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OBJECTIVE—To examine whether type 2 diabetes is associated with microstructural abnor-
malities in specific cerebral white matter tracts and to relate these microstructural abnormalities
to cognitive functioning.

RESEARCH DESIGN AND METHODS —Thirty-five nondemented older individuals
with type 2 diabetes (mean age 71 = 5 years) and 35 age-, sex-, and education-matched control
subjects underwent a 3 Tesla diffusion-weighted MRI scan and a detailed cognitive assessment.
Tractography was performed to reconstruct several white matter tracts. Diffusion tensor imaging
measures, including fractional anisotropy (FA) and mean diffusivity (MD), were compared be-
tween groups and related to cognitive performance.

RESULTS —MD was significantly increased in all tracts in both hemispheres in patients com-
pared with control subjects (P < 0.05), reflecting microstructural white matter abnormalities in
the diabetes group. Increased MD was associated with slowing of information-processing speed
and worse memory performance in the diabetes but not in the control group after adjustment for
age, sex, and estimated IQ (group X MD interaction, all P < 0.05). These associations were
independent of total white matter hyperintensity load and presence of cerebral infarcts.

CONCLUSIONS —Individuals with type 2 diabetes showed microstructural abnormalities in
various white matter pathways. These abnormalities were related to worse cognitive functioning.
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ype 2 diabetes is associated with a

twofold increased risk of dementia

(1). The etiology is still largely un-
known, which hampers the development
of preventive treatment. Previous findings
in nondemented patients with type 2 di-
abetes suggest that early changes in brain
structure and function can contribute to
the increased dementia risk (2). The first
changes in cognitive functioning include
slowing of information-processing speed

and problems with attention, executive
functioning, and verbal memory (3,4).
Brain-imaging studies in patients with
type 2 diabetes have demonstrated a
higher prevalence of lacunar infarcts and
increased white matter hyperintensity
(WMH) volume compared with control
subjects (5,6), but results are not consistent
(7,8). Moreover, these lesions are only
modestly associated with the diabetes-
related cognitive decrements (9), suggesting
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that other, possibly more subtle brain ab-
normalities play a role.

Recent brain autopsy studies report
subtle microscopic vascular and nonvas-
cular white matter abnormalities in pa-
tients with type 2 diabetes (10,11). These
subtle abnormalities cannot be detected
with conventional structural MRI but
may be detected with diffusion tensor im-
aging (DTD) (12). DTI is a noninvasive
technique that is sensitive to subtle white
matter pathology in the brain. Damage to
white matter fibers, such as demyelin-
ation and axonal changes, may lead to
changes in the diffusion of water mole-
cules and therefore to a change in the
DTI parameters (13). In addition, mea-
surement of the directionality of the dif-
fusion makes it possible to obtain maps of
white matter tract anatomy and to study
the connectivity between brain regions
(14). Abnormalities in specific white mat-
ter tracts can lead to disruption in infor-
mation transfer between brain areas
resulting in deficits in cognitive function-
ing. Previous studies, not specifically ad-
dressing type 2 diabetes, have indeed
demonstrated that DTI can provide infor-
mation that is clearly complementary to
the classical magnetic resonance imaging
(MRI) markers of small vessel disease,
such as WMH and lacunar infarcts
(15,16).

The current study examined 1)
whether type 2 diabetes is associated
with microstructural abnormalities in
specific white matter tracts and 2)
whether these microstructural abnormal-
ities are related to decrements in cognitive
functioning in nondemented older indi-
viduals with type 2 diabetes.

RESEARCH DESIGN AND

METHODS —Thirty-five participants
with type 2 diabetes and thirty-five age-,
sex-, and education-matched control sub-
jects were recruited through their general
practitioners as part of the second Utrecht
Diabetic Encephalopathy Study (UDES2).
The UDES2 is a population-based case-
control study on microvascular MRI markers
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of impaired cognition in type 2 diabetes.
Participants were included between April
2010 and June 2011. For inclusion, par-
ticipants had to be between 65 and 80
years of age, functionally independent, and
Dutch speaking. Patients had to have type
2 diabetes for at least 1 year. Participants
were considered to have diabetes if they
were receiving diabetes medication or if
they had a fasting blood glucose =7.0
mmol/L. Control subjects had to have a
fasting blood glucose <7.0 mmol/L. Exclu-
sion criteria for both groups were transient
ischemic attack or noninvalidating stroke
in the past 2 years or any invalidating
stroke, neurologic diseases (unrelated to di-
abetes) likely to affect cognition, known
history of psychiatric disorders requiring
hospitalization, indication of dementia
based on a Mini-Mental State Examination
(MMSE) score =24, and alcohol abuse. We
intentionally did not exclude participants
for vascular risk factors other than type 2
diabetes in order to improve the generaliz-
ability of our results. Cognitive test data
and brain scans were obtained from all par-
ticipants. The study was approved by the
medical ethics committee of the University
Medical Center Utrecht. Informed written
consent was obtained from all participants.
All clinical investigation was conducted ac-
cording to the principles expressed in the
Declaration of Helsinki.

Cognitive testing

All participants underwent a detailed
standardized cognitive assessment con-
sisting of verbal and nonverbal tasks
administered in a fixed order. We based
our test selection on the literature on
cognitive dysfunction in type 2 diabetes,
previous studies from our group, and
recommendations on the assessment of
cognitive dysfunction in the context of
vascular disease (2,17). IQ was estimated
with the Dutch version of the National
Adult Reading Test, which is generally ac-
cepted to reflect the premorbid level of
intellectual functioning. Possible demen-
tia was assessed by the MMSE. Depressive
symptoms were evaluated with the Dutch
version of the Beck Depression Inventory;
possible depression was defined as a score
>13. The remaining tasks were divided
into three cognitive domains to reduce
the amount of neuropsychological vari-
ables in the analysis and for clinical clarity.
This division was made a priori, according
to standard neuropsychological practice
and cognitive theory. The domain verbal
memory was assessed by the immediate
and delayed task of the Rey Auditory

Verbal Learning Test. The domain infor-
mation-processing speed was assessed by
the Trail Making Test, part A; the Stroop
Color-Word Test (parts [ and II); and the
subtest Digit Symbol of the Wechsler
Adult Intelligence Scale-III. The domain
attention and executive function was as-
sessed by the Trail Making Test, part B
(ratio score); the Stroop Color-Word
Test (Part III; ratio score); a letter fluency
test using the “N” and “A”; and category
fluency (animal naming). For each do-
main, the raw test scores were standard-
ized into g scores, such that the mean of
the whole study sample is 0 and the SD
1.0. The z score for each cognitive domain
was derived by calculating the mean of the
2 scores for tests comprising that domain.

Medical history and biometric
measurements

Systolic and diastolic blood pressure was
measured at three different time points
during the day and averaged. Fasting
glucose, HbA, ., and cholesterol levels
were measured with standard laboratory
testing. BMI was calculated as weight in
kilograms divided by the square of height
in meters. Medication use was assessed
with a standardized questionnaire.

MRI data acquisition
MRI data were acquired on a Philips 3.0
Tesla scanner (Intera; Philips, Best, the
Netherlands). Diffusion MRI data were
obtained using a single-shot spin echo
planar imaging sequence with the follow-
ing parameters: 48 contiguous slices, recon-
structed voxel size 1.72 X 1.72 X 2.50
mmz, repetition time 6,638 ms, echo time
73 ms, flip angle of 90 degrees, 45 isotropi-
cally distributed diffusion-sensitizing gradi-
ents with a b value of 1,200 s/mm?, and one
b = 0 s/mm? (three averages). The acquisi-
tion time was 5 min and 32 s. Data prepro-
cessing, such as tensor estimation and
correction of subject motion, was per-
formed as previously described (18).
Fluid-attenuated inversion recovery
scans were obtained with the following
parameters: 48 continuous slices, recon-
structed voxel size 0.96 X 0.95 X 3 mm>,
repetition time 11,000 ms, echo time 125
ms, and inversion time 2,800 ms.

Tractography

Tractography was performed with the
ExploreDTI software package (http://
www.exploredti.com) (19). The cognitive
functions that are affected in patients with
type 2 diabetes depend primarily on fron-
tal, parietal, and temporal connections

(20). Therefore, we selected four major
white matter tracts connecting those re-
gions, namely, the superior longitudinal
fasciculus (SLF), the uncinate fasciculus
(UF), the inferior longitudinal fasciculus
(ILF), and the genu and splenium of the
corpus callosum (CC). Fiber tracts were
reconstructed using constraint spherical
deconvolution—based fiber tractography
with a uniform seed point resolution of
2 X 2 X 2mm’ and a termination thresh-
old for the fiber orientation distribution of
0.1 (the harmonic degree of the estimated
fiber orientation distribution coefficients
was limited to 6). Constraint spherical de-
convolution—based tractography allows
fiber tracking to proceed through cross-
ing fiber regions and is therefore one of
the preferred methods for selecting white
matter tracts containing voxels with mul-
tiple fiber orientations, such as the SLF,
ILF, and UF (21,22).

Tracts were reconstructed with a mul-
tiple region of interest (ROI) selection
approach. Reconstruction was performed
in each hemisphere and was based on a
standardized atlas of white matter tracts
(23) (Fig. 1). Previously defined anatom-
ical landmarks for ROI slice selection and
placement were used to reduce subjectiv-
ity in fiber tracking. For reconstruction of
the SLF, three “AND” ROIs were placed:
two on a coronal slice in the fronto-
parietal lobe and one on a sagittal slice
just after the curvature to the temporal
lobe. Only those fiber trajectories that pen-
etrated all “AND” ROIs were selected. For
reconstruction of the UF, one “AND” ROI
was placed on a coronal slice in the frontal
lobe and one on an axial slice after the
curvature to the temporal lobe. The ILF
was reconstructed by placement of two
“AND” regions on a coronal slice: one in
the temporal and one in the occipital lobe.

The CC was reconstructed as previ-
ously described (24). In summary, only the
midsagittal segment of the CC was selected
to exclude regions of crossing fibers from
the more laterally projecting pathways of
the CC. Subsequently, the genu and sple-
nium of the CC were automatically seg-
mented according to the division
described by Hofer and Frahm (25).

Diffusion parameters that were used
to quantify microstructural white matter
abnormalities (fractional anisotropy [FA],
mean diffusivity [MD], radial diffusivity,
and axial diffusivity) were obtained for
each tract. We additionally calculated the
mean planar diffusion coefficient of each
tract. The planar diffusion coefficient
ranges from zero to one and is relatively
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Figure 1—White matter tracts were reconstructed from each hemisphere based on a standardized atlas (23), the SLF (A), the ILF (B), the UF (C),
and the genu and splenium of the medial segment of the CC (D).

high in voxels with a higher degree of
fiber complexity such as in crossing fiber
regions (26).

Classical markers of small vessel
disease

Quantitative assessment of WMH was
performed on the fluid-attenuated inver-
sion recovery images using the age-related
white matter changes scale (27) by two
raters (Y.D.R. and M.B.) who were blinded
for clinical data and group allocation. Five
different regions were rated in the right
and left hemispheres separately. In addi-
tion, cerebral large vessel infarcts and la-
cunar infarcts were identified. In case of
disagreement, consensus was obtained in
a consensus meeting.

Statistical analyses

The cognitive domain scores and diffu-
sion parameters were all normally distrib-
uted. Demographic variables, cognitive
performance, diffusion parameters, and

classical markers of small vessel disease
(WMH and lacunar infarcts) were com-
pared between participants with and
without type 2 diabetes with an indepen-
dent-samples ¢ test for continuous
variables, a Mann-Whitney U test for non-
parametric data, and a x* test for propor-
tions.

DTI parameters from tracts that
showed significant between-group differ-
ences were selected to evaluate the re-
lation between these parameters and
cognitive performance with linear regres-
sion analyses. To test whether the relation
between DTI parameters and cognitive
performance in the diabetes group was
different from the control group, we
assessed group X DTI interactions. In
case of a significant interaction effect, we
stratified the analyses for group. Because
the between-group differences in DTI pa-
rameters were similar for tracts in the left
and right hemisphere, we averaged diffu-
sion measures from both hemispheres to

obtain one value per tract. For significant
group X DTI parameter interactions, post
hoc analyses were performed on the left
and right hemisphere separately. All linear
regression analyses were adjusted for age,
sex, and estimated 1Q. Because crossing
fibers have been shown to confound the
relation between diffusion measures and
cognition (22), we also adjusted for the
degree of crossing fibers by entering the
planar diffusion coefficient as a covariate
in the model (28).

To examine whether the relation be-
tween DTI parameters and cognition was
mediated by classical markers of small
vessel disease, we adjusted significant
group X DTI parameter interactions on
cognition for the presence of cerebral in-
farcts and total WMH load. To exclude
the possibility that the relation between
diffusion parameters and memory perfor-
mance is affected by tract volume, we
ran a separate model with tract volume
as covariate. Finally, we explored the
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relation between DTI parameters, cogni-
tion and vascular risk factors (hyperten-
sion, BMI, and hypercholesterolemia),
and diabetes-related factors (fasting glu-
cose and HbA . levels) with linear regres-
sion analyses adjusted for age, sex, and

group.
RESULTS

Between-group differences

Group characteristics are shown in Table 1.
Groups did not differ in age, sex, or esti-
mated IQ. Patients with type 2 diabetes per-
formed slightly worse on the cognitive
domains memory and attention and exec-
utive functioning compared with control
subjects, but differences were nonsignifi-
cant (Supplementary Table 1). Raw test
scores and corresponding z scores of each
individual test are presented in Table 3
(Supplementary Data). There were also no
significant differences in the presence of
large vessel infarcts, lacunar infarcts, or
WMH load. In two patients with
diabetes, a large vessel infarct was observed
on MRI. White matter tracts traversing

Table 1—Group characteristics

through the affected regions were excluded
from the analyses (in one patient the left UF
and in the other patient the right ILF and
right UF). The other tracts from these pa-
tients were included in the analyses.

Significant between-group differen-
ces in MD values were observed in the
SLF, UF, and ILF in both the left and right
hemisphere and in the splenium of the
CC demonstrating microstructural white
matter abnormalities in patients com-
pared with control subjects (Fig. 2). A be-
tween-group difference in FA was found
in the right UF (P = 0.046). The between-
group differences in MD were driven by
increased diffusivity along both the axial
direction (parallel to the tract) and radial
direction (perpendicular to the tract) for
the left and right SLF, left and right UF,
left ILF (all P < 0.05), and right ILF (trend
P = 0.09; data not shown). Between-
group difference in the splenium of the
CC was explained by increased axial dif-
fusivity (P = 0.02). Important to note is
that the tract volume did not differ be-
tween the diabetes and control groups
(P> 0.05).

Control Type 2 diabetic
subjects subjects P
n 35 35
Age (years) 71.0 = 4.6 71.1 = 4.6 0.99
Sex (% male) 60 57 0.81
Education level 4 (2-7) 4 (2-7) 0.90
Estimated 1Q* 104 = 15 101 £ 15 0.50
Beck Depression Inventory >13 3 6 0.55
MMSE 29 (25-30) 29 (25-30) 0.40
Vascular risk factors
Systolic blood pressure (mmHg) 147 £ 23 146 = 15 0.88
Diastolic blood pressure (mmHg) 80 £ 9 79 £ 11 0.79
Antihypertensive medication 49 77 0.01
BMI (kg/m?) 26+ 3 28+ 3 <0.01
Total cholesterol (mmol/L) 56+ 1.2 47 *+08 0.001
Cholesterol-lowering drugs 46 74 0.02
Fasting glucose (mmol/L) 5*06 78+ 1.8 <0.001
HbA, . (%) 57 %04 6.8+ 08 <0.001
Diabetes duration 8.6 (1-51)
Cognitive performance
Information-processing speed 0.001 = 0.71 —0.001 = 1.23 0.99
Attention and executive functioning 0.07 = 091 —0.07 £ 1.09 0.56
Memory 0.10 = 1.08 —0.10 = 0.92 0.42
MRI marker of small vessel disease
Lacunar infarcts 7 (20) 8 (23) 0.77
Large vessel infarcts 0 2 (6) 0.15
WMHSs" 3(1-13) 4 (0-10) 0.72

Data are presented as means = SD, percentages, n (%), or median (range) unless otherwise indicated. “Es-
timated by the Dutch version of the National Adult Reading Test. "WMHs were assessed in both hemispheres
with the Wahlund age-related white matter changes scale (27).

Association between DTI measures
and cognitive performance

The relation between white matter abnor-
malities and cognitive performance was
evaluated for those DTI measures that
showed a significant group difference
between patients and control subjects.
We found significant group X MD inter-
action effects, showing a negative associ-
ation in the diabetes group between MD
of the UF, ILF, and splenium of the CC
and information-processing speed (stan-
dardized B [95% CI] —0.37 to —0.59)
(Table 2) and between MD of the ILF
and memory (—0.61 [—0.96 to —0.27]),
while in the control group no significant
relation between MD and cognition was
observed. The group X FA interaction ef-
fect for the UF was also significant on the
domain information-processing speed,
indicating a stronger positive association
between FA and cognitive performance in
the diabetes group (0.37 [3.28-25.01],P=
0.012) than in the control group (0.02
[=7.15t0 7.92], P = 0.918). We did not
observe a significant interaction effect
for the SLF on any of the three cognitive
domains.

Post hoc analyses on the significant
group X MD interaction effects showed sim-
ilar interaction coefficients for the left and
right hemisphere: group X MD UF and
information-processing speed (left, —3.36;
right, —3.40), group X MD ILF and infor-
mation-processing speed (left, —2.68; right,
—2.92), and group X MD ILF and memory
(left, —3.50; right, —4.30).

Adjustment for total WMH load and
presence of cerebral infarcts did not mod-
ulate the significant associations (data not
shown). Also, adjustment for tract vol-
ume did not change the results.

Relation with vascular risk factors
The group difference in MD between
patients and control subjects was not
modulated after adjustment for hyperten-
sion, BMI, or hypercholesterolemia (data
not shown). Across the groups, hyperten-
sion was significantly associated with
worse memory performance (8 —0.24
[—1.19 to —0.04]) after adjustment of
age, sex, estimated IQ, and group. No re-
lation between BMI, hypercholesterol-
emia, and cognitive performance was
found. Multivariate models showed that
the relation between MD and memory
within the diabetes group remained sig-
nificant after adjustment for hypertension
(data not shown).

With respect to diabetes-related
measures, elevated HbA ;. was associated
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Figure 2—Differences in MD and FA between the control group (O0) and the diabetes group (H)
+SEM. High MD values and low FA values indicate reduced white matter tract integrity. *P <

0.05.

with worse executive functioning within
the T2DM group (—0.42 [—0.89 to
—0.15], P = 0.01). A trend was observed
between HbA;. levels and memory
(—0.28 [—0.68 to 0.002], P = 0.05) and
higher MD in the ILF (0.28 [0.00-0.56],
P = 0.05). No relation between the dura-
tion of diabetes and cognition or DTI pa-
rameters was observed.

CONCLUSIONS —The current study
demonstrated microstructural abnormal-
ities in several major white matter tracts in
older nondemented patients with type 2
diabetes compared with control subjects.
These microstructural abnormalities were
related to worse cognitive performance
independent of classical MRI markers of
small vessel disease (WMH and lacunar
infarcts). Interestingly, we observed

dissociations between abnormalities in
specific white matter tracts and different
aspects of cognitive functioning.

Previous studies have reported mod-
est cognitive decrements in patients with
type 2 diabetes on tests measuring in-
formation-processing speed, attention
and executive functioning, and memory
with effect sizes between —0.2 and —0.8
in the majority of studies (29). The effect
sizes observed in this study are on the
lower end of this spectrum (maximum
—0.2). One factor that may have contrib-
uted to attenuation of the effect sizes is the
fact that vascular and metabolic risk factors
were relatively well controlled in the dia-
betes group (Table 1). This reflects current
clinical practice guidelines, which are
more stringent on cardiovascular control
for primary and secondary prevention in

Reijmer and Associates

type 2 diabetes (30), and is similar to other
reports from Dutch population-based co-
horts (9,31). The distribution of vascular
risk factors in the control group was in line
with previous observations in Dutch pop-
ulations of similar age (32).

Despite the small differences in cog-
nitive performance, we observed consis-
tent group differences in MD values in the
majority of tracts in both hemispheres,
indicating microstructural white matter
abnormalities in individuals with type 2
diabetes. These results are in line with
recent reports from a DT study on type 2
diabetes (33). By contrast, changes in FA
were less pronounced. This can be ex-
plained by the fact that diffusion was in-
creased parallel (axial) and perpendicular
(radial) to the white matter fibers, which
has a larger impact on the total MD than
on the ratio between the axial and radial
diffusion (FA). Based on the cognitive
profile and results from previous neuro-
imaging studies, we expected that white
matter tracts in patients with type 2 di-
abetes would be affected in frontal, tem-
poral, and parietal regions. Indeed,
white matter abnormalities were found
in the UF, SLF, and ILF. In addition,
we observed group differences in the
splenium of the CC, indicating that the
microstructural white matter abnormal-
ities may also extend to more posterior
areas.

Importantly, increased MD was asso-
ciated with worse cognitive performance
in the diabetes group after adjustment for
age, sex, and estimated IQ but not in the
control group, suggesting that micro-
structural white matter alterations under-
lie the cognitive decrements in older
individuals with type 2 diabetes. Wide-
spread deterioration of the brain net-
work has previously been shown to affect
age-related reductions in information-
processing speed (34,35). We now dem-
onstrate that in patients with diabetes,
disruption of white matter tracts connect-
ing frontal, parietal, and temporal regions
is related to slowing of information-
processing speed independent of age.
The observed relationships between dif-
ferent aspects of cognition and white mat-
ter integrity are in line with current
theories about the localization of higher
cerebral function. Verbal memory perfor-
mance was specifically related to micro-
structural abnormalities in the ILF, a
large white matter tract crossing through
the temporal lobe. In contrast, information-
processing speed, an aspect of cognitive
functioning commonly regarded as not
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Table 2—Association between MD and cognitive functioning stratified for group and group X MD interaction effects

Control subjects

Type 2 diabetic subjects

P for group X MD
interaction effectf

Information-processing speed
MD SLE
MD UF
MD ILF
MD CC splenium
Attention and executive functioning
MD SLF
MD UF
MD ILF
MD CC splenium
Memory
MD SLF
MD UF
MD ILF
MD CC splenium

—0.06 (=0.41 to 0.30)
—0.12 (—0.47 10 0.23)
0.09 (—=0.24 t0 0.42)
0.18 (—0.17 10 0.52)

—0.28 (=0.67 10 0.12)
—0.40 (=0.79 to 0.003)
—0.32 (=0.70 t0 0.07)
—0.11 (=0.52 to 0.30)

—0.09 (—=0.30 to 0.47)
0.09 (—0.29 t0 0.47)
0.26 (—0.08 to 0.62)

—0.05 (—0.42 t0 0.33)

0.001 (—0.47 to 0.47)

—0.06 (—0.54 t0 0.42)

—0.03 (—=0.49 to 0.44)
—0.14 (=0.54 t0 0.27)

—0.06 (=0.52 to 0.39)
—0.07 (=0.37 10 0.23)

—0.19 (=0.56 t0 0.18)

0.17

—0.37 (—0.68 to —0.07)* 0.01
—0.59 (=0.98 to —0.19)* 0.04
—0.49 (—=0.81to —0.1D)* <0.01
0.12

0.21 (=0.13 t0 0.54) 0.06
0.66

0.59

0.39

0.25

—0.61 (=0.96 to —0.27)* <0.01
0.17

Associations between the MD of each tract and cognitive performance stratified for group (2nd and 3rd column) and the P value for the group X MD interaction effects
(4th column) are presented. Changes in z score per 1-SD increase in MD (95% Cls) are given, adjusted for age, sex, estimated IQ, and the planar diffusion coefficient
reflecting the degree of fiber organization complexity. MD values of the SLF, UF, and ILF are averaged across both hemispheres. fSignificant interaction effects indicate
that the association between MD and cognition in the type 2 diabetes group is more negative than in the control group. *P < 0.05.

specifically located in a particular brain re-
gion, was found to be related to more
widespread changes in white matter
integrity. These region-specific structure-
function relationships support the hy-
pothesis that disruption of white matter
connections plays an important role
in the pathogenesis of diabetes-related
cognitive deficits.

Microstructural white matter abnor-
malities have also been observed in youn-
ger adults with type 1 diabetes (average
age 45 years) (36) and in adolescents with
type 2 diabetes (37). Our observations ex-
tend these previous findings by evalua-
tion of the microstructural integrity of
specific white matter tracts using fiber
tractography in older participants in rela-
tion to individual cognitive domains. The
finding that diabetes-associated micro-
structural white matter abnormalities
can already be observed at a much youn-
ger age suggests that they should not be
regarded as an early stage of a dementia
process. Instead, this (vascular) white
matter pathology makes the brain more
vulnerable to the effects of Alzheimer pa-
thology and other dementia-related pro-
cesses later in life. In our view, the
combined burden of these subtle micro-
structural white matter abnormalities,
with other pathological changes that are
common at an older age, such as global
atrophy, WMH, and lacunar infarcts (9),
impacts on the reserve capacity of the
brain and is thus likely to contribute to

the increased dementia risk in type 2 di-
abetes.

The association between DTI mea-
sures, type 2 diabetes, and cognition was
independent of classical markers of small
vessel disease (WMH and lacunar in-
farcts) indicating that DTI is a more
sensitive marker for the subtle diabetes-
related white matter abnormalities. White
matter alterations in patients with diabe-
tes may involve microvascular lesions
such as microbleeds and microinfarcts
(10,11) or endothelial dysfunction
(38,39), which may in turn affect cerebral
blood flow resulting in hypoperfusion
and impaired brain function (38). Never-
theless, the exact pathological basis of
these DTI changes in patients with diabe-
tes remains to be established.

Strengths of our study are the de-
tailed analyses of both high-resolution
brain-imaging scans and cognitive func-
tioning in a well-defined population-based
cohort. This allowed us to accurately
assess the relation between these param-
eters. We used fiber tractography to
assess the white matter microstructure
in patients with type 2 diabetes. This
method is preferred for examining mi-
crostructural correlates of cognitive func-
tions such as information-processing
speed, attention, and memory because
those functions depend on the transfer
and integration of information between
brain regions via those fiber tracts. The
advantage over automated voxel-based

analyses is that it is not sensitive to
imperfect registration and smoothing
errors (40). Moreover, averaging across
voxels from one tract reduces the vari-
ance in diffusion measures and thereby
increases the power to detect more subtle
changes in white matter structure. Our
study has some limitations. First, selec-
tion bias may have led to a relatively
healthy study sample and thus an under-
estimation of the effect. The more inten-
sive cardiovascular treatment regimen in
the diabetes group relative to the control
subjects reflects the current clinical prac-
tice guidelines (30). This does make our
results generalizable to the population of
well-controlled patients but is likely
to underestimate the effect in less con-
trolled patient populations. Second, al-
though the cognitive tests used in our
study have previously been shown to be
sensitive to diabetes-related changes in
cognitive performance in middle-aged
individuals (2), our test selection was
not exhaustive and inclusion of other
tests would possibly have increased the
sensitivity to detect modest cognitive
decrements in patients with type 2 diabe-
tes. Finally, to limit the number of com-
parisons we focused on a selection of
white matter tracts, but future studies
could demonstrate whether these find-
ings extend to other fiber pathways or
specific segments thereof.

This study demonstrated microstruc-
tural abnormalities in specific white matter
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tracts in nondemented older individ-
uals with type 2 diabetes. Microstruc-
tural changes, assessed with DTI, are
a potential marker of early white matter
abnormalities in type 2 diabetes and may
be more sensitive than classical MRI
markers of small vessel disease. Further-
more, disruption of white matter con-
nections is a potential correlate of worse
cognitive functioning in patients with
diabetes.
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