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Abstract

It has been debated how different farming systems influence the composition of soil bacterial communities, which are
crucial for maintaining soil health. In this research, we applied high-throughput pyrosequencing of V1 to V3 regions of
bacterial 16S rRNA genes to gain further insight into how organic and conventional farming systems and crop rotation
influence bulk soil bacterial communities. A 262 factorial experiment consisted of two agriculture management systems
(organic versus conventional) and two crop rotations (flax-oat-fababean-wheat versus flax-alfalfa-alfalfa-wheat) was
conducted at the Glenlea Long-Term Crop Rotation and Management Station, which is Canada’s oldest organic-
conventional management study field. Results revealed that there is a significant difference in the composition of bacterial
genera between organic and conventional management systems but crop rotation was not a discriminator factor. Organic
farming was associated with higher relative abundance of Proteobacteria, while Actinobacteria and Chloroflexi were more
abundant in conventional farming. The dominant genera including Blastococcus, Microlunatus, Pseudonocardia,
Solirubrobacter, Brevundimonas, Pseudomonas, and Stenotrophomonas exhibited significant variation between the organic
and conventional farming systems. The relative abundance of bacterial communities at the phylum and class level was
correlated to soil pH rather than other edaphic properties. In addition, it was found that Proteobacteria and Actinobacteria
were more sensitive to pH variation.
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Introduction

It has long been recognized that maintaining biodiversity of

soil microbes is crucial to soil health, which has been defined as

soil with the capacity of resilience to stress, sustaining high

biological diversity, productivity and high level of internal

nutrient cycling, maintaining environmental quality and pro-

moting plant health [1,2]. Bacterial communities are responsible

for multifaceted biological functions in soils [3,4,5], and exert an

important role in maintaining plant health [6,7,8,9,10]. In turn,

soil has a direct impact on the structure and function of soil

bacterial communities through perturbations caused by natural

or human activities [11,12,13]. It was reported that agricultural

soil, perturbed by human activities, has different bacterial

diversity, compared to non-disturbed forest and grassland soil

[14,15]. However, there is still lack of the detailed information

about the bacterial diversity affected by agriculture perturbation.

Over the past decades, conventional agricultural management

practices have involved the use of artificial chemical fertilizers

and pesticides to increase crop yields. This has led to severe

environmental problems such as soil degradation, emission and

leaching of fertilizer and pesticide, and the emergence of

pesticide resistant species [16,17], resulting in an unsustainable

practice [18]. The aim in sustainable management systems is to

maintain the biological function of the soil and to promote

plant health. Organic farming contributes to these factors using

techniques such as crop rotation, green manure, and biological

pest control instead of chemical fertilizers and pesticides [19].

Consequently, organic farming systems may have a strong

potential for restoring soil health and increase agro-ecosystem

resilience to stress [18].

Few studies have evaluated the impact of fertilizer, crop

rotation, and crop varieties on microbial community structure

when conventional and organic farming systems are compared

[20,21,22,23,24]. These studies have found that fertilizers, and

crop varieties and rotation could shape the size and structure of

soil microbial communities. However, these studies were based

on field experiments where the above-mentioned factors varied

at the same time between conventional and organic soil

management. Therefore, the main discriminator between

conventional and organic farming could not be defined.

Moreover, the results of these studies were not consistent,
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which could be due to different analytical methodologies that

varied in resolution [14,24,25,26].

Previous studies in our group had investigated the effects of

different agriculture management practices (organic versus

converntional) and crop rotation systems [(flax-oat-fababean-

wheat (Grain-Only rotation) versus flax-alfalfa-alfalfa-wheat

(Forage-Grain rotation)] on crop yield, soil edaphic traits, such

as nitrate, phosphorus, pH, and organic matter. Results showed

that rotation rather than farming managements affect most soil

nutrient traits including nitrate-N, Oslen P, and organic matter.

Whereas, farming system affect soil pH, with lower pH in

conventional farming system than that in organic farming

system. However, the effects of farming management and

rotation on bacterial communitiy structure of the soil was not

evaluated [27,46].

We hypothesized that microbial composition of soil differs

between organic and conventional farming sytstems or in

different crop rotations. As such, some microorganisms might

be present in organic farms while absent or less frequent in

conventional farms and vice versa. Similarly, there might be

some bacteria that are unique to a specific crop rotation system.

Using Roche 454 pyrosequencing methodology, the objective of

this study was to identify bacterial populations that are

associated with specific farming practice that could potentially

influence soil and plant health. This manuscript provides a

detailed framework of the soil bacterial composition at the

genus level and its possible connection to farming practices.

Materials and Methods

Soil Sampling, Sampling Site and Experimental Design
Soil samples were collected at Glenlea Long-term Crop

Rotation and Management Station (GLCRMS) at southern

Manitoba, which is Canada’s longest running organic-conven-

tional management comparison station commenced in 1992. A

detailed description of the location and site management was

described previously [27]. In brief, the study site is located

20 km south of Winnipeg, Manitoba, Canada (N 49,39,0/W

97,7,0). The soil type is Rego Black Chernozem and the soil

texture is clay (9% sand, 26% silt, and 66% clay) with an

organic matter content of 7.7%. The experiment was a

randomized complete block design in a split-plot arrangement

with three replicates. Two crop rotations, that is, flax-oat-

fababean-wheat (Grain-Only rotation) and wheat-alfalfa-alfalfa-

flax (Forage-Grain rotation) were used as main plots, and

certificated organic and conventional methods served as

subplots. The 262 combinations of treatments included:

Grain-Only Organic (GO), Grain-Only Conventional (GC),

Forage-Grain Organic (FO) and Forage-Grain Conventional

(FC). All rotation crops appeared in the rotation each year.

Both organic and conventional experiments were managed

using conventional tillage and plots were tilled with a disc and a

field cultivator prior to sowing. Pesticides and chemical

fertilizers were applied on the conventional plots but not on

the organic plots. Eighteen kg P2O5 was banded when wheat

was seeded in conventional plots, and 65 kg Nitrogen/ha was

Table 1. Physico-chemical characteristics of Glenlea soil (0–15 cm) on the different treatments (Welsh, 2009; Bell 2012).

Rotation Management
Total C
(g/kg)

Carbonate
C (g/kg)

Organic
matter (%)

Total N
(g/kg)

Olsen P
(mg/kg) pH

C: N
Ratio

Grain-Only Organic 3.0 2.8 6.7 2.6 23.4 7.0 11.3

Grain-Only Conventional 3.2 2.6 7.2 2.7 21.7 6.6 11.5

Forage-Grain Organic 3.1 0.4 7.9 2.7 3.6 7.0 11.3

Forage-Grain Conventional 3.0 1.7 7.9 2.7 14.2 6.6 10.9

SEM 0.06 0.19 0.50 0.008 1.63 0.32 0.19

P-value

Rotation NS ,0.0001 0.005 NS ,0.0001 NS NS

Management NS 0.0039 NS NS 0.0035 0.023 NS

Management 6 Rotation 0.01 0.0001 NS NS 0.0001 NS NS

NS = not significant (P.0.05).
doi:10.1371/journal.pone.0051897.t001

Table 2. Pearson correlation coefficients between soil edaphic factors1.

Variables pH Olsen P Total N Total C Carbonate C Organic matter C: N ratio

pH 1.000 20.380 20.414 20.429 20.527 20.424 20.205

Olsen P 1.000 0.996 0.993 0.615 0.994 0.256

Total N 1.000 0.998 0.606 0.998 0.258

Total C 1.000 0.622 1.000 0.297

Carbonate C 1.000 0.611 0.135

Organic matter 1.000 0.297

C: N ratio 1.000

1Significant correlations between edaphic factors are indicated in bold type when P,0.05.
doi:10.1371/journal.pone.0051897.t002
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broadcasted in conventional flax plots. One L/ha Buctril M and

0.235 L/ha Horizon were sprayed on conventional wheat plots

and 0.2 L/ha Select and 1 L/ha Buctril were sprayed on

conventional flax plots. These plots were managed with no

external input of manure.

Bulk soil samples were randomly collected from the top level

(0–15 cm) throughout wheat and flax plots in June and August

2008. Part of each soil sample was kept at 220uC prior to

DNA extraction after sieving (2 mm) to remove roots and

stones, while the rest was kept at 4uC for chemical analyses.

Samples were analyzed using an elemental analyzer at a

commercial soil analysis laboratory (AGVISE, Northwood, ND)

for total soil carbon and total soil nitrogen (Vario MAX

Carbon-Nitrogen analyzer, Elemetar, Germany). Soil Carbonate

carbon was analyzed with a modified pressure technique [28].

Organic matter, soil pH, and Olsen phosphorus (Polsen): sodium

bicarbonate-extractable phosphorus was measured as described

by Welsh et al. [27].

DNA Extraction
To remove PCR inhibitors, such as humic acids, covalent

cations and other easily dissolved organic compounds, from soil

samples a pre-lysis washing procedure was introduced before DNA

extraction [29]. Soil samples of 0.25 g were mixed with 1.25 ml

sodium phosphate (0.1 M, pH 7.5), then incubated in a shaker for

1 hr at room temperature, followed by centrifuging for 10 min at

160006g. Supernatant was discarded. DNA was extracted from

pre-washed samples using the PowerSoil DNA Isolate kit, which

included a bead-beating step, according to the manufacturer’s

specifications (Mobio Laboratories, Solana Beach, CA). The DNA

purity and quantity were tested by using spectrophotometer (Du

800 Spectrophotometer, BECKMAN COULTER). The average

ratio of 260:280 was 1.7. The average DNA yield was 10 ng/mL.

The variable regions of V1–V2 of the 16S rRNA genes were

successfully amplified using forward primer 27F (AGAGTTT-

GATCMTGGCTCAG) and reverse primer 342R

(CTGCTGCSYCCCGTAG), indicating that the quality of

extracted DNA was sufficient for further PCR application [30].

In order to test the long-term effect of farming practices on the

bacterial communities in the soil and reduce the temporal effects of

different sampling times, DNA samples of the same treatment

collected at different sampling times were pooled before pyrose-

quencing.

Pyrosequencing
A total of 23 pooled DNA samples were pyrosequenced using

the bacterial tag-encoded GS FLX-Titanium amplicon as

described by Dowd et al. [31] and Khafipour et al. [32]. In brief,

a mixture of Hot Start, HotStar high fidelity Taq polymerases, and

Titanium reagents were used to perform a one-step PCR (35

cycles) with primers 28F (GAGTTTGATCMTGGCTCAG) and

519R (GTNTTACNGCGGCKGCTG), which covered the var-

iable regions V1–V3 of the bacterial 16S rRNA genes [31]. The

pyrosequencing procedures were carried out at the Research and

Testing Laboratory (Lubbock, TX; http://www.

Researchandtesting.com).

Table 4. Phylogenetic composition of bacterial phyla from pyrosequenced 16S rRNA sequences.

Phylum Rotation (Grain-Only) Rotation (Forage-Grain) SEM P-value

Management Rotation Management
Rotation 6
Management

Organic Conventional Organic Conventional

Abundant phyla1

Proteobacteria 44.5a 32.2a,b 34.1a,b 27.3b 3.13 0.10 0.05 0.70

Actinobacteria 32.5a,b 39.2a,b 28.4b 43.1a 2.21 0.97 0.0002 0.08

Acidobacteria 8.5 10.3 13.8 12.1 2.35 0.15 0.88 0.44

Gemmatinomadetes 3.5B 3.6B 8.6A 2.9B 1.16 0.15 0.06 0.04

Chloroflexi 3.4b 6.1a 5.2a,b 6.8a 0.98 0.18 0.04 0.42

Bacteroidetes 3.3 2.7 2.7 2.2 0.98 0.54 0.52 0.99

Planctomycetes 1.5 1.7 2.1 1.8 0.35 0.30 0.81 0.49

Low-abundance phyla2

Firmicutes 0.6 0.9 0.2 1.1 0.34 0.47 0.11 0.32

Fibrobacteres 0.1B 0.2B 0.3A 0.1B 0.04 0.05 0.07 0.01

Nitrospirae 0.2b 0.2a,b 0.3a,b 0.5a 0.07 0.01 0.21 0.35

Verrucomicrobia 0.2C 0.7A 0.8A 0.5B 0.14 0.09 0.42 0.006

OP10 0.2B 0.4A,B 0.5A 0.2B 0.08 0.44 0.36 0.04

TM7 0.1 * 0.1 * 0.13 0.98 0.62 0.86

WS3 * 0.2 0.2 0.1 0.15 0.59 0.85 0.56

Unclassified 1.1 1.3 2.1 1.3 0.52 0.45 0.66 0.40

a,b,cMeans for main effects (rotation or management) are significantly different at P,0.05.
A, B, CMeans for the interaction between rotation and system are significantly different at P,0.05.
1Percentage of sequences larger than 1.
2Percentage of sequences smaller than 1.
*Percentage of sequences below 0.1.
doi:10.1371/journal.pone.0051897.t004
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Bioinformatics of Pyrosequencing Data
Sequence editing, categorical transformation/

classification. Pyrosequencing data were edited, categorically

transformed and classified as described by Khafipour et al. [32].

Briefly, all low quality sequences, tags, non-bacterial ribosomal

sequences, and chimeras were removed from the database. In

total, 123, 316 sequences were generated in this step. Then, the

mothur software package [33] was utilized to perform the

second round of sequence quality control and assignments of

operational taxonomic units (OTU). All sequences shorter than

200 bp, or sequences having one or more ambiguous base, or

containing a homopolymer length equal or greater than 8bp

were removed from the dataset. The minimum, median and

maximum lengths of sequences were 200, 471 and 647 bp,

respectively. The unique sequences were then identified and

aligned against a database of high quality 16S rRNA bacterial

sequences derived from Silva (version 106) [34]. Through

screening, filtering, and pre-clustering processes, columns

containing a gap were removed in all sequences to reduce

noise from pyrosequencing data. The remaining 987 columns

(with an actual sequence length varying from 203 to 342 bp)

and 39,283 sequences were used to build a distance matrix with

a distance threshold of 0.1. Using the furthest neighbor

algorithm with a cutoff of 95% similarity, these sequences were

clustered to OTU. Representative sequences from each OTU

were taxonomically classified with a confidence level of 60%

using RDP Bayesian approach [35].

Alfa diversity analysis. An OTU-based approach was

performed to calculate the richness, diversity and coverage at

OTU cutoff of 0.05, which characterizes the biodiversity of the

bacterial population in the soil samples at the genus level. Richness

indices, Chao1 and abundance based coverage estimation (ACE),

were calculated to estimate the number of species or OTU that

were present in the sampling assemblage. The diversity within

each individual sample, which is made up of richness and species

abundance, was estimated using Simpson and non-parametric

Shannon diversity indices. Good’s non-parametric coverage

estimator was used to estimate the percentage of the total species

that were sequenced in each sample. Rarefaction curves for

treatment groups were created in mothur [33], based on a re-

sampling without replacement approach.

Table 5. Bacterial taxa showing significant variation under different farming systems generated using pyrosequenced 16S rRNA
sequences.

Taxa (family and genus within each
phylum or class) Rotation (Grain-Only) Rotation (Forage-Grain) SEM P-value

Management Rotation Management
Rotation 6
Management

Organic Conventional Organic Conventional

Actinobacteria 32.5a,b 39.2a,b 28.4b 43.1a 2.21 0.97 0.0002 0.08

Geodermatophilaceae; Blastococcus 0.8b 1.7a 1.2a,b 1.7a 0.19 0.27 0.002 0.23

Intrasporangiaceae; Lapillicoccus 0.3b 0.4a,b 0.2b 0.6a 0.09 0.36 0.01 0.11

Propionibacteriaceae; Microlunatus 1.1a.b 2.0a 0.8b 2.1a 0.31 0.78 0.004 0.66

Pseudonocardiaceae; Pseudonocardia 0.9b 1.7a,b 1.3b 2.6a 0.24 0.02 0.001 0.31

Solirubrobacteriaceae; Solirubrobacter 0.6b 1.7a 0.8b 1.6a 0.29 0.88 0.003 0.48

Rubrobacteriaceae; Rubrobacter 0.5b 1.0a 0.3b 1.4a 0.24 0.57 0.005 0.30

Unclassified bacteria 11.9a,b 15.6a,b 9.9b 17.4a 1.81 0.97 0.01 0.33

Proteobacteria 44.5a 32.2a,b 34.1a,b 27.3b 3.13 0.10 0.05 0.70

Alphaproteobacteria 20.5 15.9 18.2 15.0 2.39 0.55 0.15 0.85

Caulobacteraceae; Brevundimonas 1.7a 0.1b 0.2b 0.01b 0.11 0.15 0.03 0.78

Xanthobacteraceae; uncultured 0.5b 0.8a,b 0.7a,b 1.1a 0.15 0.10 0.05 0.64

Rhodospirillaceae; Skermanella 0.8b 1.5a,b 1.3ab 2.6a 0.30 0.02 0.005 0.36

Gammaproteobacteria 11.4 7.1 7.7 3.6 2.72 0.13 0.08 0.67

Pseudomonadaceae; Pseudomonas 4.3 3.9 1.7 0.5 2.02 0.10 0.52 0.44

Xanthomonadaceae; Stenotrophomonas 0.7a 0.0b 0.3a 0.0b 0.25 0.67 0.04 0.71

Betaproteobacteria 10.3a 6.3b 8.7a,b 5.1b 2.00 0.42 0.04 0.93

Burkholderiaceae; Burkholderia 0.6 0.0 0.1 0.0 0.19 0.29 0.14 0.99

Deltaproteobacteria 1.0b 2.7a,b 3.4a 3.5a 0.05 0.009 0.10 0.13

Chloroflexi 3.4b 6.1a 5.2a,b 6.8a 0.98 0.18 0.04 0.42

Chloroflexaceae; Roseiflexus 0.6 1.5 1.1 2.3 0.28 0.02 0.002 0.52

a,b,cMeans for main effects (rotation or management) are significantly different at P,0.05.
A, B, CMeans for the interaction between rotation and system are significantly different at P,0.05.
1Percentage of sequences larger than 1.
2Percentage of sequences smaller than 1.
*Percentage of sequences below 0.1.
doi:10.1371/journal.pone.0051897.t005
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Statistical Hypothesis Testing
The UNIVARIATE procedure of SAS [36] was used to test the

normality of residuals for Alfa diversity indices. Non-normally

distributed data were power transformed using Box-Cox power

transformation macro (http://www.datavis.ca/sasmac/boxcox.

html) in SAS based on the following models: BoxCox (y) = (yl -

1)/l, if l?0 OR BoxCox (y) = log (y), if l= 0. The range of l for

each parameter was adjusted by trial and error and the best fitting

value of l was identified using maximum likelihood methods.

Normalized data were then used to assess the effect of treatment

using MIXED procedure of SAS [36]. The effect of replicates was

treated as random in the model.

Percentage data was used to evaluate statistical differences

among treatments at the phylum and genus levels. To do so,

the count data for each taxon was first transformed to the

percentage of that taxon in an individual sample. Then

UNIVARIATE procedure of SAS was used to test the

normality of residuals for percentage data at each taxonomic

level. For non-normally distributed data, Poisson and negative

binomial distributions were fitted in the GLIMMIX procedure

of SAS [36] to assess the effect of treatment. A log link function

was specified for Poisson and negative binomial distributions.

The goodness of fit for different distributions was compared

using Pearson chi-square/DF (closer to 1 is better). Taxa were

categorized as abundant and low-abundant in order to

characterize them within each treatment. All taxa above 1%

of the population were considered abundant and those below

1% were classified as less-abundant [32]. The differences

between treatments were considered significant at P,0.05 while

trends were observed at P,0.1.

Partial Least Square Discriminant Analysis and
Redundancy Analysis

Partial least square discriminant analysis (PLS-DA; SIMCA-

P+12.0.1, Umetrics, Umea, Sweden) [37] was performed on genus

data to identify the effects of crop rotation and management on

the bacterial community. The PLS-DA is a particular case of

partial least square regression analysis in which Y is a set of binary

(0 versus 1) variables describing the categories of a categorical

variable on X. In this case, X variables were bacterial genera and

binary Y was observations of organic (1) versus conventional (0), or

Grain-Only (1) versus Forage-Grain (0) treatments. For this

analysis, data were scaled using Unit Variance in SIMCA-P+
[37]. Cross-validation was then performed to determine the

number of significant PLS components and a permutation testing

was conducted to validate the model. To avoid over parameter-

ization of the model, variable influence on projection value (VIP)

was estimated for each genus and genera with VIP,0.35 were

removed from the final model [38,39]. R2X and R2Y estimates

were then used to evaluate the goodness of fit and Q2 estimate was

used to evaluate the predictive value of the model. Scatter- and

score-plots were generated only for treatments that were

significantly differentiated by the model. The PLS regression

coefficients were used to identify genera that were most

characteristic of each treatment group. The positive or negative

correlations were considered significant when there was no overlap

Figure 1. Partial least square discriminant score plot of soil bacteria under organic and conventional treatments. GO: Grain-Only
organic; GC: Grain-Only conventional; FO: Forage-Grain organic; FC: Forage-Grain conventional. Model indicated a significant difference in the
composition of putative bacterial genera between organic and conventional managements (R2X = 0.427, R2Y = 0.882, Q2 = 0.159). Only genera with
VIP.0.35 is included in the model.
doi:10.1371/journal.pone.0051897.g001
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between the genus 95% confidence interval and the horizontal axis

in the PLS regression coefficients graph.

Redundancy analysis (RDA) was carried out using canonical

community ordination (CANOCO; Plant Research International

BV, Wageningen, The Netherlands) to examine the relationship

between abundant phyla and environment variables. Spearman’s

rank correlations were used to correlate abundant phyla and soil

properties using SAS [36].

Results

Cropping Systems and Edaphic Soil Properties
The total soil C, N, and C: N ratio did not vary significantly

under different cropping systems, while pH, organic matter,

carbonate C and Olsen P were affected to varying degree by

cropping systems. Total soil C was 3.0 g/kg, 3.2 g/kg 3.1 g/kg

and 3.0 g/kg under GO, GC, FO, and FC farming systems,

respectively. Total soil N was 2.7 g/kg in all of four treatments. C:

N ratio was 11.3 under GO and FO farming systems, while it was

11.5 and 10.9 under GC and FC farming systems, respectively. In

contrast, pH was 7.0 under organic management systems, higher

than that of conventional systems with 6.7 (P = 0.023). Organic

matter was 7.9 under Forage-Grain rotation systems, significantly

higher than that of Grain-only rotation systems with 6.7 and 7.2

(P = 0.005). Both rotation and management affected carbonate C

and Olsen P (Table 1). Carbonate C and Olsen P were much

lower under Forage-grain rotation, compared to Grain-only

system. Significant correlations existed between total N, C,

carbonate C, organic matter and Olsen P, as well as between

organic matter, carbonate C, total C and total N (Table 2).

Bacterial a-diversity
Bacterial diversity and richness in individual samples under

different treatments were calculated (Table 3). Statistical differ-

ences in richness and diversity were only observed for coverage

and ACE at the management level. Percentage of coverage for

conventional treatment was higher than that of organic treatment

(P = 0.04). The GC had the highest percentage of coverage

(84.5%), followed by FC (80.3%), GO (78.8%), and FO (73.2%).

The ACE richness was highest for FO (6,147.9), and lowest for GC

(3,044.2). The rarefaction curve (Figure S1) generated with

mothur demonstrated that observed numbers of OTU of FO

and GO groups were higher than that of FC and GC groups, with

FO having the highest number of observed OTU.

Figure 2. Partial least square discriminant analysis (PLS-DA) loading plot based on the relative abundance of the putative bacterial
genera in soil microbiome and their association with organic or conventional treatments. Bacterial genera closer to organic or
conventional are highly correlated to either treatment. PLS1 (R2X = 0.27, R2Y = 0.525, Q2 = 0.186) and PLS2 (R2X = 0.127, R2Y = 0.218, Q2 = 20.081).
Some sequences could only be affiliated to phylum (P) or family (F) levels.
doi:10.1371/journal.pone.0051897.g002
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Bacterial Community Composition
A total of 14 bacterial phyla were found in all the samples, of

which seven were abundant (.1%) (Table 4). Ninety six percent of

soil bacterial sequences belonged to these abundant phyla

including: Proteobacteria, Actinobacteria, Acidobacteria, Gemmatinomadetes,

Chloroflexi, Bacteroidetes and Planctomycetes. Firmicutes, Fibrobacteres,

Nitrospirae, Verrucomicrobia, P10, TM7 and WS3 were in low

abundance. The phylum distribution fluctuated under different

farming disturbances. Proteobacteria accounted for 44.5% of total

bacterial communities under the GO system, while it was only

27.3% under FC. In contrast, Actinobacteria made up 43.1% of total

bacterial communities under the FC system, but were present in

lower percentage (32.5%) under GO. Phylum Chloroflexi was also

significantly influenced by management, with the highest percent-

age (6.8%) found in FC compared to the lowest (3.5%) in GO. A

significant interaction between rotation and system was observed

for Gemmatinomadetes, Fibrobacteres, Verrucomicrobia, and P10. Per-

centage of Nitrospirae was higher under Forage-Grain farming

system. Other phyla did not show significant differences under

different treatments. Unassigned bacterial sequences at the

phylum level were approximately 1% of the total. In total, eight

out of 14 phyla showed significant differences under different

farming systems.

The relative abundance of different genera showing significant

difference under different treatments was listed in Table 5. In

phylum Actinobacteria, several putative genera including Blastococcus,

Lapillicoccus, Microlunatus, Pseudonocardia, Solirubrobacter, and Rubro-

bacter showed significant differences among the treatments. The

relative abundance of these genera was highest in the FC farming

system, followed by GC, FO, and GO. The percentage of different

class and genera belonging to the phylum Proteobacteria was higher

under organic farming system compared to the conventional

farming conditions with the exception of Skermanella, which was

2.6% and 1.5% under FC and GC farming systems, respectively.

Classes Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria

were higher in the Grain-Only organic farming system, although

the difference was not statistically significant. Class Deltaproteobac-

teria showed the opposite pattern, being highest in Forage-Grain

conventional systems, and lowest in Grain-Only organic system.

Pseudomonas was the predominant genus in Gammaproteobacteria with

Figure 3. Redundancy analysis ordination plots of abundant phyla for individual sample.
doi:10.1371/journal.pone.0051897.g003
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4.3% in GO, 3.9% in GC, 1.7% in FO, and 0.5% in FC. Within

Phylum Chloroflexi, genus Roseiflexus was significantly influenced by

interaction of rotation and management. Other genera in the

phyla of Actinobacteria and Proteobacteria did not show statistical

variation among the treatments (Table S1 and Table S2). There

was no significant fluctuation under different farming systems in

other genera within Acidobacteria, Bacteroidetes, Firmicutes, and

Planctomycetes (Table S3).

The PLS-DA analysis showed that there is a significant

difference in the composition of bacterial genera between organic

and conventional managements (R2X = 0.427, R2Y = 0.882,

Q2 = 0.159) (Figure 1). However, crop rotation (Forage-Grain

versus Grain-Only) was not a discriminator factor. Genera that

were the most characteristic of each management system were

identified using a scatter-plot (Figure 2). Among the putative

bacterial genera included in the model, Blastococcus spp. Micro-

lunatus spp. Pseudonocardia spp. and Solirubrobacter spp. were

significantly correlated with conventional treatment, whereas

Gemmatimonas spp. and Stenotrophomonas spp. were highly associated

with organic management (Figure 2 and Figure S2).

Effect of Soil Edaphic Properties on Abundant Phyla
Canonical correspondence analysis tested the effect of soil

edaphic properties on samples and bacterial populations by using

an unconstrained analysis (RDA) (Figure 3). pH explained 24% of

the variance (P = 0.06), CaCO3 C explained 19% (P = 0.02), and

the C: N ratio accounted for less than 5% of the variance

(P = 0.52). Other soil edaphic variables were highly correlated with

each other and were not able to explain variance separately. We

also used Spearman’s rank order correlation to evaluate relation-

ships between abundant phyla and soil edaphic properties

(Table 6). It was found that the relative abundance of Proteobacteria

phylum and Betaproteobacteria class was positively correlated with

soil pH, while the abundance of Actinobacteria was negatively

correlated with soil pH. Other phyla did not show significant

correlations with soil edaphic properties.

Discussion

In this study, crop rotation and management strategies did not

alter total C, total N and C:N ratio but significantly affected

organic matter, soil pH, carbonate C and Olsen P (Table 1). This

indicates that farming systems gradually but not dramatically

change soil edaphic properties [40]. We observed that organic

management led to a neutral soil pH compared to conventional

practices (7.0 versus 6.6; Table 1). This might be due to the

application of synthetic fertilizer that could acidify the soil in the

conventional systems [41]. Other reports indicated that soil pH

could be influenced by other soil traits such as C:N ratio [42],

vegetation, or soil type [43]. However, in our study, the field trials

were run under identical condition, and the soil pH was not

significantly correlated with other soil edaphic characteristics

(Table 2). Therefore, the farming system was the sole factor to

change the soil pH. As we expected, soil organic matter was higher

under Forage-Grain rotations (Table 1) [42,44]. However, organic

farming system did not increase organic matter in the soil surface,

compared to conventional farming system. In contrast, other

studies have shown that organic matter was higher in the top

0.3 m of soil under organic management [21,45]. This discrep-

ancy could be due to different crops contributing to different

amount of biomass and no additional manure added to our trials

[46].

We used high-resolution power of 454-pyrosequencing to obtain

insight into the effects of farming management styles (organic,

conventional) and crop rotations (Grain-Only, Forage-Grain) on

the diversity, richness and composition of soil bacterial commu-

nities. In total, pyrosequencing identified 14 phyla and 178

putative genera of bacteria in different soil samples. We found that

organic and conventional farming management had major

influence on soil bacterial communities while the effects of crop

rotation were of smaller magnitude. We were also able to identify

putative genera that were correlated with either organic or

conventional farming management.

It has been reported that organic farming systems enhance

microbial diversity in soil compared to the conventional systems

Table 6. Spearman’s rank correlations between abundant phyla with soil properties1.

Abundant phyla Correlation

pH Olsen P Total N Total C Carbonate C Organic matter C: N ratio

Proteobacteria 0.61 0.07 20.04 20.03 20.06 20.03 0.05

Alphaproteobacteria 0.46 20.47 20.09 20.12 20.17 20.11 20.17

Betaproteobacteria 0.62 20.18 20.24 20.38 20.36 20.20 20.36

Gammaproteobacteria 0.25 20.004 20.05 20.15 20.13 0.04 20.13

Deltaproteobacteria 20.47 0.18 20.21 20.15 20.13 20.04 20.13

Actinobacteria 20.65 0.44 0.51 0.50 0.41 0.50 20.17

Bacteroidetes 0.33 20.37 20.37 20.36 20.53 20.36 0.38

Chloroflexi 20.53 0.33 0.40 0.39 0.40 0.39 0.09

Firmicutes 20.21 0.47 0.53 0.52 0.33 0.52 0.35

Gemmatimonadetes 20.08 20.46 20.45 20.45 20.30 20.45 20.03

Planctomycetes 20.18 20.28 20.21 20.24 20.31 20.24 20.16

Acidobacteria 20.06 20.23 20.16 20.20 20.35 20.20 20.15

Nitrospirae 20.004 20.24 20.19 20.27 20.40 20.27 20.23

Unclassified 20.39 20.47 20.41 20.41 20.19 20.41 20.14

1Significant correlations between edaphic factors are indicated in bold type when P,0.05.
doi:10.1371/journal.pone.0051897.t006
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[21]. Although not statistically significant, we found a similar trend

in this study (Table 3). Previous research indicated that soil pH

might be the primary factor influencing richness and diversity of

bacterial communities [47] with the highest richness and diversity

found to be near the neutral pH. Lauber et al. [48] proposed that

bacterial diversity had a strong negative relationship with soil pH

when it was lower than 6.5. In this study, soil pH ranged from 6.6

to 7.0, and was significantly higher for organic compared to

conventional system. This indirectly indicates that organic

management might favor higher bacterial diversity. And it is

important to notice that standard diversity parameters only based

on OTU without taxonomic identity of the different groups is not

sensitive enough to detect the influence of agriculture management

on the soil bacterial community, because changes in some

taxonomic groups might be compensated by changes in others

[49]. Lending support to this hypothesis, we detected a significant

shift in soil bacterial communities due to farming systems when

sequences were taxonomically ranked (Figure 1).

When sequences were affiliated to taxonomic level, bacterial

populations fluctuated under different farming systems. An

interesting observation in this study was the greater percentage

of phylum Proteobacteria, including classes Alphaproteobacteria, Beta-

proteobacteria and Gammaproteobacteria in organic farming manage-

ment (39.3%) compared to the conventional system (29.7%). To

interpret these findings in an ecological context and to explain why

some bacterial phyla are more abundant in soil than others, some

researchers have used the concept of copiotrophic versus

oligotrophic bacteria [50,51]. Copiotrophic bacteria (fast growing)

flourish in soils with large amounts of available nutrients, while

oligotrophic groups (slow growing) predominate in soil having low

nutrient availability. It has been proposed that oligotrophic

bacteria are more associated with organically than conventionally

farmed soils due to low availability of organic carbon and nitrogen

[2,40]. Among Proteobacteria, Betaproteobacteria are considered as

copiotrophic [40,50], and thus, their population is expected to be

lower in organic farming. There is no indication if other classes

within Proteobacteria can be classified into copiotrophic-oligotrophic

scheme [50]. In our study we found higher Betaproteobacteria in

organic farmed soil. As organic farming system did not contribute

to higher amount of top bulk soil total C, total N and organic

matter compared to conventional system, higher relative abun-

dance of these bacteria could be due to other factors. It was found

that Proteobacteria and Betaproteobacteria was highly correlated with

pH in this study (P,0.05, Table 6), we assumed that neutral pH

could increase the abundance of these bacteria in soil.

We believe that because of enormous phylogenetic and

physiological diversity within each bacterial phyla, it is unlikely

that an entire phylum demonstrate same ecological characteristics.

An example would be Burkholderia, a genus in Betaproteobacteria that

exhibits oligotrophic traits due to their catabolically versatility that

enables them to degrade recalcitrant compounds and survive in

environments with limited nutrient availability [52]. Thus, the

hypothesis that oligotrophic bacteria are more associated with

organic farmed soil could simplify the ecological categories of

bacterial communities in soil.

In this study, we found a higher population of Brevundimonas

spp., Burkholderia spp., Pseudomonas spp., and Stenotrophomonas spp. in

organic farming systems (Table 5). These genera are ubiquitously

in the soil and several of their species have important ecological

roles in nutrient cycling and suppression of plant diseases

[52,53,54]. For instance, members of Stenotophomonas, Pseudomonas

and Burkholderia genera can fix nitrogen [52,55]. Higher relative

abundance of these genera might help maintaining total N level in

organic farming soil without fertilizer supplementation. In

addition, many plant growth-promoting bacteria (PGPB) belong

to Burkholeria, Stenotrophomonas and Pseudomonas genera, which were

more abundant in organic farming system (Table 5). Interestingly,

these genera were abundant in soils planted with alfalfa, wheat,

oilseed rape and various weeds [53,54]. Because organic farming

systems support more weeds than the conventional farming

systems, it might promote these PGPB populations [56]. However,

it is important to notice that not all species in these genera are

PGPB and there are species, which are pathogenic to humans,

animals and plants (i.e. P. aerugionsa, P. syringae, and S. maltophilia

K279a). The 16S rRNA marker genes have limitation for

identification of bacteria up to the species level, and thus other

methodologies with high resolution including metagenomic

shotgun sequencing [57] must be applied in order to differentiate

PGPB from pathogenic species in the soil bacterial community.

The percentage of Actinobacteria and Chloroflexi were lower in

organic (30.4% and 4.3%, respectively) compared to the

conventional system (41.1% and 6.4%, respectively). Our results

show that the conventional farming system increases the

actinobacterial proportion in the community with no change in

their composition, compared to the organic farming system. The

PLS-DA loading scatter and coefficient plots (Figure 2 and Figure

S2) indicated that conventional farming system supported higher

population of several genera within Actinobacteria, including

Blastococcus spp., Microlunatus spp., Pseudonocardia spp. and Soliru-

brobacter spp. Actinobacteria are able to degrade a variety of organic

compounds including some herbicides and pesticides [58].

Pseudonocardia spp. has been reported to degrade environmental

contaminants, particularly aromatic hydrocarbons or compounds

that contain aromatic rings [59]. As such, herbicides and pesticides

sprayed containing aromatic rings may have favored bacteria,

such as Pseudonocardia spp., with specific metabolic capabilities that

can degrade them. Some Microlunatus spp. has high levels of

phosphorus accumulating function and phosphate uptake/release

activities [60]. Therefore, in a conventional farming system where

pesticides and inorganic fertilizers are commonly used to increase

the crop yield, high availability of substrate for Microlunatus spp.

and other actinobacterial species could boost their population.

Actinobacteria also play a major role in organic matter turnover

and carbon cycling. They can decompose some recalcitrant

carbon sources including cellulose and chitin [15,61]. Organically

farmed soils have been reported to be rich in recalcitrant carbon

sources [62], and the diversity of Actinobacteria would be expected

to be higher in those soils than in conventionally farmed soils.

However, in our organic farming fields the recalcitrant carbon

sources were not higher in the organically surface soil than the

conventional one [46]. Therefore, recalcitrant carbon sources

could not drive the increasing diversity of Actinobacteria in our

study.

A number of studies have shown that soil edaphic factors shaped

microbial communities [43,63,64,65]. In our study, we found that

proportions of abundant phyla were highly affected by soil pH.

Our observations were consistent with other studies that demon-

strated pH was one of the main drivers of change in soil bacterial

communities from continental scale [48] to small landscape

[64,65]. At the phylum level, Proteobacteria were positively

correlated with soil pH, while Actinobacteria were negatively

correlated and Acidobacteria had a very weak correlation with soil

pH. Our results are in contrast to some studies that showed

Actinobacteria significantly increased with higher pH values, and

Acidobacteria was dependent on soil pH [65,66]. The soil pH value

varied significantly from 3 to 8 in other studies, while the soil pH

in our experiments only varied from 6.6 to 7 which could be the

reason for lack of change in Acidobacteria populations. In our study,
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Betaproteobacteria and Alphaproteobacteria populations increased with

higher soil pH, while Deltaproteobacteria declined. This result was

concomitant with the study by Nacke et al. [65]. Our studies

demonstrated that Proteobacteria and Actinobacteria were more

sensitive to pH variation than other bacterial phyla.

Finally, it is important to acknowledge that the choice of target

variable regions of 16S rRNA may have affected the outcome of

species richness and diversity analyses because the sequence

divergence is not distributed evenly along the 16S rRNA gene

[67,68]. We deep sequenced the V1–V3 regions of the bacterial

16S rRNA, which covered V2–V3 region, most suitable for

distinguishing most bacterial species ranging from the phylum

level to the genus level [68,69]. Therefore, even if some bacterial

communities might have been missed or overestimated, the overall

shifting in the phylogenetic composition of bacterial communities

under different treatments have been assessed.

Conclusion
We demonstrated that different farming practices significantly

changed the relative abundances of Proteobacteria and Actinobacteria.

Farming management practices (organic versus conventional)

rather than crop rotation (Grain-Only versus Forage-Grain)

appeared to have a strong impact on shifting the abundance of

soil bacterial communities, which could translate to changes in soil

quality and productivity. Some bacterial groups, such as

Gemmatinomadetes, Fibrobacteres, Verrucomicrobia and OP10 were

influenced by the interaction of crop rotation and management.

Most soil properties including C: N ratio, total N, total C, Olsen P,

and organic matter, did not play a major role in shaping bacterial

communities. However, pH had the strongest effect on the

bacterial community structure. Organic farming systems led to a

neutral pH, which might be beneficial to Proteobacteria. On the

other hand, conventional farming systems supported a higher

percentage of Actinobacteria. Therefore, neither organic farming nor

conventional farming can address all the aspects of beneficial soil

bacterial communities, which is crucial to soil quality and

productivity. Further research is required to investigate the shifts

in diversity of beneficial bacterial and fungal pathogens under

different farming systems in the long run.
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(PLS-DA) coefficient plot based on the relative abundant of the

bacterial genera in the microbiome profile of organic and

conventional treatments. Genera with significantly positive (.0)
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bars) or conventional samples (red bars).
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