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Abstract

Wildlife species are identified as an important source of emerging zoonotic disease. Accordingly, public health
programs have attempted to expand in scope to include a greater focus on wildlife and its role in zoonotic
disease outbreaks. Zoonotic disease transmission dynamics involving wildlife are complex and nonlinear,
presenting a number of challenges. First, empirical characterization of wildlife host species and pathogen sys-
tems are often lacking, and insight into one system may have little application to another involving the same
host species and pathogen. Pathogen transmission characterization is difficult due to the changing nature of
population size and density associated with wildlife hosts. Infectious disease itself may influence wildlife
population demographics through compensatory responses that may evolve, such as decreased age to repro-
duction. Furthermore, wildlife reservoir dynamics can be complex, involving various host species and popu-
lations that may vary in their contribution to pathogen transmission and persistence over space and time.
Mathematical models can provide an important tool to engage these complex systems, and there is an urgent
need for increased computational focus on the coupled dynamics that underlie pathogen spillover at the human–
wildlife interface. Often, however, scientists conducting empirical studies on emerging zoonotic disease do not
have the necessary skill base to choose, develop, and apply models to evaluate these complex systems. How do
modeling frameworks differ and what considerations are important when applying modeling tools to the study
of zoonotic disease? Using zoonotic disease examples, we provide an overview of several common approaches
and general considerations important in the modeling of wildlife-associated zoonoses.
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Introduction

Emerging zoonotic disease has been identified as an
increasingly important area of concern for both human

and animal health. Given that most emerging and re-emerging
pathogens originate from wildlife reservoirs ( Jones et al.
2008), there has been a growing recognition that wildlife
health is intrinsically important to human health. This recog-
nition has motivated the promotion of the ‘‘One Health’’
concept, an idea centered on the view that human, animal, and
ecosystem health are linked and dynamically interactive,
particularly with regard to emerging zoonotic disease. With
this in mind, wildlife health is of interest not only in terms of
conservation and wildlife management objectives, but also for
public health. Because of this, animals in general and wildlife

in particular are being identified as important sentinels for
the surveillance of emerging infectious diseases that can
threaten human health (Rabinowitz et al. 2005; Halliday et al.
2007). There is an increasing need to identify the coupling
points at the human–wildlife interface where zoonotic disease
transmission occurs and public and animal health can be
threatened.

The process by which a zoonotic pathogen moves (re-
gardless of transmission mode) from an animal host (or en-
vironmental reservoir) to a human host is referred to as
spillover, and arises from complex bidirectional interactions
among people, animals, pathogen communities, and envi-
ronments, and is a key step in the zoonotic disease emergence
process. It is clear, however, that each individual in the human
population is not equally at risk for zoonotic pathogen
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invasion or the onset of human disease epidemics. Further, in
terms of other ecological phenomena, the occurrence of
pathogen spillover from a wildlife reservoir to a human host is
a relatively rare event, the onset of sustained human-to-
human transmission being a subset of these rare events. What
factors contribute to the successful invasion of a zoonotic
pathogen from a wildlife reservoir to a human host? Although
a wide array of cultural, socioeconomic, and ecological driv-
ers have been identified as important in the emergence of
infectious disease (Bryan et al. 1994; Morse 1995; Alexander
and McNutt 2010), we still do not have the capacity to accu-
rately forecast when and where the next pathogen will
emerge, particularly for zoonotic diseases involving wildlife
hosts. Weak surveillance capacity and concern over the in-
creased emergence of zoonotic infectious disease prompted
the U.S. Agency for International Development (USAID), to-
gether with their partners, to convene a committee tasked
with identifying improved surveillance and outbreak re-
sponses to emerging zoonotic diseases (Beatty et al. 2008).
This committee found that gaps and weaknesses in infectious
disease surveillance were primarily associated with reporting
and collaborative breaks between animal health and human
health surveillance systems. This decoupling is extensive not
only in terms of how we report and monitor infectious dis-
ease, but also in how we evaluate outbreaks. The focus is fre-
quently directed at the animal reservoir or human-to-human
transmission. The coupled dynamics of pathogen spillover
from animals (domestic or wildlife hosts) to humans is rarely
engaged.

Zoonotic pathogen emergence, as with all infectious dis-
ease, is context-dependent; it is the heterogeneities and in-
teractions of the system in question that will support the
successful spread of a pathogen from a wildlife species to
human hosts, and determine if the pathogen persists in the
human population. In zoonotic disease investigations, we
must engage these complexities interactively and include the
ecology and behavior of the reservoir host species (one or
more), as well as the human population at risk within the
environment in which these interactions occur. Without con-
sideration of these system coupling points, we will be limited
in our ability to identify the bi-directionality of these inter-
actions and the tipping point where pathogen–host environ-
mental interactions support zoonotic pathogen emergence.

Dynamic models provide important tools to make the in-
tractable elements of infectious disease research tractable. A
mathematical model is a description of a system using
mathematical concepts and language. Dynamic models are
constructed in a manner that allows the elements and the
interactions being represented to change as a function of time.
The application of dynamic modeling tools allows us to
evaluate and identify important elements of the spatial and
temporal features of infectious disease emergence (Levin et al.
1997; Diekmann and Heesterbeek 2000). Mathematical mod-
els have played a pivotal role in evaluating and identifying
important elements of the spatial and temporal factors of
disease emergence that influence the occurrence and the
management of emerging zoonoses. For example, modeling
applications were instrumental in determining our approach
and successful management of human-to-human transmis-
sion of zoonotic pathogens such as H1N1 ‘‘swine flu’’ (Yang
et al. 2009), and sudden acute respiratory syndrome (SARS;
Riley et al. 2003). In both cases, models were used to predict

how the pathogen would move globally and evaluate the ef-
fectiveness of proposed intervention options.

With the recent exponential increases in computational
capacity, our modeling toolbox has expanded greatly. Mod-
eling approaches that can support representations of the
system under study parameterized with field data are un-
iquely poised to elucidate the complex process of zoonotic
pathogen spillover, and help provide a deeper understanding
of the confluence of the conditions necessary for successful
invasion into the human host. But which modeling tool is best
applied to the system under study, and what considerations
arise when looking specifically at zoonotic pathogen trans-
mission involving wildlife?

The challenge of modeling the coupled dynamics
of zoonoses

The dynamics of zoonotic pathogen transmission between
wildlife hosts and humans can be very complex and ex-
tremely variable across systems. Modeling efforts, however,
are typically restricted to transmission dynamics in the hu-
man host or reservoir hosts, and rarely extend to the coupled
dynamics of pathogen transmission in the spillover process
(Lloyd-Smith et al. 2009). Clearly this is the most important
step in zoonotic disease emergence. It is the continuum of the
interaction that results between certain humans and certain
animals in certain environments that determines the occur-
rence and nature of the epidemic. The complexity of these
interactions is likely the most critical barrier to understanding
spillover dynamics and managing potential zoonotic disease
emergence. Modeling of these complex and non-linear inter-
actions between and within host species (disease reservoir or
intermediate and human host), pathogen communities, and
environmental conditions, requires us to extend our ap-
proaches to engage the dynamics of these coupled systems,
being aware of the caveats involved.

This review is not meant to provide an exhaustive exami-
nation of all modeling platforms available for use in the study
of zoonotic disease involving wildlife. Rather, we seek to il-
lustrate the spectrum of options along a continuum that might
be used to capture the system under study, and some con-
siderations relevant to the process. Model selection, like the
selection of any piece of equipment or protocol in empirical
science, should be driven by the nature of the system under
study, the questions being asked, and importantly, the data
available. Much of the art of science, whether in silico, in vitro,
or in vivo, lies in this process.

What modeling tool should be used?

There is often a great divide between scientists conducting
empirical studies on emerging zoonotic diseases in wildlife
and the skill base necessary to choose, develop, and apply
models to evaluate these disease systems. It is important to
recognize that all models, however good, are only imitations
of reality (Levin et al. 1997), with inherent limitations.
Therefore, careful thought is required in selecting a model that
best suits the study system, data and assessment needs, and
assumptions inherent in each modeling approach. Often,
however, the decision regarding model selection is based on
what modeling approach we know or whom we know (and
what modeling they do), rather than what is most appropriate
to the questions and system under evaluation. The sheer

1006 ALEXANDER ET AL.



complexity of options and often limited knowledge of the
various applications can constrain the proper use of the
modeling toolbox, particularly with wildlife-associated zoo-
noses, for which additional complexity can be anticipated. An
important step in engaging the full power and potential of
modeling is to make the toolbox and its application in zoo-
notic disease assessment more commonly understood among
wildlife and human health scientists. Using two contrasting
emerging zoonotic disease examples, we provide an overview
of the modeling tools available, and general recommenda-
tions for the selection of the right modeling approach in the
study and management of emerging zoonotic diseases of
wildlife origin. Table 1 defines some of the terms used in the
detailed explanation that follows.

Emerging Zoonotic Disease Examples

Anthrax

Anthrax is a bacterial zoonosis of wild and domestic herbi-
vores that secondarily infects humans and some predators and
scavengers (Hugh-Jones and De Vos 2002). Bacillus anthracis, the
causative agent, is a spore-forming, gram-positive bacteria that
can survive in soil for long periods of time under certain envi-
ronmental conditions (Smith et al. 2000; Hugh-Jones and
Blackburn 2009). Its transmission is not entirely understood, but
it likely involves a combination of soil ingestion of spores (par-
ticularly in grazers), and mechanical transmission through ne-
crophagous flies contaminating vegetation with emesis and
feces that are then consumed by browsing species (e.g., white-
tailed deer; Blackburn et al. 2010), or percutaneous infection

from biting flies (Blackburn 2006, 2010). There is limited evi-
dence of inhalation of spores from the environment, but this
cannot be ruled out (Turnbull et al. 2008). Livestock and wildlife
are likely infected through similar routes of exposure. Naturally-
occurring anthrax can be considered an obligate spillover
pathogen with no onward direct transmission among suscepti-
ble hosts. Infection occurs within a specific geographic area
where the environment supports the pathogen and host expo-
sure can occur. It is within this geographic area that the host
interaction with the environment will lead to the initial cases. It is
unknown if spillover between multiple host species is due to
increased cases caused by a primary host, leading to massive
environmental contamination with spores from carcasses and
associated blowflies, as suggested by Dragon and associates
(1999). Likewise, multi-species outbreaks may be the product of
multiple individual species’ behavior leading to infection
through interactions with the environment. With the exception
of nefarious releases, anthrax outbreaks in humans are usually
caused by direct contact with infected animals, such as that in-
cident to slaughter and meat distribution (Woods et al. 2004).
Direct human-to-human transmission is implausible, limiting
the spatial extent of outbreaks to the location of the environ-
mental reservoir, with outbreaks associated with environmental
conditions that promote epizootics (Blackburn 2010; Fig. 1).

Ebola

Ebola hemorrhagic fever is an emerging zoonotic viral
disease in West and Central Africa causing severe disease and
high mortality in humans. Viral transmission is extremely

Table 1. Definitions of the Terms Used in the Study

Agent-based models: A class of computational models for simulating the actions and interactions of autonomous agents (both
individual or collective entities such as organizations or groups), with the goal of assessing their effects on the system as a
whole.
Compartment models: A model in which the population is subdivided into broad subgroups (compartments) and disease states.
The flow of disease between these subpopulations and disease states are parameterized, resulting in a dynamic
representation of the system.
Critical community size: The minimum size of a closed population within which a pathogen can persist indefinitely.
Dynamic model: A model where a fixed rule will describe the time dependence of a point in a geometric or state space.
Ecological niche modeling (ENM): Models that estimate actual or potential areas of geographic distribution, or sets of favorable
habitats, for a given species on the basis of its observed presences and (sometimes) absences, and non-random relationships
to global information system (GIS)-based climatic and environmental data.
Fundamental niche: The extent of ecologic/geographic space that can support a species without immigration. This space is
often more broad than the realized portion of the space that is actually occupied by a species.
Homogenous mixing: Contact pattern whereby each individual interacts with all other individuals equally.
Heterogeneous mixing: Contact pattern whereby individuals vary their level of interaction with other individuals based on
their characteristics.
Patch models: An extension of compartmental models that allows for richer descriptions of geographically-varying
characteristics, whereby the geographic area of study is divided into separate patches that are parameterized from detailed
data sets, and each patch contains its own independent compartmental model that can interact with proximal patches.
Realized niche: The actual ecologic/geographic space that a species or population of a species occupies. Intraspecific traits (e.g.,
reproductive rate and dispersal ability), and biological interactions (e.g., competition between taxa), limit the extent of the
fundamental niche to this realized space.
Spillover: The process by which a pathogen (regardless of transmission mode) moves from one host or environmental
reservoir to another host species.
Stochastic model: A model that can result in a variety of outcomes from the same parameterizations. By representing the effects
of chance, these models can represent a wide number of realizations of a complex system.
Threshold population for invasion: Minimum host population size required for a disease to successfully invade a host
population.
Variable space: The multi-variate space encompassing the minimum and maximum ranges of environmental/climatic
variables in ecological niche modeling.
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complex, and both the behavior of individuals and multiple
coupling points of transmission between species influence
pathogen dynamics. Pathogen transmission to the human
host appears to result from direct contact with infected
wildlife species through the handling and eating of bush meat
(duiker, primates, and bats; Leroy et al. 2009), a culturally-
limiting behavior, or ingestion of fruit contaminated with
Ebola-infected bat saliva (Leroy et al. 2009). Although the host
spectrum and reservoir of infection have not been determined
conclusively, three bat species are considered putative virus
reservoirs (Leroy et al. 2005). There can be limited onward
transmission in humans (e.g., person-to-person transmission),
mainly resulting from close contact with blood, secretions,
or tissues of infected individuals (Groseth et al. 2007).
Public health responses are normally adequate to control and
eliminate the outbreak in the human host population. Suc-
cessful spillover of the pathogen appears to be a complex
process involving a number of coupled networks (bat, fruiting
trees, gorillas, duikers, and humans), and seasonal drivers
(Pinzon et al. 2004), linking the human host to the virus res-
ervoir (Fig. 2).

Using Ebola, a complex zoonotic pathogen with both
spillover and onward transmission in humans, we illustrate

schematically (in Figs. 4, 6, and 7) the application of three
transmission modeling techniques and the general interpre-
tation of the system that is identified with each approach. We
also contrast the application of these techniques using our
anthrax example, for which only spillover transmission is
identified.

Recognizing Patterns in Disease Outbreaks

Ecological niche modeling

An important first step in understanding disease occur-
rence is the recognition of the spatial patterns in disease oc-
currence underlying phenomena important in zoonotic
disease transmission. Predictive ecological niche modeling
(ENM) is increasingly being used to predict the geographic
distribution of multiple zoonotic pathogens and parasites,
and to investigate and identify important factors associated
with outbreak/case locations (Adjemian et al. 2006; Blackburn
et al. 2007; Williams and Peterson 2009), and related ecological
conditions (Blackburn 2006; Rogers 2006; Joyner 2010; Mullins
et al. 2011). ENM is the process of identifying non-random
relationships between known species occurrence locations
(here the pathogen/parasite, host, reservoir, or vector), and
climatic or environmental variables derived from interpolated

FIG. 1. Anthrax is an obligate spillover pathogen for which
cases are associated with direct interactions with the envi-
ronment where the pathogen is sustained. Environmental
and seasonal changes associated with bacterial storage areas
are the primary drivers of epidemics, with human cases most
likely directly linked to animal cases.

FIG. 2. Ebola is an emerging zoonotic disease for which
spillover dynamics appear to include up to four coupled
systems. Population dynamics and seasonal influences ap-
pear to be the primary drivers of the process of pathogen
invasion.
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ground or remotely sensed satellite data (Blackburn 2010).
These data are analyzed through either genetic pattern-
matching algorithms, such as the Genetic Algorithm for Rule-
set Prediction (GARP) (Stockwell and Peters 1999), or statis-
tical modeling, such as logistic regression (McPherson et al.
2004), discriminant function (Rogers 2006), or probability-
based algorithms, such as MaxEnt (Phillips et al. 2006). The
goal of such efforts is to model relationships between cli-
matic/environmental conditions and occurrences in variable
space, and to apply those to the geography to produce pres-
ence/absence maps for the target species being modeled
(Blackburn 2010; Fig. 3). ENM has been applied to a wide
range of taxa, including disease vectors (Peterson et al. 2002;
Randolph et al. 2002; Adjemian et al. 2006; Rogers 2006; Holt
et al. 2009), hosts (Peterson et al. 2002; Williams et al. 2008;
Williams and Peterson 2009), and pathogens (Ron 2005;
Blackburn et al. 2007). Across these examples, ENM-based
approaches have been employed to directly map the potential
distribution of the target species (host, vector, reservoir, or
pathogen) to better understand the disease system. This
concept is described in further detail elsewhere (Peterson
2007; Blackburn 2010).

Broadly, ENM approaches can be divided into two major
groups: presence-only and presence-absence models. In
presence-only models (Pearce and Boyce 2006), species oc-
currence data are provided by the researcher, and absence
data (commonly referred to as ‘‘background data’’) are ran-
domly drawn from the larger study area (Stockwell and Pe-
ters 1999), or user-defined subsets of the background (e.g.,
Phillips et al. 2009). In presence-absence models (Brotons et al.
2004), the user defines the locations on the landscape where
the species is known to be present and absent. Across the
literature there are strong arguments for both modeling ap-
proaches. However, it is not uncommon to develop ENM
experiments from idiosyncratic data from a wide range of
sources, such as disease reports, historical health records, and
ongoing surveillance. In such cases, it is difficult to accurately
determine species’ absence, so presence-only models may be
more appropriate. It is important to determine if such data
sets reflect true absence (i.e., where the species is absolutely
not present), versus where sampling efforts failed to detect the
presence of the species (Anderson 2003). In this latter case, one
must consider whether the species is truly absent from some
portion of the landscape, or whether issues such as season of
sampling effort or sampling technique may exclude individ-
uals from collection/detection (Carlson and Cortés 2003). In
the case of infectious diseases, it is also important to consider
the sensitivity of diagnostic procedures and laboratory com-
petency. On the one hand, presence-only modeling ap-
proaches may capitalize on available known disease
occurrence locations from a wide variety of sources. At the
same time, such approaches may bias ecological estimates
towards presence points (Phillips et al. 2009). Presence-ab-
sence modeling approaches may overcome of some of these
issues. However, following Brotons and associates (2004),
presence/absence models may be most appropriate when
confidence in absence locations can be determined. In disease
studies, case-control studies or accurate surveillance may be
used to provide such estimates of absence.

The ENM process is generally completed in two steps (Fig.
3). First, relationships between species’ occurrences and cli-
matic/environmental data are modeled in variable space (i.e.,

the combination of variable ranges that are available on the
selected landscape for modeling). These relationships are
captured as either logic strings, called rules in GARP, or direct
formulas (such as logistic regression functions). The rela-
tionships derived are then applied to the landscape (in a
global information system [GIS]), to ‘‘project’’ those relation-
ships onto the geography of the area of interest in the form of
binary presence/absence (in GARP), or cumulative proba-
bilities of presence (in MaxEnt). Recently, GARP rules have
been used to build and graph climatic envelopes for a specific
genetic sub-lineage of Bacillus anthracis in Kazakhstan, com-
pared to models built from larger data sets representing
outbreaks regardless of genotype (Mullins et al. 2011). This
process also allows the user to project models onto landscapes
where occurrence data are unavailable, such as when sur-
veillance or reporting are lacking (Blackburn 2010), or onto
the same landscape in future time periods to evaluate the
effects of climate change (Holt et al. 2009; Blackburn 2010;
Joyner et al. 2010).

It is important to realize that geographic outputs from any
ENM experiment are a prediction of the potential presence or
absence of the target species. ENM predictions do not provide
a measure of pathogen, host, or reservoir population size or
density. Also, when selecting an appropriate ENM tool, it is
important to realize that the extent of the predicted geo-
graphic space will differ relative to the nature of the niche
space being estimated (Blackburn 2010). The body of litera-
ture related to the application of specific niche concepts to
ENM is large and not without conflict. As primers, we refer
readers to several key articles on niche definitions as applied
to ENM, and issues associated with the differentiation of the
fundamental and realized niche (McNyset 2005; Soberón and
Nakamura 2009; Blackburn 2010). We also recommend the
work of Phillips and associates (2006), for comments on dis-
criminating between the two niche types with presence-only
models. Clearly, differences in predictions can have implica-
tions for management and outbreak control activities. Over-
prediction of the range of a pathogen may not appropriately
define key areas at risk, while under-prediction may lead to
gaps in surveillance. While it has been suggested that one tool
may outperform the other (Elith et al. 2006), it is more ap-
propriate to employ an exploratory approach, in which mul-
tiple models are tested and outcomes are evaluated (Peterson
et al. 2008), in light of the objectives of the study.

Relative to the two disease examples used here, ENM can
be used to define the potential spatial extent of the pathogen
(anthrax), or occurrence of disease in a target host (Ebola).
While the transmission dynamics of anthrax are not fully
understood, there is some consensus on the environmental
conditions that support B. anthracis spore survival (Hugh-
Jones and Blackburn 2009). ENM has been employed to map
the potential distribution of B. anthracis in the contiguous
United States (Blackburn et al. 2007), and Kazakhstan ( Joyner
et al. 2010; Mullins et al. 2011). As an obligate spillover
pathogen, these modeling efforts arguably delineate the
geographic space associated with spillover, where the path-
ogen occurs and anthrax epidemics are likely to occur and
recur (Blackburn 2010). In contrast, where reservoir host
identification is uncertain, ENM can provide insight into the
wildlife communities that might be associated and maintain
the pathogen in the environment. For example, Peterson and
colleagues (Peterson et al. 2004) modeled the potential
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FIG. 3. In the ecological niche modeling approach, environmental data and disease (pathogen, host, or vector) occurrence
data are combined in a niche theory framework to model the multi-variate space where the species is likely to be present. This
modeled relationship is then applied to the landscape pixel-by-pixel to identify all regions where the species may be present.
Successful models of the species on the known geography can be projected onto novel landscapes or the known landscape in
future time periods to evaluate unknown regions or climate-related changes in distribution (NDVI, Normalized Difference
Vegetation Index).

FIG. 4. In the compartmental approach, each entity or interaction in Ebola viral transmission must be partitioned into a
compartment (S, susceptible; E, exposed; I, infectious; R, recovered). The combination of lines across all layers and com-
partments necessitates a single equation. Parameterizing and solving these equations becomes difficult, and therefore limits
model resolution and complexity.
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distribution of filoviruses in Africa, such as Ebola, using hu-
man disease case data. These niche-based predictions were
then used to delineate the spatial extent of disease occurrence
in humans in order to identify potential common taxa that
could serve as virus reservoirs for this group of related viruses
(Peterson et al. 2004). In this latter case, ENM was used to
model the spatial extent of disease transmission to delineate
the possible geography where spillover can occur.

Patterns and spatial extents from ENMs can be used to
inform animal and public health planning and surveillance
strategy. Successful niche-based predictions can identify areas
for targeted surveillance that may be at increased risk for
disease occurrence (Blackburn 2010). This information can
also improve passive surveillance systems by educating re-
gional laboratories and clinics (human and animal) about
potential disease risk in an area of interest. Disease control
programs may also be informed by ENM outputs. Where
vaccination might be applied to control disease, ecological
inferences derived from ENM outputs could be used to target
vaccine delivery, an often limited and expensive resource
(Blackburn et al. 2007; Blackburn 2010). ENM outputs may
also be used on a practical level to assist with parameteriza-
tion of more complex compartmental or agent-based models.
Geographic and ecological ranges derived from ENMs can
provide variable value limits to constrain parameter estimates
in other models.

Modeling Transmission Dynamics

Techniques like ENM can be used to identify spatial pat-
terns associated with the environmental distribution of the
pathogen and/or to generate hypotheses about variables/
entities necessary for pathogen transmission. In both scenar-
ios, however, understanding and estimating the dynamics of
the system require other mathematical models and simula-
tions to be applied, in order to take assessments further and
evaluate mechanisms underlying a spillover event, and to
develop quantitative predictions of the effectiveness of vari-
ous control options (Anderson and May 1991; Diekmann and
Heesterbeek 2000; Blackburn 2006).

Compartmental models

Traditionally, mathematical epidemiology has relied on
compartmental models to describe infectious disease trans-
mission between infected and susceptible hosts (Ross and
Hudson 1917; Kermack and McKendrick 1932). While there
are many variations, at its core this approach partitions the
population into compartments based on disease state (fre-
quently susceptible, exposed, infectious, and recovered, de-
pending on the system), as well as other characteristics (e.g.,
demographics, location, and disease risk). The compartments
are connected by differential equations describing their rates
of exchange (e.g., rate of recovery describes proportions of
infectious moving to recovered). Each compartment is as-
sumed to be completely homogeneous, thus representing in-
creased heterogeneity requires the inclusion of additional
compartments. These compartments add equations re-
presenting the system, and require additional parameteriza-
tion representing the levels of interaction between the
different compartments. Once fully parameterized, these
systems of equations can be analyzed to learn more about
transmission dynamics. An attractive feature of this modeling

approach is that it allows one to obtain analytical expressions
for a number of interesting parameters, such as the numbers
of infected, recovered, and susceptible individuals in a pop-
ulation at a given time. Compartment models can be used to
model disease transmission and assess disease control options
with various permutations as, for example, West Nile Virus in
mosquitoes and birds (Wonham et al. 2004), Rift Valley Fever
in mosquitoes and livestock (Gaff et al. 2007), and brucellosis
in humans and animals (Zinsstag et al. 2005).

These models can become difficult to work with and solve
for very complex zoonotic disease systems as Ebola, where
multiple wildlife species are involved. A compartmental
modeling approach is illustrated for Ebola in (Fig. 4), with
classes of biologically-similar entities involved in disease
transmission (bats, apes, and humans) grouped in the same
layer (single-colored parallel planes). Note that within each
entity class there can be several different compartments (pie
charts illustrating the proportion of each disease state) re-
presenting different groups (both different species or within
species groups). All members inside these compartments are
assumed to be homogenous and to randomly mix. The arrows
show the interactions between the different groups. While not
an entity capable of infection, the green layer containing trees
is included to highlight their role in modulating the interac-
tions and opportunities for infections among the species. This
also allows for the inclusion of the seasonal effects of rain (or
other climatic events) to influence contact rates. As illustrated,
the system would require four equations per compartment (13
in this representation), and each arrow represents a depen-
dency between equations that would need to be considered
and parameterized. A compartmental modeling approach
would soon become intractable when applied to the full-
coupled dynamics of Ebola viral transmission (Fig. 5).

While stochastic approaches (for which random elements
can influence the process) are possible when using compart-
mental models, these models have a specified number of
compartments that an individual can move into established a
priori. This constrains the ability of the model to capture un-
expected combinations of outcomes, and the cascading and
interacting nature of events that can result in pathogen spill-
over from wildlife to humans (Smieszek et al. 2009). Ad-
ditionally, the level of detail (e.g., resolution) of this approach
is determined by its actual structure (and is thus limited by the
model builder), making it difficult to incorporate rich data sets
consumed and produced by techniques like ENM.

The assumption of homogenous mixing of hosts identified
in compartmental models can be problematic when applied to
the complex behavior and ecology of most wildlife species
and may impact the results, elevating or artificially reducing
parameter estimates depending on the true dynamics of the
system (Meyers et al. 2005). Notwithstanding these limita-
tions, the simplicity and computational tractability of this
approach makes it an attractive choice if aggregate data can
adequately represent individual level influences on disease
transmission dynamics (Fig. 5). The compartmental modeling
approach is capable of approximating the dynamics of many
complex real-world systems involving wildlife species with
model behavior well understood, as for example, the model-
ing of West Nile Virus cross-infection between birds and
mosquitoes (Wonham et al. 2004).

When population level patterns are no longer equivalent to
individual level detail and it is the individual level
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characteristics that are needed to derive key aggregate pop-
ulation level patterns, a patch or agent-based model (ABM)
will increasingly be required. Thus the more individual
characteristics deviate or are suspected to deviate from pop-
ulation-level patterns, the more complex the modeling re-
quirements can become (Fig. 6). This increasing individual
level resolution increases model complexity, data require-
ments, and related computational costs. As model complexity
grows, there is the additional cost or risk associated with the
increasing difficultly of understanding model behavior and
relating this discretely to model structure.

Patch modeling

Patch models, sometimes called metapopulation models,
represent an extension of compartmental models that allows
for a richer description of the characteristics of wildlife or
human populations that can vary by location. Large physical
areas are divided into separate patches that are configured
with specific values for important characteristics that may
vary over larger spatial scales (Riley 2007). Patch models have
been applied to a variety of systems for which patch charac-
teristics vary according to environmental-, pathogen-, and
host-based heterogeneity, and interactions of the patches are

defined by the modeler (Bauer et al. 2009; Tuite et al. 2011).
Each patch contains a separate compartmental model that can
interact with the surrounding patches in a predetermined
manner. The assumption of homogeneity and uniform mixing
in each patch persists in this approach, but inclusion of a
limited spatial structure allows flexibility to accommodate
high levels of heterogeneity (often using data drawn from
the real-world to define the patches), yet still maintaining the
computational tractability of compartmental models. An ad-
ditional strength of the patch modeling approach can be seen
in spatial structuring of patches, which can accommodate
surveillance data that are often collected according to some
administrative structure (e.g., states and hospitals). When
the system includes wildlife hosts, species behavior or other
ecological phenomena can be varied by region/patch (Gour-
ley et al. 2008) to incorporate spatial variations. Patch models
have been used successfully in evaluating the dynamics of
important zoonoses, such as rabies, hantaviruses, and plague,
for which landscape features separate populations into dis-
crete patches, and spatial variations in pathogen and/or host
dynamics are observed (McCormack and Allen 2007).

The patch model approach addresses the data resolution
limitation of pure compartmental models. The framework of
patches facilitates the inclusion of high-resolution data and

FIG. 5. A compartmental model is often used when the average characteristic patterns of the population or group are
equivalent to individual level attributes (A). However, when population level patterns are no longer equivalent to individual
level detail, and it is the individual level characteristics that are needed to derive key aggregate population level patterns (B),
an agent-based model (ABM) will increasingly be required. Thus the more individual characteristics deviate or are suspected
to deviate from population level patterns, the more complex the modeling requirements become (arrow at right).
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FIG. 6. In the patch modeling approach, the environment is divided into patches to capture the heterogeneities from
environmental factors. Within each patch a compartmental model, parameterized by these factors, is used to model the
populations represented in this area. These compartmental models are also linked to adjacent patches to capture the pop-
ulation movements between the different patches (S, susceptible; E, exposed; I, infectious; R, recovered).

FIG. 7. In an agent-based approach, individual behaviors and interactions can be represented across multiple coupled
networks. These interactions can induce changes in the entities, which can, in turn, change which entities they interact with,
and the nature of the interactions themselves.
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organizes the interaction network. In Figure 6, in our Ebola
example, the concentration of the different tree types (and
thus inter-species interaction levels) is illustrated by the color
gradient. Two individual patches are enlarged, showing the
specific interactions between the entities and their relative
levels of migration to adjacent patches. The yellow-green
patch on the right (representing a higher concentration of
banana trees) shows the interaction between different ape
species, which increases the exposure for the currently dis-
ease-free group of humans. Accommodating high-resolution
data helps make patch modeling more appropriate for cap-
turing the conditions that can lead to spillover by incorpo-
rating greater heterogeneity by location. The mathematical
framework still relies on coupled equations, which limits its
ability to capture certain random effects and heterogeneities
that can occur in the real system (Smieszek et al. 2009).

Agent-based modeling

Agent-based models (ABM) differ from compartmental
models in that the system allows for individual heterogeneity,
and important characteristics are assigned to the individual
agents (Gilbert 2008). While there is wide variation, these
agents generally represent individual entities in the system
(e.g., human and/or wildlife population members and
the elements of the environment). The model consists of the
agents, the environment where the agents reside, and the
rules that govern their dynamics. This basic framework sup-
ports the representation of very simple systems to very
complex systems, an important flexibility that can be directed
at understanding zoonotic disease emergence from wildlife.
Agents can be richly described with many different charac-
teristics, and many different classes of agents can be created
(Epstein 2009). This synthetic environment provides oppor-
tunities for the agents to interact, and explicit inclusion of
characteristics that can influence the type of interactions that
can occur. The interaction rules define the dynamics of the
interactions themselves, both what constitutes an interaction
as well as its consequences. To represent more complex sys-
tems, the environments can be more richly detailed, as for
example with the inclusion of detailed GIS-derived data
(Kennedy et al. 2009). Interaction rules can be made to depend
on characteristics of the environment and the agents them-
selves. For instance, the addition of age to an agent can cor-
respondingly change how that agent moves over the
environment, as well as change the agent’s behavior (where a
wildlife host seeks and how it obtains food in the system,
territorial defense, reproduction, dominance interactions,
immigration, and emigration). This induces a change in the
interactions with others of the same or different species, hu-
mans in the system, and thus the potential for pathogen ex-
posure and spillover (Fig. 7).

ABMs can accommodate very complex dynamics since the
interaction rules of each agent can depend on the current state
of other dynamic processes (i.e., disease state of the agent,
characteristics of the environment, or behaviors of the other
agents). This allows infrequent events, such as pathogen
spillover, to cascade through the different webs of interactions
represented in the model, mirroring the often complex non-
linear dynamics of zoonotic disease emergence. By capturing
these cascades, the model can better elucidate the causative
events rather than simply statistically correlate the behaviors

of groups with a triggering event. This is a crucial difference
and one that makes this representation most appealing in the
study of zoonotic disease emergence. Individual-based net-
work models for studying epidemics may qualitatively
change the kind of scientific questions that one can study, and
the scale of inquiry from cellular to population dynamics
(Segovia-Juarez et al. 2004; Billari 2006; Young et al. 2008;
Epstein 2009). In addition, this approach requires a proce-
dural approach to representing the system, which forces a
more explicit description of all elements of the model.

While ABM models offer an appealing mechanism for
evaluating individual level attributes, behavior, and social
networks in zoonotic pathogen transmission dynamics, it is
often true that aggregate population information is more than
adequate to answer the question posed, and inclusion of in-
dividual level detail in is not necessary. For example, anthrax
transmission dynamics may be adequately captured with the
compartmental approach.

ABM or patch approaches might provide an important
hypothesis-testing tool for addressing incompletely under-
stood transmission dynamics, by allowing a simulated ex-
ploration of conditions that have not been empirically
assessed or tested. For example, ABMs might provide insight
into the role of vectors in anthrax transmission, such as ne-
crophagous fly contamination of vegetation (Blackburn 2010),
and biting fly abundance (Blackburn 2006). Likewise, ABMs
may be useful for testing hypotheses about host interactions
that lead to inter-specific anthrax spillover. For example,
Dragon and associates (Dragon et al. 1999) suggested that
moose cases identified late in a wood bison epizootic were
likely the product of mass contamination from a high number
of bison cases. An ABM approach that studies both species
might be useful for studying these interactions.

Caveats Associated with Zoonoses Involving Wildlife

The role of domestic animals in emerging zoonoses is gen-
erally better understood than that of wildlife, and is certainly
more suitable for controlled studies, whereas essential data for
wildlife may be lacking. When emerging zoonoses involve
wildlife alone (Ebola), or are due to domestic animal spillover
dynamics (anthrax), the complexity of the system increases
dramatically. In most cases, high-resolution detail regarding
relevant local ecological, behavioral, and demographic data are
not available for single or multiple wildlife species involved in
putative or known transmission dynamics (e.g., bats, duiker,
gorillas, chimps for Ebola). There is the increasing, yet unfor-
tunate, recognition that the characterization of a species and
pathogen can vary substantially by location, and understand-
ing the host and/or pathogen in one system may lead to little or
erroneous insight into another system where the same patho-
gen and host occur (Proffitt et al. 2011).

Modeling of pathogen transmission in wildlife-associated
zoonotic disease is also influenced by how transmission scales
with population size and density of a particular species (one
or more McCallum et al. 2001), attributes are expected to
change in wildlife populations both spatially and temporally
(Hudson et al. 2002). The assumption of homogenous mixing
(e.g., patch and compartmental models) can be particularly
problematic where wildlife hosts are involved, as complex
spatial and social structuring of host populations (e.g., terri-
toriality, dominance, breeding behavior, and social system)
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often occurs (Lloyd-Smith et al. 2005). Infectious disease itself
can in turn influence and modify population dynamics in
wildlife systems. As an example, reproductive compensation
has been identified in the Tasmanian devil (Sarcophilus harri-
sii) as an apparent compensatory response to disease-driven
population declines associated with devil facial tumor dis-
ease. Diseased mothers also had greater numbers of female
offspring than uninfected mothers, increasing the spectrum of
host demographic responses to infectious disease (Lachish
et al. 2009).

Reservoir dynamics in wildlife populations can also be
complex, involving various host species and populations, the
characterization of which may change both temporally and
spatially (Haydon et al. 2002). These variations can be extreme
where a species may act as a primary reservoir or mainte-
nance host in a particular system, but a non-maintenance host
involved in pathogen spillover in another. Such is the case
with brucellosis in elk (Cervus elaphus), acting as a primary
maintenance host in the greater Yellowstone area (Cross
et al. 2010), while the same animal in Spain serves as a
species involved in pathogen transmission only when it is
unable to maintain the pathogen in the absence of domestic
livestock (Serrano et al. 2011). Often there is simply insuf-
ficient knowledge about the specific role of the species in
maintaining the pathogen in the system (e.g., African buf-
falo [Syncerus kaffer] and brucellosis; Alexander et al. 2012).
The potential for multiple unknown alternate host species
presents a particular challenge in characterizing these com-
plex systems (e.g., Ebola, Feldmann et al. 2004; Marburg
virus, Swanepoel et al. 2007; and Mycobacterium mungi,
Alexander et al. 2010).

Human culture and behavior can influence the risk of ex-
posure to wildlife-associated zoonoses (Alexander and
McNutt 2010). For example, use of bush meat (meat origi-
nating from wildlife), and the risk of human exposure to
bush meat–associated pathogens (e.g., brucellosis and Ebola),
will vary among communities and families based on tradi-
tions that influence meat preferences by species, processing
practices, and distribution of animal meat and prod-
ucts among family members and elders (Alexander et al.
2012). These cultural drivers of zoonotic pathogen expo-
sure and invasion may be critical to model structure and to
capture pathogen spillover dynamics at the human–wildlife
interface.

Management of zoonoses in wildlife is another area of
complexity, given sufficient economic or public health interest
in pursuing eradication, or more commonly, control. Host
population thresholds for pathogen invasion (threshold
population for invasion), and persistence (critical community
size), are central to disease control actions such as culling and
vaccination. However, these thresholds are difficult to apply
in wildlife populations, and do not account for sources of
population demographic heterogeneity, such as seasonal
births and compensatory reproduction as discussed above. In
many cases, disease eradication is often impossible, and
control may not be effective when derived from such
threshold targets (Lloyd-Smith et al. 2005). Control activities
such as vaccination or culling may also have unintended
negative effects on the host population and pathogen trans-
mission dynamics, as seen with badger culling for tubercu-
losis control. In this instance, disruption of badger social
groups in response to culling not only increased dispersal

rates, but infected badgers also dispersed further than unin-
fected badgers (Pope et al. 2007).

Conclusions

The decision on the specific class of models to apply to a
particular zoonotic disease outbreak involving wildlife will
depend on the following criteria: (1) the computational re-
sources needed to execute the models and analyze the data
produced by the models; (2) the scale and resolution of em-
pirical data to calibrate and initialize model parameters; (3)
the time needed to construct the models; (4) the time needed
for model execution, testing, and analysis; (5) the kinds of
analysis one is interested in; and (6) the complexity and
characteristics of the system under study. Where mathemat-
ical, algorithmic, and software expertise limits appropriate
model application, scientists must seek out the appropriate
collaborations to secure the necessary expertise. Not all
modeling tools are the same, and it is important that the right
tool is used for the right problem. A lack of knowledge should
not be a barrier to the appropriate use of the modeling toolbox
for zoonotic disease investigations. It is important to iden-
tify and incorporate the system complexity inherent and
fundamental to the cascade of events that result in zoonotic
disease invasions involving wildlife hosts (Lloyd-Smith et al.
2009).

Mathematical models have been used as an important tool
in our war against zoonotic disease. There is an increasing
need for these techniques to be more broadly understood by
wildlife and human health researchers who are not modelers.
Effective management of zoonotic disease threats will require
the active collaboration of wildlife and animal health profes-
sionals with public health specialists, both empiricists and
theoreticians. This will assist in addressing knowledge gaps
and operational barriers that currently impede the successful
surveillance and management of emerging zoonotic diseases.

Summary

� Mathematical models are important tools in the study of
zoonotic disease, but there is a need for increased
computational focus on the coupled dynamics of human
and wildlife systems that underlie the process of zoo-
notic disease emergence, and incorporation of hetero-
geneities inherent in these systems.
� Ecological niche modeling can be an important first step

to understanding the geographic potential of a disease,
either directly through modeling the pathogen (e.g.,
Bacillus anthracis), or the system (e.g., Ebola). Niche-
based predictions can be used to inform other modeling
approaches, and to describe the multivariate space
where zoonoses and spillover events are most likely to
occur. Projecting onto unknown landscapes or future
time periods allows modelers to speculate about
broader geographies or climate change.
� Compartmental models of disease transmission can

help map out the parameter space of the problem, and
provide estimates of the drivers of spillover events and
possible outcomes following spillover.
� Patch models incorporate high-resolution data sources

that vary by location into a compartmental framework,
thus providing an opportunity to find specific combi-
nations of conditions that can lead to spillover.
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� Agent-based models accommodate high-resolution data
down to the individual level, and incorporate stochas-
ticity in a way that can more clearly elucidate the roles
of the different conditions that lead to spillover.
� Increased model complexity and level of data resolution

do not ensure higher-quality or more credible results.
� The more individual characteristics deviate or are sus-

pected to deviate from population level patterns, the
more complex the modeling requirements become, and
the greater the need to incorporate these individual le-
vel attributes in modeling approaches.
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