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Abstract

Exome sequencing constitutes an important technology for the study of human hereditary diseases and cancer. However,
the ability of this approach to identify copy number alterations in primary tumor samples has not been fully addressed. Here
we show that somatic copy number alterations can be reliably estimated using exome sequencing data through a strategy
that we have termed exome2cnv. Using data from 86 paired normal and primary tumor samples, we identified losses and
gains of complete chromosomes or large genomic regions, as well as smaller regions affecting a minimum of one gene.
Comparison with high-resolution comparative genomic hybridization (CGH) arrays revealed a high sensitivity and a low
number of false positives in the copy number estimation between both approaches. We explore the main factors affecting
sensitivity and false positives with real data, and provide a side by side comparison with CGH arrays. Together, these results
underscore the utility of exome sequencing to study cancer samples by allowing not only the identification of substitutions
and indels, but also the accurate estimation of copy number alterations.
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Introduction

The development of Next Generation Sequencing (NGS)

technologies has allowed the study of the human genome at an

unprecedented level. Whole-genome sequencing (WGS) of several

individuals has been already performed shedding new light on

human variation, genome complexity and molecular mechanisms

of certain hereditary diseases [1,2]. In addition, sequencing of

cancer genomes has revealed a very complex landscape of somatic

mutations [3–5] and has led to the identification of driver genes

responsible for tumor initiation and growth [6–9]. Despite the

utility of WGS to understand human disease, this global approach

is still economically unaffordable for most laboratories and does

not allow the analysis of hundreds or even thousands of samples in

a timely manner. In this regard, the development of technologies

for the capture of specific regions of the genome [10,11], such as

all coding exons or exome, followed by NGS, has proven very

useful for the rapid and economic identification of mutations in

different human hereditary diseases as well as in cancer [12–19].

Due to the high coverage obtained using exome sequencing, this

technique constitutes an interesting approach for the identification

of point mutations and small indels with high accuracy in both

normal and tumor samples.

Point mutations and indels constitute the most frequent

alterations present in a tumor genome [4,5], and the ability to

identify them using exome sequencing represents an important

achievement in cancer genomics. However, cancer cells also

present other type of mutations, including translocations, inver-

sions or changes in copy number, which constitute important

events for tumor development. For instance, copy number

alterations (CNAs) due to either deletion or amplification of

specific regions frequently lead to deletion of tumor suppressor

genes or to the amplification of oncogenes, representing driver

events during tumor development [20–22]. In addition, some

hereditary diseases are caused not by point mutations but by

CNAs resulting in the deletion or amplification of specific genes,

exons or regulatory sequences [23,24]. In fact, a recent study using

WGS has identified a novel CNA in TP53 causing Li-Fraumeni

syndrome [25], reinforcing the importance of CNAs in human

disease. A currently assumed limitation of exome sequencing is its

inability to identify this type of structural variants, and the analysis

of exome data is usually complemented with other technologies,

such as comparative genomic hybridization arrays (aCGH) or high

throughput sequencing at low coverage in order to identify CNAs

[26,27], resulting in the requirement of additional sample material

as well as increases in costs per sample. The importance of CNAs

in human disease implies that the study of human pathologies by

exome sequencing data must be complemented by other

approaches in order to cover this type of variation.

Recent studies have shown that by using depth of coverage of

individual exons, it is possible to identify copy number alterations

in tumor and matched normal tissue exomes [28–32]. However,

these methods can result in the identification of false positive

CNAs due to the inherent variability of the capturing method

and/or sequencing efficiency of certain regions. Therefore, to

analyze the utility of this technique for cancer genomics and to

define the limits of this type of analysis it is necessary to analyze

exome sequencing data obtained from different individuals and
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processed at different times. Furthermore, a side by side

comparison between exome and aCGH data is necessary to

determine the sensitivity and specificity using primary tumors. In

this work, we demonstrate that exome data can be used to detect

tumor-specific CNAs with high accuracy and sensitivity by

analyzing 86 paired normal and primary tumor samples, and

show a high concordance with aCGH data. This work provides

the opportunity to re-analyze existing datasets to extract this

additional layer of information of great importance for human

disease.

Materials and Methods

Samples
Sequencing and genotyping data for chronic lymphocytic

leukemia (CLL) patients was obtained from the CLL-ICGC

Consortium and are deposited at the European Genome-Phenome

Archive (EGA, http://www.ebi.ac.uk/ega/), which is hosted at

the EBI, under accession number EGAS00000000092.

Exome capture, sequencing and mapping
Three mg of genomic DNA were fragmented to 150–200 bp and

hybridized using a SureSelect Human All Exon 50 Mb Kit

(Agilent) together with the Paired-End Sample Preparation Kit

from Illumina following manufacturers’ protocols. The captured

DNA fragments were sequenced using one lane of a Genome

Analyzer IIx (Illumina) per sample and 76 cycles, resulting in more

than 30 million paired-reads per sample. Reads were aligned to

the reference genome (GRCh37) using BWA-0.5.7 [33] and

Samtools-0.1.7 was used to remove PCR duplicates and to create

BAM files [34].

Analysis of copy number alterations from exome data
For each sample, we counted the number of individual reads

mapped within 50 bp of each of the 212,997 target regions

included in the SureSelect Human All Exon 50 Mb Kit. Then, the

coverage per sample was normalized to Reads mapped Per

Kilobase of probe and per Million of reads mapped (RPKMs)

taking into account the probe length and the total number of reads

mapped within the target regions with mapping quality $30. To

create a reference exome to be compared with individual data, we

calculated for each probe the average RPKMs obtained from 31

female individuals for the analysis of the X chromosome data, and

from 86 different individuals for the analysis of tumor CNAs in

autosomes. The log2 ratio of tumor RPKMs to normal RPKMs

from the same patient was obtained for each exon and processed

using the DNAcopy package [35]. Log2 ratios were smoothed by

DNAcopy and CNAs were detected using default values. Tumor

CNAs were defined as those regions containing a minimum of six

exons, with an average log2 ratio below 20.3 or above 0.3 as

determined by DNAcopy. To remove false positives due to the

presence of consecutive exons with variable capture efficiency, we

performed the following procedure: i) for each exon included in

the CNA region we computed the average RPKMs in all 86

normal samples (RPKMi
N), as well as the standard deviation

(SDi
N) for the RPKMs of that exon in normal samples; ii) then, the

absolute difference between the RPKMs for that exon in the

tumor sample (RPKMi
T) and the average RPKMs for that exon in

normal samples (RPKMi
N) was divided by the standard deviation

obtained from the normal samples (SDi
N); iii) for each potential

CNA the average deviation of all exons included in that region is

required to be at least 1.5.
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This allows to determine the deviation of tumor RPKMs from

the average of normal samples. Those regions in which the

average deviation was less than 1.5 SDs from the average of

normal samples, and likely representing regions in which the

capture efficiency of those exons was highly variable between

samples, were removed. For the analysis of CNAs using the

ExomeCNV package [28] we used the default parameters, and

DNACopy settings were set to the same ones used before to allow

a direct comparison of results. Tumor CNAs were defined as those

regions containing a minimum of six exons, with an average log2

ratio below 20.3 or above 0.3. A CNA was described as supported

by aCGH data when at least two exons were included within the

boundaries obtained by aCGH analysis, and the copy number

status (either loss or gain) was identical between both procedures.

Comparative genomic hybridization arrays
Copy number analysis were performed in all samples hybrid-

izing 1 mg of the test DNA and 1 mg of reference DNA on

SurePrint G3 Human CGH Microarray 1 M (Agilent Technol-

ogies, Santa Clara, USA). The DNA samples hybridized were

from the same preparations used for exome capture and

sequencing. Raw data were generated from scanned images using

Agilent Feature Extraction Software (v10.7). Log2 ratios of

background corrected values for tumor over normal DNA were

calculated. Post-hybridization quality control reports included

DLRspread values, signal intensity, array with DLRspread over

0.3 was considered as low quality and consequently discarded.

Detection of CNA was performed using the Aberration Detection

Method-2 (ADM-2) algorithm implemented within the Agilent’s

genomics suite Genomic Workbench v5.0 with a threshold of 6.5

and a minimum of 5 consecutive probes. T-cell receptor regions

rearranged in some non-tumor cells that might lead to the

identification of false positive gains in the tumor were filtered for

subsequent analysis.

Results

Detection of changes in copy number using exome
sequencing

In exome sequencing, a DNA sample is captured by specific

probes and then subjected to NGS, resulting in the generation of

sequence reads corresponding to the target regions. Therefore, if

there is a difference in copy number between two samples, the

number of reads derived from that particular region should be

different for both samples. However, the introduction of ampli-

fication steps during sample preparation and the limited number

of bait probes which are added to the capture reaction could result

in the saturation of the capturing probes, thereby hampering the

identification of CNAs. In addition, the number of reads produced

by different probes or in different experiments is highly variable

due to several factors: i) the efficiency of the capturing procedure

for a specific probe; ii) the sequencing efficiency for that particular

region; iii) the total number of reads sequenced; and iv) the size of

the target region. The first two factors are inherent to the

technologies used for capturing and sequencing. However, they

should not affect the comparison among samples, as probes with

poor capturing efficiency or regions difficult to sequence should be

Copy Number Estimation from Exome Sequencing
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equal for all samples processed using the same capturing protocol

and sequencing technology. Regarding the last two factors, they

can be easily normalized using a similar solution to that used for

RNAseq experiments [36]. Thus, for any given probe the number

of reads mapped can be expressed as RPKMs (Reads mapped Per

Kilobase of probe and per Million of reads mapped).

Taking into account these considerations, and in order to

determine whether exome sequencing data could be used to

identify copy number changes between different samples, we first

checked whether read coverage in the X chromosome was

different between normal samples derived from males (one copy)

and females (two copies). We counted all sequence reads mapped

in the target regions 650 bp with a mapping quality of more than

30. Following this scheme, we compared the average RPKMs for

55 males and 31 females. We found that the coverage (RPKMs) in

the X chromosome (excluding the pseudoautosomal regions) was

12.1160.19 for males and 23.460.57 for females, very close to the

1:2 ratio expected. In contrast, the coverage in autosomes was

almost identical between both groups (20.8060.12 vs.

20.3960.11). These results confirm previous studies [28–32]

showing that the analysis of exome data can be used to detect

chromosomal deletions in heterozygosity with high accuracy.

To investigate the minimum number of probes necessary to

detect chromosomal deletions using exome sequencing data, and

due to the variability of the exon capture procedure during sample

preparation, we empirically determined this parameter by

comparing real data from males and females. We selected a total

of 6,588 exons that were located in the X chromosome (excluding

the pseudoautosomal regions) and were efficiently captured by this

technology, as they had at least a minimum of two RPKMs in

females. For each individual exon, we calculated the average

RPKMs obtained in females, and used this value as the reference

RPKMs for that particular exon in individuals with two copies of

the X chromosome. Then, for each of the 566,568 exons analyzed

in 86 individuals we calculated the ratio of RPKMs for each

individual exon versus the reference value calculated before. There

was a marked difference in this ratio between males and females

for most individual exons (Figure 1A). In fact, 94% of exons from

males had RPKM ratios which were at less than 21.5 SDs from

the female average for that particular exon, while only 6% of

exons from females were at less than 21.5 SDs. The sensitivity to

detect this change in copy number increased as a larger number of

consecutive exons were used, while the percentage of false positives

decreased (Figure 1B). In this sense, we determined that by using a

minimum of six exons, 99.29% of male loci were at less than 21.5

SDs from the female average, and 99.43% of female loci were at

more than 21.5 SDs, suggesting that these parameters could be

used to detect copy number changes with high sensitivity and a

low false discovery rate.

Identification of tumor-specific CNAs using exome
sequencing data

An important field for the application of technologies allowing

the identification of CNAs is cancer genomics, as a large number

of somatic mutations affecting oncogenes or tumor suppressor

genes involve either amplification or deletion of the corresponding

loci. To determine whether chromosomal gains or losses as well as

smaller CNAs could be detected in tumor samples using exome

sequencing data, we studied 86 CLL samples known to have

changes in copy number by aCGH [8,37]. CLL represents an

interesting model because this tumor type usually has very few

CNAs [8], what allows an accurate estimation of the number of

false positive calls by novel approaches as the one described in this

study. For this aim, we developed a strategy to identify CNAs

using exome data that we called exome2cnv (Figure 2). Thus, for

each single capturing exon we compared the log2 ratio of the

RPKMs obtained from the tumor sample to the RPKMs obtained

from the normal sample, and applied a circular binary segmen-

tation algorithm (DNAcopy) to identify regions potentially lost or

gained in the tumor sample [35]. To reduce the noise introduced

due to exons with poor capturing efficiency, we selected only those

exons having at least two RPKMs in the normal sample from the

same patient (.89% of the exons). For all those cases, in addition

to exome data we also had available aCGH data for tumor and

normal samples (see Material and Methods), what allowed us to

compare the results of the exome2cnv approach in terms of

sensitivity and false positives.

By comparing exome data from the tumor sample with its

matched non-tumor cells we were able to detect several somatic

CNAs affecting autosomes which were also found using aCGH

data (Figure 3 and Tables S1 and S2). They involved homozygous

or heterozygous deletion of large chromosomal regions (in

chromosomes 6, 11, 13, 17 or 20), gains of whole chromosomes

(chromosome 12) or large chromosomal regions (in chromosomes

2, 3, and 4), as well as other smaller regions including deletion of

the RFX7 gene or deletion of six exons of SLC9A9. In addition, we

detected both homozygous and heterozygous deletions of a small

fragment of chromosome 13q14 frequently deleted in CLL tumors

[8,38,39] (Figure 3 and Figure 4) and resulting in the deletion of

two microRNAs (miR15a and miR16-1) frequently lost in this

pathology [38]. Trisomy of chromosome 12, a frequent alteration

present in CLL tumors, was also identified using exome2cnv.

Together, these results show that this procedure allows the

identification of most types of CNAs that might be present in

cancer samples, including heterozygous and homozygous deletions

as well as amplified genomic regions.

Comparison between exome2cnv and aCGH data
To estimate the sensitivity and the number of false positives of

this approach, we compared the data obtained by exome2cnv with

that obtained by aCGH. Thus, using the exome data we identified

387 CNAs out of the 549 detected by aCGH (70%). However, as

previously shown in Figure 1B and due to the variability of exon

capture, it would be necessary to combine at least six exons to

make a reliable CNA call. Using this cutoff for aCGH regions,

only 44 out of the 162 aCGH regions not detected by exome2cnv

fulfilled this criterion, suggesting that the exome2cnv sensitivity to

detect tumor-specific CNAs is more than 89%. In agreement with

these results, analysis of these 86 tumor-normal pairs with a

previously described method [28] resulted in the identification of

22,423 potential CNAs, with more than 18,000 of them

corresponding to single-exon CNAs which were not supported

by aCGH data. These calls likely constitute false positives due to

differences in the capturing efficiency or to a batch effect. In fact,

the introduction of a minimum number of six consecutive exons to

make a call still resulted in more than 80% of calls not being

supported by aCGH data. In this regard, a detailed examination of

these calls revealed than in most cases they were supported by

consecutive exons showing either small RPKMs, high GC content

and high variability between different samples, suggesting poor

reproducibility in the capture efficiency. Calls reporting a putative

gain, an infrequent event in CLL with the exception of

chromosome 12 trisomy, were particularly sensitive to this

variability issue, with more than 95% of the calls not being

supported by aCGH data. Together, these results reinforce the

importance of establishing specific parameters affecting the

performance of exome sequencing-based CNA estimation, such

as minimum number of exons, and to take into account the

Copy Number Estimation from Exome Sequencing
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RPKM variance across normal samples, which are used by the

exome2cnv method described herein.

It is interesting to notice that as CLL cells derive from B-

lymphocytes, which had undergone rearrangement of immuno-

globulin genes during B-cell maturation, we were able to detect in

almost all analyzed cases focal homozygous or heterozygous

deletions in chromosomes 2p11, 14q32.33 and 22q11.22, where

immunoglobulin genes are located (Figure 3). However, when

these regions were omitted from the analysis, we obtained the

same sensitivity, indicating that exome2cnv has enough sensitivity to

detect most oncogenic CNAs. Furthermore, when we compared

the number of exons included in CNAs affecting subchromosomal

regions between the exome2cnv approach and aCGH data, we

obtained a high correlation between both approaches (r2 = 0.99)

(Figure S1), suggesting that CNA boundaries detected by both

methods are highly similar in terms of exons involved in the copy

number change.

On the other hand, we found that more than 86% of the CNAs

detected by exome2cnv overlapped with CNAs detected by aCGH

(819/947). Although it is possible that some of the 128 regions

detected specifically by the exome2cnv approach might constitute

false positives, manual inspection of the aCGH data for these

regions revealed that at least 16 of them could be considered

CNAs present in a subpopulation of CLL cells (Figure 3 and Table

S2 and Figure S2). Furthermore, another 37 of them were located

in loci containing immunoglobulin genes and putatively represent-

ing real CNAs. Together, these data show that using the minimum

threshold of six exons empirically determined before, more than

92% of identified regions might constitute bona fide somatic CNAs.

Discussion

Exome sequencing, using target capture strategies followed by

NGS, is becoming a routine technique for the study of somatic

mutations in tumor samples as well as for the identification of the

genetic alterations responsible for numerous hereditary diseases

[9,14,15,18,40]. Due to the target capture approach, exome

sequencing analysis has limitations to uncover the different types of

variations present in a cancer genome, and its use is mostly limited

to the study of substitutions and small indels. The results presented

herein demonstrate that exome sequencing data can be also used

to estimate copy number alterations with high accuracy, allowing

the identification of somatic CNAs in tumor/normal samples from

cancer patients.

The ability to detect CNAs using exome sequencing data has

been recently proposed [28–32]. However, the real utility of this

approach for the study of cancer exomes requires the analysis of a

Figure 1. Estimation of copy number from exome sequencing data in the X chromosome of males and females. For each individual
exon we calculated the coverage ratio as the ratio of RPKMs for that exon divided by the average RPKMs for that particular exon in females. (A)
Distribution of ratios for more than 566,000 individual exons from either males (blue) or females (red). Effect of the number of consecutive exons
considered for copy number estimation in sensitivity and false discovery rate. (B) For each different number of exons (numbers close to dots), the
sensitivity is expressed as the fraction of male regions detected as copy number one when compared to the female average for the same regions.
False discovery rate was calculated as the fraction of female regions detected as copy number one when compared to the female average for the
same regions.
doi:10.1371/journal.pone.0051422.g001
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larger number of primary tumors. In this study, we have used a

liquid capture technique and the target regions which were

initially designed by the International Cancer Genome Consor-

tium (ICGC) [41] to analyze CNAs in a total of 86 primary CLL

cases using exome sequencing data. We performed a side by side

comparison with traditional CGH technologies in order to

determine the sensitivity of this novel approach. The results

obtained in this initial approach demonstrate that exome2cnv has the

Figure 2. Scheme depicting the strategy used by exome2cnv for detecting CNAs using exome coverage data for a tumor sample and
a normal sample from the same patient. Normalized coverage (RPKMs) is determined for each individual capturing exon, and the ratio tumor/
normal is calculated for each probe. Genome-wide analysis of ratios allows the identification of regions having somatic copy number alterations in
the tumor (red lines).
doi:10.1371/journal.pone.0051422.g002

Figure 3. Comparison of CNAs obtained by exome2cnv and aCGH in 86 CLL cases. CNAs were classified in four different classes represented
by different colors in the figure. CNAs detected by both exome2cnv and aCGH approaches are labeled in yellow; those detected specifically by
exome2cnv are shown in green; CNAs only detected by aCGH are shown in red; and CNAs detected by exome2cnv and considered as subclones by
aCGH or corresponding to immunoglobulin regions are shown in purple. Regions recurrently altered in CLL are indicated on top.
doi:10.1371/journal.pone.0051422.g003
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potential to identify most CNAs affecting exon-containing regions.

Based on our data, the exome2cnv approach would allow the

identification of either long CNAs containing hundreds of genes,

or small regions affecting up to a single gene or a single exon. In

addition, we have determined the proportion of false positives of

this approach, as most researchers would like to know how many

regions identified by exome2cnv are bona fide CNAs, as well as the

parameters affecting the number of false positives. We have shown

that similar to other methods, there is a balance between sensitivity

and false discovery rate, and by increasing the number of exons to

call a CNA it is possible to reduce the number of false positives.

Our procedure differs from other previously described methods in

two basic aspects. First, we empirically determine a minimum

number of exons to make a CNA call and only exons with a

minimum coverage in the normal sample are used in the analysis.

All described methods for the identification of somatic CNAs from

exome-sequencing data, including the one described here, are able

to detect CNAs affecting a single exon. However, due to the

different efficiency in capturing of specific probes or sequencing of

certain genomic regions, side by side comparison of two samples

processed independently might lead to the erroneous classification

of numerous exons as CNAs. In fact, a direct comparison of exon

coverage using previously reported methods results in the

identification of more than 200 single-exon CNAs per case not

supported by aCGH data, suggesting that they constitute false

positives. In our method this effect can be substantially reduced by

using only exons with a good capture efficiency, defined here as

more than 2 RPKMs, and by requiring at least a minimum

number of consecutive exons to make a call, established here as 6

or more consecutive exons. The second difference with previously

reported methods is the use of coverage data from normal samples.

In fact, a common problem during the analysis of samples

Figure 4. Comparison between CNAs detected by exome2cnv and aCGH. Grey dots represent log2 ratios of tumor/normal probe intensities
from aCGH, while black dots show log2 ratios of tumor/normal from exome sequencing data. The local averages determined for exome data (red
lines) and aCGH data (green lines) are shown. (a) Homozygous deletion of a small region of chromosome 13 detected by both approaches. (b)
Detailed view of the same chromosomal region shown in (a).
doi:10.1371/journal.pone.0051422.g004
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captured or sequenced at different times or in different centers is

the inter-sample variability in capture efficiency in specific

regions/probes. Although this variability has a minor effect in

the identification of point-mutations and/or indels, it represents a

common problem for the identification of CNAs, resulting in the

identification of many false positives [28]. In order to reduce the

false discovery rate of this method, we have introduced a step that

takes into account not only the different coverage between tumor

and normal samples, but also the coverage distribution along all

non-tumor samples available. Only those regions supported by

exons whose coverage differ more than 1.5 SDs from the average

coverage of those exons in non-tumor samples are considered as

CNAs. Using this approach, we could confirm that more than

92% of the CNA regions identified using exome2cnv were also

detected using CGH arrays, strongly supporting the utility of this

method for the analysis of CNA in cancer exomes. Together, these

filtering steps are able to reduce the number of false positives CNA

regions identified by exome2cnv, while maintaining a sensibility of

more than 89% to detect CNAs involving at least six exons.

Although a lower number of exons could be used, this would likely

increase the number of false positives. This approach can benefit

the identification of somatic CNAs in tumor/normal samples from

cancer patients, as they usually involve amplification or deletion of

chromosomal regions containing several genes, facilitating their

detection by exome2cnv approach. In fact, the sensibility to detect

CNAs involving whole chromosomes or chromosome arms is

almost 100%.

Despite the overall performance of the exome2cnv approach for

the identification of tumor-specific CNAs, an inherent limitation of

this approach when compared to aCGH data is the accurate

determination of the CNA boundaries. Thus, the distribution of

aCGH probes in high resolution arrays allows a precise estimation

of CNA boundaries within kilobase resolution. However, the

uneven distribution of exons throughout the genome results in less

accurate boundaries in terms of genomic distances, but in a highly

accurate determination of genes and exons involved in the copy

number alteration. In this regard, an alternative approach that

might be considered by the manufacturers of target-capture

reagents is the introduction of additional probes in exon-poor

regions. These extra probes would not help in the identification of

substitutions in coding regions, but would improve the estimation

of CNA length and boundaries.

Another aspect to take into consideration when using primary

tumors is the presence of normal cell contamination in the tumor

sample. Although the tumor samples used in this study had more

than 95% tumor cell content, some of the CNAs detected by our

method appeared to be present in a subpopulation of tumor cells.

These data indicates that exome2cnv is suitable for the detection of

CNAs in complex populations, as those present in most solid

tumors, in which stromal cell contamination is usually present.

Moreover, it is important to point out that copy number changes

in the tumor also complicate the identification of somatic

mutations, and a precise estimation of tumor copy number is

necessary in order to adjust mutation calling algorithms [42].

In summary, we show that copy number changes can be

accurately determined using exome sequencing, extending the

application of this widely used technique for the study of human

disease, and allowing the identification of variations outside of

target regions used for capture. This application is of particular

interest to the field of cancer genomics, as CNAs represent an

important mechanism of mutation in most cancer types. The

analysis of a large number of primary tumor exomes and aCGH

data has allowed the first determination of the sensitivity and false

discovery rate of this approach. Together, the procedure outlined

here can be used to rapidly analyze existing datasets without

additional experimental work, what will facilitate the identification

of novel CNAs implicated in cancer.

Supporting Information
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