subdiffusion and the
complexity of the dynamics.

CANDIDATE STANDARDS: NORMAL

It would also be useful to have standards for hindered
three-dimensional normal diffusion. Strictly speaking, these
are likely to have short periods of transitional anomalous
subdiffusion, but the diffusion is to a good approximation
normal.

Opals

Opals are made by self-assembly of nanospheres into a
regular three-dimensional superlattice. Inverse opals are a
superlattice of nanospherical voids made by filling the inter-
stices of an opal with some material and then destroying the
nanospheres. Both structures are, in the ideal case, regular
three-dimensional corrals.

Mesoporous materials

Mesoporous materials are regular or irregular porous solids,
often synthesized by polymerization in a system with a
surfactant template. Regular mesoporous materials include
some with arrays of parallel pores, potentially useful for
FRAP measurements of single-file diffusion.

Phase-separated glasses

Phase-separated glasses are formed by spinodal decomposi-
tion of a glass, followed by leaching of one phase. Pores are
irregular with branching, but do not have the sort of fractal
structure that leads to anomalous subdiffusion in a percola-
tion cluster near the threshold.

DISCUSSION

This review is intended to bring attention to the calibration
problem, not to serve as territorial marking. I am planning to
do simulations related to possible standards. For continuum
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percolation on an obstacle lattice, one needs to find the
anomalous subdiffusion exponent, the crossover time to
normal diffusion, and the long-range diffusion coefficient,
all as a function of the excluded area. Similar calculations
are needed for disordered lattices, as a function of the
excluded area and the degree of disorder. I hope that exper-
imentalists will try some of these approaches.

SUPPORTING MATERIAL

Sections S1 and S2, with one figure, eight equations, and references
(45-251), are available at http://www.biophysj.org/biophysj/supplemental/
S0006-3495(12)01192-7.

I thank Eli Barkai, Jorg Karger, B. Christoffer Lagerholm, and Matthias
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all issues. I thank the meeting booth staff from Physik Instrumente
(www.pi-usa.us), FEI (www.fei.com), and the National Nanotechnology
Infrastructure Network (www.nnin.org) for helpful discussions.
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