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Global decrease of serotonin-1A receptor binding after
electroconvulsive therapy in major depression measured by PET
R Lanzenberger,1, P Baldinger1, A Hahn1, J Ungersboeck2,3, M Mitterhauser2,3, D Winkler1, Z Micskei4, P Stein1, G Karanikas2,
W Wadsak2,3, S Kasper1 and R Frey1

Electroconvulsive therapy (ECT) is a potent therapy in severe treatment-refractory depression. Although commonly applied in
psychiatric clinical routine since decades, the exact neurobiological mechanism regarding its efficacy remains unclear. Results
from preclinical and clinical studies emphasize a crucial involvement of the serotonin-1A receptor (5-HT1A) in the mode of
action of antidepressant treatment. This includes associations between treatment response and changes in 5-HT1A function and
density by antidepressants. Further, alterations of the 5-HT1A receptor are consistently reported in depression. To elucidate the
effect of ECT on 5-HT1A receptor binding, 12 subjects with severe treatment-resistant major depression underwent three
positron emission tomography (PET) measurements using the highly selective radioligand [carbonyl-11C]WAY100635, twice
before (test--retest variability) and once after 10.08±2.35 ECT sessions. Ten patients (B83%) were responders to ECT. The
voxel-wise comparison of the 5-HT1A receptor binding (BPND) before and after ECT revealed a widespread reduction in cortical
and subcortical regions (Po0.05 corrected), except for the occipital cortex and the cerebellum. Strongest reductions were found
in regions consistently reported to be altered in major depression and involved in emotion regulation, such as the subgenual
part of the anterior cingulate cortex (�27.5%), the orbitofrontal cortex (�30.1%), the amygdala (�31.8%), the hippocampus
(�30.6%) and the insula (�28.9%). No significant change was found in the raphe nuclei. There was no significant difference in
receptor binding in any region comparing the first two PET scans conducted before ECT. This PET study proposes a global
involvement of the postsynaptic 5-HT1A receptor binding in the effect of ECT.

Molecular Psychiatry (2013) 18, 93--100; doi:10.1038/mp.2012.93; published online 3 July 2012

Keywords: antidepressant; [carbonyl-11C]WAY100635; electroconvulsive therapy; major depression; positron emission tomography;
serotonin-1A receptor

INTRODUCTION
Selective serotonin reuptake inhibitors (SSRIs) are the first line
treatment for major depression. Still, up to 60% of the treated
patients fail to achieve full symptomatic remission after an adequate
trial with SSRIs,1,2 while 30% are even rated as treatment-refractory.3

Therapy-refractory depression is defined by the failure of at least
two trials with antidepressants of a different substance class for a
minimum period of 1 month and in a sufficiently high dosage
(equivalent to 150 mg of tricyclic antidepressants).4,5 For these
patients electroconvulsive therapy (ECT) is a rapidly acting, highly
effective treatment option,4--8 as ECT leads to a significantly
greater reduction of the Hamilton Rating Scale for Depression
(HAM-D) than treatment with SSRIs in patients with major
depressive episodes.9 Moreover, ECT has been shown to be more
effective in delusional depression, psychosis and catatonic
conditions.10 ECT is frequently referred to as a more precarious
and risky treatment compared with antidepressants, as it is
performed under short anesthesia while generating a generalized
epileptic seizure11 and may be accompanied by cognitive
impairment, such as deficits in working memory during the early
post-treatment period.12 Although ECT represents an effective
treatment option, when patients fail to respond sufficiently

to SSRI or other antidepressants, studies emphasize that ECT
have an even better response rate when conducted on subjects
who did not yet achieve a state of treatment resistance.13,14

ECT was successfully used in psychiatry since more than 70
years, however, its therapeutic mechanism of action is unclear.
Neuroimaging studies reported unspecific changes in the brain
glucose metabolism and cerebral blood flow (rCBF). Preclinical
investigations using autoradiography with [14C]2-deoxyglucose in
rats undergoing electroconvulsive shocks (ECS) demonstrated a
rapid reduction of the brain glucose metabolism after ECS in the
nucleus accumbens.15 Positron emission tomography (PET) studies
with [18F]fluorodeoxyglucose revealed a significantly reduced
postictal glucose utilization in depressive patients.16--19 Both
glucose metabolism and rCBF, visualized using the radioligands
[18F]fluorodeoxyglucose and [15O]H2O, respectively, decreased in
frontal cortical areas after 6--11 bilateral ECT sessions in patients.20

Likewise Prohovnik et al.21 noted that bilateral ECT results in
bilateral frontal CBF reduction, where right unilateral treatment
leads to a greater decrease of CBF in the right hemisphere. These
results could not be directly related to the therapeutic efficacy of
ECT, as acute effects of the generalized seizure itself on glucose
metabolism and CBF could not be excluded. Furthermore, a
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proposed correlation between the reduction in HAM-D scores and
cerebral metabolic rates of glucose could not be confirmed.19

Regarding regional CBF, Takano et al. showed a decrease in the
medial frontal cortex and the anterior cingulate cortex (ACC) in six
depressive patients after ECT using [15O]H2O, while rCBF increased
in subcortical regions, such as the thalamus.20 However, both PET
methods provide rather unspecific topological data, thus there is
an urgent need to investigate specific changes in neurotransmis-
sion and dedicated molecular targets with PET in patients treated
with ECT.

The serotonergic neurotransmitter system has been subject to
intense research in the last decades regarding the pathogenesis
and treatment of affective and anxiety disorders.2,22 The effec-
tiveness of pharmacological treatments targeting key structures of
the serotonergic system, mainly the serotonin transporter and
distinct serotonin receptors, supports the assumption that altered
serotonin neurotransmission is causally associated with the
manifestation of clinical symptoms.23,24 Moreover, serotonergic
alterations have been repeatedly described in animal models of
depression25 and in clinical studies with depressed patients.26,27 In
recent years, the serotonin-1A receptor subtype (5-HT1A) has been
extensively investigated with respect to affective disorders as it
represents a main inhibitory serotonergic receptor of at least 16
known receptor subtypes.28,29 The presynaptic 5-HT1A receptor
that regulates autoinhibition of serotonergic firing and serotonin
release is localized on serotonergic neurons of the midbrain raphe
region. The postsynaptic 5-HT1A receptor that mediates inhibition
of excitation by serotonin is mainly expressed on glutamatergic
and GABAergic neurons.29,30 The 5-HT1A receptor density is
highest in the hippocampus, the cingulate cortex (especially in
the subgenual part of the anterior cingulate), the orbitofrontal
cortex (OFC), the insula, the amygdala, and in the midbrain raphe
region,30 which implies that the regional distribution of the 5-HT1A

concentrates in the brain areas with strong involvement in
emotional and affective processes.31 Postmortem data32 and
pharmacological challenge studies33 pointed toward altered 5-
HT1A receptor density in depression. PET studies using the highly
specific radioligand [carbonyl-11C]WAY100635 confirmed altera-
tions of the 5-HT1A receptor binding in patients suffering from
depression34,35 and anxiety disorders.22,36,37 Most human PET
studies have reported a widespread reduction of 5-HT1A receptor
binding in patients compared to healthy individuals,28,38 with
exception of the studies published by Parsey et al.39 In a cross-
sectional study Parsey et al.39 showed higher 5-HT1A receptor
binding in antidepressant-naı̈ve depressive subjects compared
with both patients previously exposed to antidepressants and
healthy controls across investigated brain regions. This reduction
of the 5-HT1A BP induced by medication is consistent with the
results of our longitudinal PET study in anxiety patients,
demonstrating a further reduction of 5-HT1A receptor binding
potential (BPND) in the hippocampus, the subgenual part of the
ACC and the posterior cingulate cortex after 12 weeks of
treatment with the SSRI escitalopram.2

According to the findings described above, several preclinical
studies focused on the influence of ECT on the serotonergic
system. Goodwin et al.40 showed a reduction of 5-HT1A receptor-
mediated effects after repeated ECS and after repeated adminis-
tration of the antidepressant drugs zimeldine and desimpramine
in rats, underlining the involvement of 5-HT1A receptors in
the mechanisms of action of both treatment approaches. After
administration of six ECS, microiontophoretic application of
serotonin markedly enhanced the responsiveness of hippocampal
pyramidal neurons in rats compared with controls undergoing
subconvulsive shocks.41 Moreover, these effects were associated
with postsynaptic 5-HT1A receptors as neuronal responsiveness to
5-methoxydimethyltryptamine, a direct agonist of postsynaptic
5-HT1A receptors, was increased in ECS-treated animals.41 Further
preclinical experiments using 8-OH-DPAT suggested reduced

mRNA expression and postsynaptic-binding site densities of the
5-HT1A receptor in the hippocampus.33,42 These results point toward
specific regional effects of ECS on 5-HT1A receptors.42--44

Taken together, numerous preclinical findings show consider-
able effects of ECS on serotonin receptors. Also, several studies
in humans have demonstrated the involvement of the 5-HT1A

receptor in depression and antidepressant drug treatment.
Therefore, this study aims to determine the influence of ECT on
5-HT1A receptor binding in treatment-resistant patients suffering
from major depression using PET and the radioligand [carbonyl-
11C]WAY100635.

MATERIALS AND METHODS
Subjects and study design
Altogether, 18 subjects with severe unipolar depression were included in
this ECT study after failure of treatment with at least two adequate trials
with antidepressants of different pharmacological classes.5 The Structured
Clinical Interviews for DSM-IV (SCID) and the 17-item HAM-D (HAM-D X23)
were used for diagnosis and estimation of severity of illness. The parti-
cipants were recruited through the Department of Psychiatry and
Psychotherapy, Medical University of Vienna, comprising the only ECT
center in the area of Vienna. Subjects had to fulfill the inclusion criteria for
ECT, including an internistic and anesthesiological approval (electrocardio-
graphy, thoracic X-ray, laboratory measurements and physical examina-
tion), as well as no concomitant major neurological illness, current
substance abuse or a history of mania, schizophrenia or schizoaffective
disorder. Treatment with drugs targeting directly the 5-HT1A receptor, for
example, Aripiprazol, Risperidone, Ziprasidone, Clozapine, Chlorpromazine,
Amitryptyline, Nefazodone, Trazodone, Buspirone, Pindolol (Kio1000 nmol),45

within 1 month prior inclusion was an exclusion criterion. For ethical reasons,
antidepressant, antipsychotic and mood-stabilizing medication had to be
in steady state for at least 10 days before the baseline PET measurement
(PET1) and was continued during the ECT period. Mean time ±s.d. of
steady state was 25.5±19.3 days. Benzodiazepines were given in variable
dosages and therefore steady-state conditions were not fulfilled. An
overview of psychotropic drugs is given in Table 1. Due to technical
reasons (PET data reconstruction) two patients had to be excluded from
the analysis, while four more patients were dropouts because not all three
planned PET scans could be conducted adequately (phobic reaction, failure
of radioligand synthesis). Therefore, 12 patients, including 8 women, with a
mean age±s.d. of 47.83±11.12 years were enrolled in the final analysis.
All subjects provided written informed consent after detailed explanation
of the study by an experienced psychiatrist. The participants were
reimbursed for participation. The study was approved by the Ethics
Committee of the Medical University of Vienna and the General Hospital of
Vienna.

In this longitudinal PET study, the patients underwent three PET mea-
surements using the highly selective and specific radioligand for the
5-HT1A receptors, [carbonyl-11C]WAY100635.2,35 Two PET scans (PET1 and
PET2) were carried out before the first ECT session within 1 week, that is,
during steady state of the prescribed medication to determine the test--
retest variability under medication. The third PET scan (PET3) was conducted
within 7 days after completion of the ECT series. To assess the effect of ECT
on depression severity, HAM-D scaling was applied repetitively, that is, at
baselines before the start of ECT (PET1 and PET2) and after completion of
ECT (PET3) (see Table 2).

Electroconvulsive therapy
ECT was conducted using the Thymatrons System IV device (Somatics,
LLC., Lake Bluff, IL, USA) according to the standard operating procedures of
the Department of Psychiatry and Psychotherapy, based on international
guidelines and consensus statements for ECT treatment.8,9 Briefly, the
patients were anesthesized (methohexital) and given muscle relaxants
(succinylcholine) before each of the ECT stimuli, which were carried out
three times a week. Five ECT were provided unilaterally using an electrode
placement in the right frontotemporal position. A bilateral treatment
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approach was used in patients with minimal or no improvement of the
depressive symptoms, according to the HAM-D score, from the sixth ECT
session onward (n¼ 8). Seizure duration was determined routinely by
electroencephalography, whereas the stimulus intensity was chosen
according to the titration at the first treatment.46 At the first treatment
of each patient, repeated stimuli of increasing intensity were administered
until a seizure occurred, where the lowest stimulus intensity able to induce
a seizure was defined as the threshold. In the following treatments the
charge was set at three times the seizure threshold. The intensity was
further elevated in the absence of seizure activity or in case of inadequate
seizures. In our sample, the minimum of administered ECT was four and
the maximum was 13 sessions (see Table 2 for details).

Positron emission tomography
All PET measurements were carried out at the Department of Nuclear
Medicine, Medical University of Vienna, using a Siemens Biograph 64
TruePoint PET-CT scanner (Siemens Medical, Erlangen, Germany) as
described previously.22 Briefly, the patients’ heads were placed into the
scanner parallel to the orbitomeatal line with a laser beam system. Head
movement was minimized by a polyurethane molded cushion and straps
around the forehead and chin. The protocol started with a computed
tomography attenuation scan, followed by three-dimensional dynamic
emission measurement and simultaneous injection of the radioligand
[carbonyl-11C]WAY100635 (mean injected dose±s.d.¼ 224.82±47.62 MBq).

The synthesis of the radioligand was carried out as published previously.47

Scans lasted for 90 min, acquired in list-mode and reconstructed into 23
consecutive frames (15� 1 min, 5� 5 min, 1� 10 min, 2� 20 min). For
image reconstruction a Siemens standard algorithm was used (TrueX,48

‘HD-PET option’), which includes modeling of the scanner’s point spread
function. Such point spread function reconstruction methods have been
shown to improve neuroreceptor quantification through reduction of partial
volume effects.49 The final images comprised a uniform spatial resolution
of 2 mm full-width at half-maximum 1 cm next to the center of the field of
view (matrix 128� 128, 109 slices).

Data preprocessing and 5-HT1A quantification
PET scans were corrected for head motion and normalized to the stereo-
tactic space defined by the Montreal Neurological Institute with SPM8
(Wellcome Trust Centre for Neuroimaging, London, UK; http://www.fil.
ion.ucl.ac.uk/spm/) using a study- and tracer-specific template.50--52 The
normalization procedure was optimized similar to a recently proposed
method for longitudinal data analysis.53 For each patient, the second and
third PET scans were individually coregistered to the first one. The mean of
the three PET scans then served as a template to align all three scans in a
second coregistration step. Afterwards, the coregistered scans were
averaged again and the mean image was used to estimate the normal-
ization transformation matrix, which was finally applied to the individual
(coregistered) PET scans. SPM8 standard parameters were applied for all

Table 2. Demographic and treatment data of the study sample given before (PET1, PET2) and after ECT (PET3)

Demographic and treatment data in 12 patients Minimum Maximum Mean s.d. T P

Age (years) 22 63 47.83 11.12 --- ---
Sex (M/F) 4M, 8F --- --- --- --- ---
Total ECT sessions 4 13 10.08 2.35 --- ---
Unilateral ECT sessions (n¼ 12/12 patients) 4 12 6.58 2.61 --- ---
Bilateral ECT sessions (n¼ 8/12 patients) 0 8 3.5 3.06 --- ---
HAM-D before ECT (day of PET1) 23 36 28.53 4.24
HAM-D before ECT (day of PET2) 17 32 24.75 3.96 --- ---
HAM-D after ECT (day of PET3) 2 14 7.17 3.95 --- ---
HAM-D before vs after ECT --- --- 17.58 6.65 9.16 o0.01

Abbreviations: ECT, electroconvulsive therapy; HAM-D, Hamilton Rating Scale for Depression; PET, positron emission tomography.
A significant reduction of HAM-D values was found after ECT, testifying for an overall successful treatment response. In some patients the HAM-D17 scores
obtained at screening visit (X23 for meeting the inclusion criteria) were higher than those at PET2, pointing toward a subtle therapeutic effect of the involved
medical care.

Table 1. Medication: antidepressant, antipsychotic, mood-stabilizing and tranquilizing medication given during study duration

Patients
ID

Antidepressants
Antipsychotics Benzodiazepines Mood-stabilizers

SSRI SNRI NDRI NAssA

1 --- --- --- --- Olanzapine --- Lorazepam Zolpidem --- ---
2 Citalopram Venlafaxine --- Mirtazapine --- --- Alprazolam Zolpidem Lamotrigine ---
3 --- --- --- Mirtazapine Prothipendyl --- Lorazepam Zolpidem --- ---
4 --- --- --- Mirtazapine Prothipendyl --- Lorazepam --- --- ---
5 --- Venlafaxine --- --- Prothipendyl Amysulpride Lorazepam Zolpidem --- ---
6 --- Milnacipran --- --- Prothipendyl --- Lorazepam --- Lamotrigine Trileptal
7 --- Duloxetine --- Mirtazapine --- --- --- --- Pregabalin ---
8 Fluoxetine --- --- --- --- --- Lorazepam Triazolam --- ---
9 Escitalopram --- Bupropion --- Prothipendyl --- Lorazepam Alprazolam --- ---
10 --- Duloxetine Bupropion --- --- --- --- --- --- ---
11 Fluoxetine --- --- Mirtazapine Olanzapine --- Zolpidem --- --- ---
12 --- Duloxetine --- Mirtazapine --- --- --- --- --- ---

Abbreviations: NAssA, noradrenergic and specific serotonergic antidepressant; NDRI, norepinephrine-dopamine reuptake inhibitor; SNRI, serotonin--
norepinephrine reuptake inhibitor; SSRI, selective serotonin reuptale inhibitor.
The doses were chosen individually by experienced psychiatrists and never exceeded the recommended maximum. The medication was in steady-state over
10 days before the baseline positron emission tomography (PET) measurement (PET 1) and was left unchanged till the end of the study except for
benzodiazepines, which could be provided in low doses as needed by the patients.
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preprocessing steps, except for the realignment (quality¼ 1) and spatial
normalization (affine regularization¼ average-sized template).

Quantification of the 5-HT1A BPND
54 was done in PMOD 3.3 (PMOD

Technologies, Zurich, Switzerland) as described previously.55 Briefly, the
multilinear reference tissue model 2 (MRTM256) was applied to obtain
voxel-wise 5-HT1A receptor BPND. Here, the clearance rate of the radiotracer
from the reference region to plasma (k20) was calculated from the insula
and cerebellum (that is, receptor rich and poor region56,57). These regions
of interest were taken from an automated anatomical labeling-based
atlas,52,58 whereas the cerebellar gray matter (excluding vermis) served as
reference region due to negligible-specific receptor binding.59

Statistical analysis
To evaluate the difference in 5-HT1A binding across time, we conducted a
voxel-wise repeated measures ANOVA in SPM8 with subjects and time
(that is, PET scans 1, 2 and 3) as between- and within-subject factors,
respectively. Following an overall F-test, subsequent post-hoc t-tests were
carried out between the three PET scans. Hence, we aimed to assess both
test--retest variability in this clinical population during steady-state
medication (PET1 vs PET2) and ECT-induced effects on 5-HT1A binding
(PET2 vs PET3). To test for potential confounders, further interaction
analyses were carried out between treatment-induced effects on 5-HT1A

BPND (PET2 vs PET3) and sex, ECT mode (uni/bilateral), treatment outcome
(remitter/responder/non-responder) and anticonvulsive medication.
Furthermore, we investigated the effects of the covariates age and the
number of ECT sessions. Finally, voxel-wise correlation was used to investi-
gate the association between changes in 5-HT1A binding and HAM-D
scores before and after ECT, as well as the prediction of treatment-induced
changes in HAM-D scores by baseline 5-HT1A binding. Similarly, the
influence of steady-state time on changes in 5-HT1A binding was evaluated
by correlation analysis. All statistical tests were evaluated at Po0.05
corrected for multiple comparisons with the false discovery rate (FDR) at
voxel level. Regions of no interest (for example, skull and cerebral blood
vessels) were excluded from the statistical analyses. Absolute and relative
changes in 5-HT1A BPND between PET scans were calculated as PET3 � PET2
and, (PET3 � PET2)/PET2, respectively. To evaluate hemispheric differences
in 5-HT1A BPND changes, maps representing absolute changes were axially
flipped and together with the original ones used within a paired-samples
t-test in SPM8.

RESULTS
We found a significant reduction of HAM-D scores after ECT
(Po0.01, see Table 2), emphasizing the efficacy of ECT in severe
unipolar depression. Ten patients (83.3%) were considered as
treatment responders, given a reduction of the HAM-D score
corresponding to the baseline value divided by two. Three of
the latter had a full remission of the symptoms with a HAM-D
score lower than seven. On the other hand, two patients failed to
show a sufficient response to ECT. The evaluation of the 5-HT1A

BPND across time showed a significant main effect of the ECT in
virtually all cortical areas and subcortically within the hippocam-
pus--amygdala region (F2,2246.75, Po0.05 FDR corrected). The
PET measurements before ECT (PET1 vs PET2, Figures 1a and b)
showed no significant differences in 5-HT1A binding in any brain
region (P40.05 FDR corrected). In contrast, we found significant
changes when comparing 5-HT1A BPND before and after electro-
convulsive treatment (PET2 vs PET3, Figures 1b and c). Specifically,
post-hoc t-test revealed a large interconnected cluster of 436 cm3

with significant reductions in 5-HT1A receptor binding comprising
almost the entire cortex (Po0.05 FDR corrected, Figure 2). These
reductions reached peak differences beyond 25% in, for example,
the ACC including its subgenual part (sgACC), the OFC, insula, the
hippocampus and amygdala (see Table 3 and Supplementary
Material for details). The direct comparison between PET measu-
rements 1 vs 3 showed similar but slightly stronger reductions in
5-HT1A BPND. There were no significant increases in 5-HT1A BPND

after electroconvulsive treatment in any brain region. Evaluation
of potential confounding variables showed neither significant
interactions between changes in 5-HT1A binding and sex, uni-/
bilateral ECT, anticonvulsive medication or treatment outcome nor
influence of the covariates age and number of ECT sessions.
Investigating lateralization of 5-HT1A BPND changes showed no
significant differences between left and right hemisphere. Also,
there were no significant correlations between the magnitude of
treatment-induced 5-HT1A BPND change and changes in HAM-D scores.
The prediction of HAM-D changes by baseline 5-HT1A BPND was not
significant. Similarly, steady-state time of medications did not
correlate with changes in 5-HT1A binding (all P40.05 FDR corrected).

DISCUSSION
The main finding of this longitudinal PET study is the overall
decrease of the 5-HT1A receptor BPND induced by ECT in cortical
areas as well as in the hippocampus--amygdala region. The
treatment response rate of ECT based on HAM-D scores in this
study sample was B83%, which is higher than the commonly
reported B60% response rate in the literature.60 In a study with
80 depressed patients, response rates of ECT were up to 80% 1--2
days after the treatment course, and they decreased to 65%
1 week after treatment termination.46 This is consistent with our
results as the final study evaluation was completed mostly 1 day
after the last ECT session.

Regarding the main PET results of our ECT study in patients with
MDD, the 5-HT1A BPND reduction was in the range between B20
and B30% in most brain areas (see Table 3 and Supplementary
Table for details). The highest reductions in 5-HT1A BPND were
found in the hippocampus (�30.6%), amygdala (�31.8%), OFC
(�30.1%), ACC (�26.2%) and insula (�28.9%). Interestingly, the
effect size is similar to the decrease of 5-HT1A receptor BPND in the
hippocampus (�28.2%) and subgenual part of the ACC (�25.4%)
after treatment with SSRIs, revealed by PET in patients with

Figure 1. Average serotonin-1A receptor (5-HT1A) binding potential
(BPND) of patients with major depressive disorder (n¼ 12) at base-
lines before electroconvulsive therapy (ECT), that is, positron emis-
sion tomography (PET)1 (a) and PET2 (b), and after ECT, that is, PET3
(c). Note that 5-HT1A BPND is virtually identical between the baselines
(PET1, PET2) before treatment, whereas after ECT a reduction in
receptor binding can be observed almost across the entire cortex.
For visualization, values below 0.5 are not shown.
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Figure 2. Changes in serotonin-1A receptor (5-HT1A) binding potentials (BPND) before (PET2) vs after electroconvulsive therapy (PET3). Shown
are absolute (a) and relative (b) differences in 5-HT1A BPND as well as the post-hoc t-test (c) of the repeated measures ANOVA (t42.31, Po0.05
false discovery rate (FDR) corrected). For visualization, values below 0.5 and 5% are not included in a and b, respectively.

Table 3. 5-HT1A BPND for selected ROI taken from an AAL-based atlas52,58

Region
MNI coordinates (mm) 5-HT1A binding potential 5-HT1A before vs after ECT

PET1 PET2 PET3 PET2 vs PET3

x y z before ECT before ECT after ECT Peak t-value % Change

Anterior cingulate L �2 40 20 5.9±1 5.9±1.4 4.3±1.1 4.28* �25.9±21.7
Anterior cingulate R 2 40 20 5.7±0.9 5.7±1.2 4.1±1.1 4.58* �26.2±23.9
Subgenual L �2 36 �10 8.5±2.5 7.7±2.3 5.8±2.2 2.69* �23.1±26.8
Subgenual R 6 36 �8 4.4±1 4.3±1 3±1.1 3.77* �27.5±27.3
Median cingulate L �2 �36 38 4±0.8 4.1±1.1 3.2±0.8 3.55* �19.7±22.7
Median cingulate R 4 36 34 4.8±1 4.6±1.3 3.4±0.9 4.54* �23.6±19.7
Posterior cingulate L �8 �54 10 2.7±0.6 2.6±0.6 2±0.5 3.59* �20.9±17.4
Posterior cingulate R 6 �46 28 2.2±0.6 2.2±0.7 1.7±0.5 4.05* �20.7±23.5
Amygdala L �26 4 �26 6.2±1.2 6.3±1.7 4.1±1.3 3.91* �31.8±26.6
Amygdala R 26 4 �24 6.4±1.6 5.6±1.7 4±1.3 2.9* �26.1±26
Caput hippocampus L �24 �6 �22 8.5±2.6 8.8±3.2 5.8±2.2 3.03* �30.6±30.8
Caput hippocampus R 26 �2 �24 5.4±1 4.9±1.1 3.5±1.4 2.86* �27.8±24.4
Superior frontal orbital L �12 66 �12 5.5±1.4 5.9±1.8 4±1.5 4.17* �30.1±28.2
Superior frontal orbital R 22 68 �6 5.6±0.9 5.5±1.1 4.1±1.3 4.77* �26.4±19.3
Insula L �40 20 �10 4.3±1.3 4.3±1.2 3.3±1.1 4.44* �24.6±14.1
Insula R 44 �12 2 4.8±0.9 5±1.4 3.4±1 4.72* �28.9±24.5
Dorsal raphe nucleus �2 �28 �8 1.2±0.4 1.1±0.5 1±0.3 1.15 �5.7±26.4

Abbreviations: BPND, binding potential; ECT, electroconvulsive therapy; 5-HT1A, serotonin-1A receptor; MNI, Montreal Neurological Institute; ROI, regions of
interest.
5-HT1A BPND values are given as mean±s.d. at baseline before ECT (PET1, PET2) and after ECT. Following voxel-wise post-hoc t-test of the repeated measures
ANOVA, peak t-values (*t42.31, Po0.05 false discovery rate (FDR) corrected) and relative changes (%) are obtained when comparing 5-HT1A binding before
(PET2) and after ECT (PET3). For further detail see Supplementary table S1.
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anxiety disorders.2 Furthermore, regarding the topology, our ECT
results coincide with the pharmacological treatment studies using
PET and [carbonyl-11C]WAY100635,2 and also with the consistently
reported alterations of the hippocampus, amygdala, ACC and
the OFC in major depression. As for the amygdala, a brain
area essential to the processing of emotion, a high number of
neuroimaging studies using functional magnetic resonance imaging
demonstrated a hyperactivation of this subcortical structure in the
presence of negatively affected pictures, for example, fearful faces,
in depressive patients compared with healthy controls.61 This
insight is equally mirrored in findings provided from structural
magnetic resonance imaging studies, pointing toward an in-
creased amygdala volume in depressive patients.62 Moreover, the
supposed key role of the amygdala in the pathogenesis of
psychiatric disorders is further substantiated by molecular imaging
data showing alterations of this region in patients suffering from
major depression, anxiety disorders and bipolar disorder.28,63--65

Voxel-based morphometry studies revealed smaller ACC volumes
in patients with major depression, which is in line with the
frequently hypothesized impaired top--down regulation of frontal
cortical areas on limbic structures in affective disorders, suppo-
sedly resulting in the frequently described disinhibition of the
amygdala.66 Accordingly, alterations in glucose metabolism and
CBF were found within the amygdala and more pronounced in the
sgACC in depression,67 which is in turn decreased by various
treatments as reported by Hamani et al.68 In remitted patients
exposed to tryptophan depletion-induced depressive relapse,
decreased brain metabolism was revealed in the OFC compared
with patients administrated placebo.69 In addition, widespread
reductions of 5-HT1A receptor BPND were found in cortico--limbic
brain areas, including the amygdala, the ACC and the OFC in
depressive patients.28,38,70

On the basis of the predominantly described reduced 5-HT1A

receptor binding accompanying psychiatric disorders,34,71 one
might presume that treatment response should consequently
walk along with a ‘normalization’, hence an increase of 5-HT1A

receptor BPND. However, PET studies of pharmacological treat-
ment response have not confirmed this premise.2,36,70 The 5-HT1A

receptor BPND was shown to be significantly reduced in anxiety
disorders22 and an even further reduction in receptor BPND after
12 weeks of escitalopram treatment in limbic (hippocampus) and
cortical brain regions (posterior cingulate cortex, subgenual part of
the ACC) was revealed in a longitudinal PET.2 This finding is in
concert with our results, showing a global decrease of post-
synaptic 5-HT1A receptor binding in virtually the entire cortex after
ECT, despite the fact that one could expect an increase. Besides,
there is a lack of clarity with regard to antidepressant treatment
effects on presynaptic 5-HT1A receptors.70,72 However, on a system
level in a pharmacological treatment study we found that SSRIs
change the interplay between pre- and postsynaptic 5-HT1A

receptor BPND, indicating that the re-adjustment between
presynaptic 5-HT1A receptor-mediated serotonergic firing and
the postsynaptic 5-HT1A receptor-mediated inhibition by serotonin
might be an important mechanism of action.55 Accordingly, one
could presume that---taking into consideration the involvement of
numerous complex mechanisms and presumably different trans-
mitter systems---successful ECT leads to a sort of ‘reset’ of the brain
resulting in a new arrangement of neuronal networks on a
molecular level, reflected in a reduction of 5-HT1A heteroreceptors
in serotonergic projection areas.55

The significant reductions of postsynaptic 5-HT1A receptor
binding in cortical regions demonstrated in our ECT study match
preclinical results showing decreased 5-HT1A receptor densities in
the hippocampal region CA4 after ECS in rats.42 However, our
findings are in contrast to the enhanced 5-HT1A receptor binding
and serotonergic neurotransmission after ECS in pyramidal cells of
the hippocampus and the dentate gyrus.41,42 Likewise, regarding
serotonin-2A (5-HT2A) receptors, ECS was consistently shown to

increase 5-HT2A receptor densities and mRNA expression in
rodents,42 whereas in a PET study using [18F]setoperone in non-
human primates, ECS leads to a downregulation of 5-HT2A

receptors in several cortical regions lasting up to 1 week post-
treatment.73 Yatham et al. equally demonstrated a widespread
reduction of 5-HT2A receptor binding in 15 patients suffering from
major depression after ECT, with peak changes in the parahippo-
campal gyrus and the medial prefrontal cortex.74 These discre-
pancies might be ascribed to species differences in such complex
neuronal networks.

To the best of our knowledge, only one PET study so far
investigated the 5-HT1A receptor binding using [carbonyl-11C]-
WAY100635 in depressed patients undergoing ECT.75 Applying a
region of interest analysis approach, they found no effect of ECT
on 5-HT1A receptor binding in a group of nine patients. Although
Saijo et al. administered a series of 6--7 bilateral ECTs, we started
with unilateral ECT and switched to bilateral ECT in 8 of 12
patients due to insufficient treatment response. However, the total
number of ECT was significantly higher (10.08±2.35, mean±s.d.)
in our sample. The effect size regarding 5-HT1A receptor BPND

reduction might increase with the number of ECT sessions in
accordance with cumulative clinical effects in ECT series. In both
studies pharmacological treatment was continued during study
participation. Furthermore, there was a predominance of men (6
males of 9 subjects) in the study sample of Saijo et al., whereas in
our study more women (4 males of 12 subjects) were included.
One distinction concerns the population group, investigating
Caucasian patients in our study and Asian patients in Japan. From
a methodological point of view concerning PET data analysis, our
study focussed on whole-brain voxel-wise analysis. This includes
advantages over region of interest-based assessment due to its
independence of choice, size, definition and location of a limited
number of regions. On the other hand, voxel-wise analyses require
correction for multiple comparisons, where region of interest-
based evaluation may represent a reasonable alternative because
of increased signal-to-noise ratio. Analysis procedures were similar
in the two studies in terms of reference region (cerebellum gray
matter excluding cerebellar vermis) and the applied model (SRTM
vs MRTM2). The relatively small sample sizes might be a critical
point in both studies as well as the exposure to pharmacological
antidepressant treatment during the study. Despite this limitation,
a discontinuation of drugs was inacceptable in view of the clinical
severity of the depressive symptoms and therefore ethical reasons.
We cannot exclude differences in the interaction between ECT
and pharmacological treatment that might affect 5-HT1A receptor
binding, given the differences in medication between both studies.

We found no correlation between the treatment outcome
(HAM-D scores) and the magnitude of changes in 5-HT1A receptor
binding in this sample with high response rate. This suggests a
dose-independent or suprathreshold effect of ECT on 5-HT1A

receptor binding. This finding is in line with a study showing no
association of HAM-D scores and changes in the brain glucose
metabolism after ECT in major depression.19

In sum, this study shows a significant global decrease of 5-HT1A

receptor binding in major depression after completion of ECT with
considerable changes in areas having a major role in affective
processes in the human brain, such as the hippocampus,
amygdala, cingulate and orbitofrontal cortices. Altered function
of these areas represents a consistent finding in depression in
psychiatric research. The results of the present PET study imply
that ECT might act upon similar molecular mechanisms, particu-
larly the 5-HT1A receptor, involved in the mode of action of
pharmacological antidepressant treatments.
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