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Abstract: The empirical phase diagram (EPD) is a colored representation of overall structural

integrity and conformational stability of macromolecules in response to various environmental

perturbations. Numerous proteins and macromolecular complexes have been analyzed by EPDs to
summarize results from large data sets from multiple biophysical techniques. The current EPD

method suffers from a number of deficiencies including lack of a meaningful relationship between

color and actual molecular features, difficulties in identifying contributions from individual
techniques, and a limited ability to be interpreted by color-blind individuals. In this work, three

improved data visualization approaches are proposed as techniques complementary to the EPD.

The secondary, tertiary, and quaternary structural changes of multiple proteins as a function of
environmental stress were first measured using circular dichroism, intrinsic fluorescence

spectroscopy, and static light scattering, respectively. Data sets were then visualized as (1) RGB

colors using three-index EPDs, (2) equiangular polygons using radar charts, and (3) human facial
features using Chernoff face diagrams. Data as a function of temperature and pH for bovine serum

albumin, aldolase, and chymotrypsin as well as candidate protein vaccine antigens including a

serine threonine kinase protein (SP1732) and surface antigen A (SP1650) from S. pneumoniae and
hemagglutinin from an H1N1 influenza virus are used to illustrate the advantages and

disadvantages of each type of data visualization technique.

Keywords: data visualization technique; structural index; empirical phase diagram; three-index
empirical phase diagram; radar chart; Chernoff face diagram; protein stability; circular dichroism;

light scattering; fluorescence spectroscopy

Introduction

At the heart of the study of protein biochemistry lies

understanding the interrelationships between the

structure and function of these complex macromole-

cules. Structural aspects are best considered in the

light of protein three-dimensional structures as

determined by X-ray crystallography and nuclear

magnetic resonance. In many cases, however, such

structures are unavailable or suffer from experimen-

tal limitations such as their origin in the crystalline

state or the requirement for high concentrations

and/or isotope labeling. Thus, physical methods of

lower structural resolution such as circular dichro-

ism (CD), fluorescence, light scattering, Fourier

transform infrared spectroscopy (FTIR), and differ-

ential scanning calorimetry (DSC) are often used,

especially in combination with environmental per-

turbations such as temperature, pH, and solute
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additives (e.g. chaotropes) to evaluate macromole-

cule higher-order structure and stability in solution.

As an intermediate approach, results from mul-

tiple lower resolution methods can be combined to

produce a more information-rich characterization of

protein structure. One such method is known as the

empirical phase diagram (EPD). This approach con-

sists of a colored map of macromolecule behavior in

which the structure of a macromolecule (or its com-

plexes), as a function of various solution and envi-

ronmental conditions, is represented by vectors cor-

responding to individual measurements such as CD,

FTIR spectra, intrinsic fluorescence, dye binding,

DSC, and light scattering. Using singular value

decomposition (SVD), the three largest contributions

to a vector are obtained and reduced to color based

on an RGB scheme.1,2 Although the actual colors are

somewhat arbitrary, changes in color are useful,

because they represent structural changes. In addi-

tion, differences between EPDs can be directly com-

pared (e.g., between mutants of the same protein) by

processing all the data together.3 By making meas-

urements as a function of variables such as tempera-

ture, pH, concentration, ionic strength, and mechan-

ical stress, the colored EPD diagram represents an

information rich type of ‘‘stress/response’’ diagram

that has been useful in a wide variety of applications

including stabilization and formulation of protein

therapeutics and a variety of macromolecular vac-

cines.1–10

The current EPD method suffers from a number

of deficiencies that primarily reflect the use of color

to represent the state of the protein’s structural in-

tegrity. This includes the lack of meaningful rela-

tionship between color itself and actual molecular

features (in EPDs, structural changes are repre-

sented by color transitions1,2,9) as well as limitations

resulting from color deficiencies in vision and blind-

ness, which are possessed by a substantial portion of

the human population. Red-green color vision defects

are found in about 8% of males and 0.5% of females

among people of Northern European origin, 5%

among Chinese and Japanese populations, and 4%

or less among individuals of African origin.11 Here,

we describe three alternative data visualization

approaches to the current EPD methodology, which

not only overcome these difficulties, but may also

provide additional information leading to the

enhancement of the EPD macromolecular structure

characterization tool.

In the first approach, we take advantage of the

direct relationships between far UV CD spectra and

protein secondary structure, intrinsic fluorescence

spectra and protein tertiary structure changes, and

light scattering measurements and quaternary

structure (or aggregation state) to assign direct pro-

tein structural meaning to colors. In the second and

third methods, we eliminate the use of the color

altogether through the employment of radar (or

star) charts12 and Chernoff faces.13–15 These techni-

ques are popular iconic displays of multivariate data

in which attribute values are mapped to the features

of the icons.16 For radar plots, values from the mul-

tiple physical measurements are related to the

spikes of equiangular polygons. For the Chernoff

face approach, these same data sets are represented

by the position and size of facial features in a model

face. The resulting patterns exhibit characteristics

of the data, which can be recognized by preattentive

perception.16 These data visualization methods have

been used in many other fields including informa-

tion visualization,16,17 computer science,18,19 biol-

ogy,20 education,21 and health care.22,23 In this work,

we explore the utility of three different representa-

tions with six different proteins using temperature

and solution pH as independent stress variables and

discuss the advantages and disadvantages of each

data visualization approach.

Results

Figure 2 compares two EPD data visualization

approaches derived from the physical data of Figure

1 (effect of temperature and pH on BSA as measured

by CD, fluorescence, and light scattering; see Meth-

ods section). Figure 2(A) shows an EPD constructed

using the previously published data10 by the current

EPD method. The newly developed three-index EPD

displayed in Figure 2(B), which is constructed using

three structural indices calculated from the same ex-

perimental data as described in the Methods section.

The two EPDs show very similar transitions in color

patterns, which indicate the structural changes of

BSA in response to pH and temperature. In both

cases, a region of pH and temperature with similar

color represents related structural states defined by

the specific experimental data. For example, the

region from pH 5 to 8 below 60�C colored blue in

Figure 2(A) and yellow in Figure 2(B) represents the

native state of BSA. The native structure is altered

due to lower pH or higher temperature as depicted

by the purple phase in Figure 2(A) or brown phase

in Figure 2(B). The aggregation of the protein is

seen as the yellow/red region in Figure 2(A) or the

blue region in Figure 2(B) from pH 4 to 6 above

70�C. A structural interpretation of the original

EPD could not be achieved without direct reference

to the underlying experimental data. In contrast,

the three-index EPD depicts the type of structural

change the protein undergoes by simple reference to

color. For example, yellow or shades of yellow always

reflect the native state of the protein, with no aggre-

gation or change in the secondary and tertiary struc-

ture of the protein. The blue color represents an

aggregated state. Brown and green colors define a

structurally altered state with minimal or no aggre-

gation. In short, the three-index EPD, when
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properly constructed, adds meaning to the colors in

the EPD. The individual RGB components are also

provided on the right side of Figure 2(B) for a better

understanding of the three-index EPD. Because each

RGB component represents its associated structural

indices, the additional color plots on the right hand

side in Figure 2(B) visually clarify the source of the

transitions seen in the three-index EPD, in this

case, in terms of data from each analytical instru-

ment (CD, fluorescence, and static light scattering,

respectively).

The radar and Chernoff face diagrams of the

same BSA stability data set (Fig. 1; see Methods sec-

tion) are shown in Figure 3. In both cases, the

Figure 1. Experimental data for bovine serum albumin (BSA) measured as a function of temperature at indicated pH values

(A–C) and their corresponding structural indices (D–F). (A) CD signal at 222 nm, (B) intrinsic fluorescence peak position, (C)

static light scattering at 295 nm, (D) secondary structure index calculated from (A), (E) tertiary structure index calculated from

(B), and (F) aggregation index calculated from (C). A dashed line in (C) represents a cut-off value. Data in Figure 1(A–C) were

published previously.10

Figure 2. EPDs of the conformational stability of BSA as a function of pH and temperature. (A) Original EPD created using

biophysical data in Figure 1(A–C). (B) Three-index EPD created using structural indices as shown in Figure 1(D–F).
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Figure 3. (A) Radar chart and (B) Chernoff face diagram of the conformational stability of BSA as a function of pH and

temperature using data from the three structural indices from Figure 1(D–F). Secondary and tertiary structure indices are

inverted for both cases to represent the native state as (A) a dot and (B) a smiling face. Solid blue lines indicate an example

of clustering results (see text).

Figure 4. (A) Three-index EPD, (B) clustered radar chart, and (C) clustered Chernoff face diagram for the conformational

stability of BSA (using data from three structural indices from Figure 1(D,E). Each cluster is represented as a radar chart or

Chernoff face diagram, which averages the structural indices of all images that belong to the cluster. Six structural phases

were observed empirically: (1) native state, (2) molten globular state, (3) aggregated, and (4–6) structurally altered states due

to low pH and/or high temperature without aggregation.
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secondary and tertiary structure indices are inverted

to represent the native state either as a dot or a

smiling face. These settings are used to more easily

perceive small deviations from the native state. It is

seen that all three of the data visualization

approaches shown in Figures 2 and 3 display the

same structural transitions of BSA as a function of

pH and temperature in terms of changes in either

colors, shape of polygons, and facial features.

The solid blue lines in Figure 3 illustrate an

example of clustering results. Clustering was per-

formed using a k-means clustering algorithm with k

¼ 6 and manually corrected afterward based on

interpretation of raw data. After several trials of dif-

ferent values of k, the k number was selected in

which its result most closely matches our interpreta-

tion of raw data. One of the clustering results is dis-

played for all three diagrams in Figures 3 and 4. In

addition, Figure 4(B,C) shows clustered radar and

Chernoff face diagrams in which each cluster is rep-

resented by a single radar chart and Chernoff face.

This single iconic plot is generated by an average

value of the data inside a cluster and exhibits the

characteristic of the cluster.

The original EPD and three different data visu-

alization diagrams for the protein antigen SP1732

are shown in Figure 5(A–D). The data from SP1732

provides a good example of a protein that clearly dis-

plays a molten globular state (see data in Fig. 6 in

Methods section). The EPD constructed using previ-

ously published data for SP173224 is shown in

Figure 5(A). SP1732 was found to be most stable at

Figure 5. (A) EPD, (B) three-index EPD, (C) radar chart, and (D) Chernoff face diagram for the protein antigen SP1732 as a

function of temperature and pH. Figure 7(A) is created using biophysical data in Figure 2(A–C), while Figure 7(B–D) is created

using structural indices shown in Figure 2(G–I). Three structural regions are observed: (1) native state, (2) molten globular

state, and (3) aggregated state.
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temperature below 45�C at low pH and below 70�C

at pH 6–8. Aggregation of SP1732 is observed in the

pink region in the EPD. A molten globule state is

also seen in the interface between these two ‘‘appa-

rent’’ phases. It should be noted that ‘‘apparent’’

phases do not refer to equilibrium thermodynamic

phases (i.e. no reversibility is implied), but rather

simple, empirical representations of the physical

behavior of the macromolecule.1–3 As shown in Fig-

ure 5(B), a small pink-colored region between the

native and unfolded state is also observed in the

three-index EPD. The calculated structural indices

used for the construction of the three-index EPD for

the protein antigen SP1732 are shown in Figure

6(G–I; see Methods section). A decrease in the CD

signal is seen at pH 3 at about 40�C. This transition

increases in temperature with increasing pH. At pH

6–8, this transition is observed only at about 75�C.

Similar trends are observed with intrinsic fluores-

cence and static light-scattering data.

As discussed earlier, one of the limitations of the

EPD is that the investigator needs to study the

Figure 6. Experimental data for SP1732 measured as a function of temperature at indicated pH values (A–C), their intermediate

structural indices (D–F), and the final structural indices (G–I). (A) CD signal at 222 nm, (B) intrinsic fluorescence peak position,

(C) static light scattering at 295 nm, (D) intermediate secondary structure index calculated from (A), (E) intermediate tertiary

structure index calculated from (B), (F) intermediate aggregation index calculated from (C), (G) secondary structure index, (H)

tertiary structure index, and (I) aggregation index. Dashed lines in (D–F) represent cut-off values. Data in Figures 2(A–C) were

published previously.24
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original data independently to better understand the

origin of the colored regions. The three-index EPD

remedies this shortcoming by manifesting the native

state of the protein antigen SP1732 as a rich yellow

color as seen in Region 1 in Figure 5(B). Aggregation

along with unfolding of the protein appears blue in

Region 3. Molten globule states usually present as a

red or a pink-colored phase as seen in Region 2. These

indices are also mapped onto the radar and Chernoff

face diagrams in Figure 5(C,D), respectively. In the

radar diagram, the native state of the protein antigen

SP1732 is represented as blue triangles occupying

minimal area. Transitions are seen as the blue trian-

gle increasing its area at the corresponding angle.

This is seen in Region 3 of Figure 5(C) at high temper-

atures at all pH values, where we see an equilateral

triangle that extends to the circumference of the

circle, indicating a total loss of structure and aggrega-

tion. Molten globule behavior appears as states with

increases in aggregation and loss of tertiary structure

as seen in Region 2 of Figure 5(C). In the Chernoff

diagram, the indices for SP1732 are mapped to the

mouth, eyebrow, and hair of the Chernoff face. The

native state appears as a ‘‘happy and bald’’ face in

Region 1 of Figure 5(D), with the mouth, eyebrows,

and the hair representing the secondary, tertiary, and

quaternary (aggregation) structure indices, respec-

tively (see Methods section). The molten globule state

Figure 7. (A) EPD, (B) three-index EPD, (C) radar chart, and (D) Chernoff face diagram for the protein antigen HAC1 as a

function of temperature and pH. Figure 8(A) is created using biophysical data in Supporting Information Figure S1(A–D), while

Figure 8(B–D) is created using structural indices shown in Supporting Information Figure S1(E–H). Six structural phases are

observed: (1) native state, (3) aggregated state, and (2, 4–6) structurally altered state due to low pH and/or high temperature

without aggregation.
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shows the presence of aggregates in the form of hair

and intermediate secondary and tertiary structures

in the form of ‘‘poker faces’’ and horizontal mouth and

eyebrows [Fig. 5(D)].

The original EPD and the three different data

visualization diagrams for protein antigen HAC1 are

shown in Figure 7. The previously published data25

and newly constructed structural indices are

included as Supporting Information Figure S1. As

shown in the EPD in Figure 7(A), the native state of

the HAC1 protein is seen at pH values of 7 and 8 at

temperatures lower than 50�C. The protein is confor-

mationally altered at pH 6 at temperatures below

40�C as reflected in the purple phase in Figure 7(A).

As the pH drops to 5 and below, the structure again

changes and is represented by the green phase.

Increasing temperature in all apparent phases is

accompanied by unfolding or aggregation of the pro-

tein. As shown in Figure 7(B), the pH-dependent

conformational changes for HAC1 are more pro-

nounced in the three-index EPD, in which Regions 1

and 2 are more clearly differentiated. In addition,

Region 1, which was identified as the native state, is

again represented by a yellow color. The conforma-

tionally altered protein at pH 6 is shown by the

appearance of green hinting at possible changes in

the protein’s secondary structure. The brown color

seen at pH 5 and below indicates the presence of

native secondary structure, but low levels of tertiary

structure [Fig. 7(B)].

One potential limitation of the three-index EPD

is an inability to include data from more than three

experiments. For example, no major change in color

was observed at pH 4 and 5 with changes in tempera-

ture [Fig. 7(B)]. The changes observed in the EPD

arise from the ANS data [Fig. 7(A) and Supporting In-

formation Fig. S1]. The three-index EPD presumably

does not show the changes because of the absence of

the ANS data. This limitation can be offset by the con-

struction of radar and Chernoff face diagrams. In

these diagrams, the ANS data are mapped on the

fourth arm in the radar diagram [Fig. 7(C)] or onto

the size of the nose in the face diagrams [Fig. 7(D)].

The native state of the protein antigen HAC1 is again

shown by a quadrilateral of minimum area in the ra-

dar diagram. In the Chernoff face diagram, this

native state is shown with a happy face, a bald scalp,

and a small nose. As the protein conformation

changes, the quadrilateral and the face change in ac-

cordance with the changes observed in the data [e.g.,

angle changes in the radar diagram in Fig. 7(C) and

the presence of hair at high temperatures at pH 7 and

8 in Fig. 7(D) reflecting aggregation of the protein].

Data obtained for several other proteins includ-

ing aldolase,10 chymotrypsin,10 and SP165024 were

also used in the construction of the original EPDs as

well as the new data visualization methods (three-

index EPDs, the radar diagrams, and the Chernoff

face diagrams). The previously obtained data and

the newly constructed structural indices for aldolase,

chymotrypsin, and SP1650 are shown in Supporting

Information Figures S2, S4, and S6, respectively.

The various data visualization diagrams constructed

for each of these proteins are shown in Supporting

Information Figures S3, S5, and S7. Each of these

versions of the four diagrams (for aldolase, chymo-

trypsin, and SP1650) demonstrates the same trends

discussed earlier (for BSA, SP1732, and HAC1).

Discussion

Three new data visualization methods are presented

in this work in the context of evaluating six different

proteins in terms of conformational stability as a

function of pH and temperature. The three-index

EPD approach describes three aspects of macromo-

lecular structure with a predefined color scheme.

Given a range of environmental perturbations, the

amount of tertiary and secondary structure and

state of aggregation were measured by intrinsic fluo-

rescence peak position, CD spectroscopy, and static

light scattering, respectively. After the measure-

ment, these data were interpreted and converted to

structural indices representing the relative amount

of structural change, which were then mapped to

specific colors. As seen in several examples in this

study, the color yellow represents the native state of

a macromolecule and the color blue an aggregated

state. A darker color, close to black, represents a

maximally altered conformational state without any

notable aggregation. These colors are considered the

major indicators, while other colors (e.g., such as

brown and green) represent partially altered states

depending on the differentially reduced color levels

of tertiary and secondary structure. For example,

the colors red or pink are interpreted as indicators

of molten globular states for the protein antigen

SP1732 as seen in Figure 5(B).

The assignment of color to the degree of struc-

tural change in the three-index EPD is achieved by

displaying only three experimental data sets as

measures of secondary, tertiary, and quaternary

structures. Currently, more than three types of ex-

perimental data can be summarized in the other

approaches including the original EPD, the radar

charts, and the Chernoff face diagram. In Figure 7,

the difference among visualization techniques when

using four different data visualization methods to

evaluate the same biophysical data sets is clearly

shown for the protein antigen HAC1. In this case,

extrinsic ANS fluorescence spectroscopy data (see

Supporting Information Fig. S1) were not included

in the three-index EPD, because it provides a mea-

sure of the amount of dye binding to either the apo-

lar surface(s) of a macromolecule or a positively

charged binding site, neither of which can be simply

related to macromolecular structure. The ANS data
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does, however, clearly highlight the structural tran-

sition regions from pH 6 to 8 around 55�C and dis-

tinguishes the region at pH 4–5 above 50�C in the

EPD from the same regions in the three-index EPD.

A method to calculate structural indices from more

experimental data is thus still needed and is under

investigation.

The introduction of the structural index not

only enhances the visualization and interpretability

of the experimental data, but it also performs an ini-

tial analysis of the data. The curated index provides

a sigmoidal melting curve that preserves the initial

positions and slope changes of the original data. The

alignment of changing directions and proper cut-offs

permits the comparison of signals within the area of

interest in a more straightforward manner. One

additional analysis would be the subtraction of a ter-

tiary structure index from a secondary structure

index to observe a peak indicating the existence of

molten globular states (data not shown). This peak

is also seen as the color pink (or red) in the three-

index EPDs. Another benefit of the structural indi-

ces is for use in computational methods, which

includes clustering analyses. Clustering analyses

may provide inaccurate partitioning, however, if the

same value has different meaning. For instance, a

decrease in the light scattering at higher tempera-

ture is often observed after it reaches a peak inten-

sity value [e.g., see Fig. 6(C) for data with the pro-

tein SP1732]. The same level of light-scattering data

before and after the peak intensity may not have the

same interpretation, but the clustering algorithms

would identify the two regions as the same state.

Thus, instead of using raw data, the use of an index

for computational methods can maximize the accu-

racy of the results.

The two other data visualization approaches

presented in this work, the radar chart and the

Chernoff face diagram, have similar properties to

one another. A specific shape or image of an icon

(i.e., an equiangular polygon or a human face) is

designed to reflect the characteristics of the underly-

ing data and distinguished differences as a function

of solution variables. Each type and magnitude of

selected experimental data is explicitly expressed in

these diagrams. This result is in contrast to original

EPDs that cannot identify the origin of the experi-

mental technique and structural features that cause

color changes. We currently consider these diagrams

alternatives to color-based EPDs, because they have

the significant advantage that they can accommo-

date more different kinds of data. It is, however, dif-

ficult to read an exact value or to detect subtle

changes in values with these two approaches, espe-

cially for Chernoff face diagrams. Both the diagrams

require more space to represent the same number of

environmental stresses than EPDs; therefore, an

individual shape or a face becomes too small to be

easily recognized if the entire diagram is presented.

Alternatively, the clustered versions of diagrams

may become a useful tool to symbolize selected char-

acteristics of macromolecules.

The utility of EPDs to summarize the effect of

environmental stresses on protein conformational

stability has recently been enhanced by the avail-

ability of multimodal spectrophotometers with multi-

ple sample holders that can simultaneously or

sequentially measure CD, fluorescence, and UV

absorption spectra as well as light scattering and

turbidity as a function of temperature in an auto-

mated mode with a single sample.10,26 Thus, the

multiple data visualization diagrams of the type

described in this work can be obtained rapidly,

within a single day is possible, with a minimal

amount of protein and effort.

Materials and Methods

Materials

To demonstrate various visualization techniques,

previously published data (e.g., intrinsic Trp and ex-

trinsic ANS fluorescence spectroscopy, CD, and

static light scattering) were used in this work

including bovine serum albumin (BSA),10 aldolase,10

and chymotrypsin10 as well as serine threonine ki-

nase protein (SP1732)24 and pneumococcal surface

antigen A (SP1650)24 from S. pneumonia and he-

magglutinin from the H1N1 influenza virus

(HAC1).25 The EPDs were constructed using these

previously published data and then compared to the

three newly proposed data visualization techniques

introduced in this work: the three-index EPD, radar

diagram, and Chernoff face diagram. All six of the

protein macromolecules were dialyzed into a 20 mM

citrate phosphate buffer (pH 3–8) at a total ionic

strength of 0.15 using appropriate amounts of NaCl.

A detailed description of the experimental methods

used to generate the structural data used in this

work are described elsewhere.10,24,25

Construction of EPDs

The experimental data for each of the six proteins

were previously obtained from multiple techniques

(e.g., CD, fluorescence, and light scattering) as a

function of pH and temperature.10,24,25 The combina-

tions of those conditions are aligned to form an m �
n input matrix, in which m is the number of experi-

mental techniques and n is the number of condition

combinations (e.g., number of pH values � number

of temperature measurements). SVD of the input

matrix is used to produce a factorization of unitary

orthonormal bases matrices and a diagonal matrix

composed of singular values. The three largest sin-

gular values determine the major contributing fac-

tors in the form of orthonormal basis vectors. These

factors are then mapped to a RGB color scheme and
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are visualized as an EPD. Thus, regions of the plot

with similar color indicate similar physical states of

the macromolecule. A detailed explanation of the cal-

culations involved in construction of EPDs can be

found elsewhere.1–3

Calculation of structural indices

We define a structural index as the degree of corre-

sponding structural change within a given range of

environmental stress conditions. Secondary, tertiary,

and quaternary (aggregation) structure indices are

used here to represent the state of a macromolecule.

The structural index is allowed to vary from a value

of zero to one while indicating the lowest to highest

amount of the corresponding structure. As an exam-

ple, native tertiary structure can be represented by a

value of 1 while significantly conformationally altered

tertiary structure by 0. Similarly, the aggregation

index (AI) is defined to have a range from 0 to 1

where the number 0 implies no aggregation, whereas

a value of 1 indicates the maximum level of protein

aggregation observed during an experimental study.

Each index is calculated in accordance with the

experimental data that reflect corresponding confor-

mational or association changes in a given protein.

There is no limitation to the choice of experimental

variables, as long as the experiment is a measure of

the amount of structure. Taking BSA as an example,

intrinsic fluorescence peak position shifts were used

as an indicator of tertiary structural change. Far UV

CD spectroscopy at a specific wavelength (e.g. 222

nm) was selected to monitor changes in secondary

structure. Static light scattering experiments were

used to detect the amount of aggregation. If a cer-

tain experimental technique is not applicable to a

specific macromolecule (e.g., fluorescence in a pro-

tein lacking Trp), alternative biophysical methods

can be substituted (e.g., near UV absorption or CD

for tertiary structural change, and FTIR for second-

ary structure). To calculate a structural index, an

initial interpretation of the original experimental

data is necessary. If the experimental data shows a

monotonic change over the experimental variables,

simple normalization (and optional inversion) would

be sufficient to calculate the index from zero to one.

To illustrate the basic procedure for preparing

structural indices, the CD signal at 222 nm for BSA

from pH 3 to 8 as a function of temperature [Fig.

1(A)] decreased with distinct transitions seen as the

temperature increased, indicating a loss of protein

secondary structure. The data defines the range of

possible changes for BSA’s secondary structure over

the given pH and temperature range as examined

by CD. As seen in Figure 1(D), the secondary struc-

ture index (SI) of BSA was calculated by normalizing

the inverted CD signals at a given pH and tempera-

ture with an increase in negative signal, indicating

a loss of structure.

The intrinsic fluorescence peak position shift in

proteins is sensitive to the microenvironmental

changes around tryptophan resides and was there-

fore selected to prepare a structural index for terti-

ary structure. Changes in the hydration state of

indole side chains can produce either red or blue

shifts corresponding to increases or decreases in sur-

face exposures, respectively. This change can there-

fore be interpreted in terms of tertiary structural

changes of the macromolecule. For example, the

peak position of the intrinsic fluorescence spectra for

BSA at pH 3–8 from 10 to 90�C is presented in Fig-

ure 1(B). Unlike the previous CD data, the peak

position shift at pH 3 occurs in a different direction

than the shift at other pH values. Therefore, obtain-

ing an index by normalization of the peak position

shift data at all pH values could lead to the misin-

terpretation of the tertiary structural index at pH 3,

because it suggests that the tertiary structure is

returning to a more native state as temperature

increases. In this case, a comparison of the amount

of deviation on each side of the native state value

becomes more important than that of the direction.

In such cases, we therefore invert the shift value to

make it comparable to the behavior at other pH val-

ues. The same procedures are then applied to obtain

the tertiary structure index (TI) as shown in Figure

1(E). The AI [Fig. 1(F)] was determined from light-

scattering data [Fig. 1(C)] as discussed below.

It is common to obtain experimental data that

does not manifest the slower, continuous changes

observed with BSA. For example, the CD signal at 222

nm for the protein antigen SP1732, as measured from

pH 3 to 8 and 10–90�C, shows a sharp negative change

that decreases in magnitude and converges as illus-

trated in Figure 6(A). The sharp negative response

may be induced by intermolecular interactions. The

CD signal then disappears as the secondary structure

of SP1732 becomes increasingly disrupted and aggre-

gation sets in. Normalization of the inverted CD signal

may not provide an accurate SI, because higher values

of the index at a negative peak do not necessarily indi-

cate the secondary structure content in the native

state. Thus, in this case, it is necessary to calculate

the amount of the signal’s deviation from its initial

value. One method is to integrate the absolute value of

the first derivative of the signal as described in Eq.

(1). The constant C can be determined by the nature of

the signal. The value of C should be either 1 or �1 for

positive or negative correlation, respectively, between

the signal and the amount of structure. In other

words, a positive correlation (C ¼ 1) is defined when

higher signal indicates less structure.

IðxÞ ¼ f ðx0Þ þ c

Z
jf ðxÞ0jdx (1)

where f is the experimental measurement, x0 the initial

value, and C: 61, based on the nature of the signal.
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Figure 6(D) shows the result of applying Eq. (1)

to data in Figure 6(A) with C ¼ 1. The CD signals

are converted to increasing sigmoidal curves. The

larger negative peak at pH 3, however, results in a

much larger deviation from the initial value com-

pared to other pH values. This result is inconsistent

with the original CD signal in which the signals con-

verge to indicate a particular level of unfolded struc-

ture at higher temperature. Normalization of indi-

vidual pH values may adjust this inconsistency, but

it will cause the difference in initial values to be

lost. Rather, introducing an upper (or lower if C ¼
�1)-bound cut-off might be a better option, because

deviations beyond a certain level can be considered

to be the same maximally unfolded (or structurally

altered) state of the macromolecule. In addition, this

approach conserves the initial values. The cut-off

threshold value should be carefully chosen after the

initial interpretation of the experimental data. Fig-

ure 6(G) shows the final SI after applying cut-off cri-

teria to Figure 6(D), followed by inversion and nor-

malization as presented in Eq. (2). Equation (2)

simply represents a combined procedure for cut-off,

normalization, and inversion of the result from

Eq. (1).

findex ¼ g
1þ C

2
� C

Imax � IðxÞ
Imax � Imin

� �
(2)

where Imax is the maximum or upper cut-off value of

I(x) and Imin the minimum or lower cut-off value of I(x)

gðxÞ ¼
1; x > 1
x; 0 � x � 1
0; x < 0

8<
:

The combination of Eqs. (1) and (2) was applied

to calculate the TI and AI from intrinsic fluorescence

peak position shift and static light-scattering data,

respectively, as described in Figure 6(H,I). The cut-

off value for the AI [Fig. 6(I)] should be selected

with the following considerations. It is generally

observed that the intensity of the static light scatter-

ing signal decreases at higher temperature after it

reaches a peak. This decrease in scattering intensity

is usually caused by precipitation and settling of the

sample, not by aggregation itself. The corresponding

AI, therefore, should reach and remain one after its

peak value. Another consideration is the comparison

among different environmental conditions (e.g. pH),

when occasionally scattering signals are too exces-

sive causing suppression of other signals. In this

case, the choice of cut-off value will be subjective as

to whether to use a lower cut-off value (to emphasize

other relatively lower signals) or use a higher cut-off

value (to highlight more intense aggregation condi-

tions). Figure 6(C,F) demonstrates the use of a lower

cut-off value to exhibit aggregation at pH 4 and 7.

Otherwise, these data might be overlooked because

of higher signals at pH 5 and 6.

In summary, Eqs. (1) and (2) are generalized

equations to calculate structural indices from any

sets of experimental data as illustrated in the two

examples presented. Equation (1) converts any data

set into a monotonically changing signal with its ini-

tial value and the amount of deviation from its ini-

tial values, preserved. Equation (2) is then applied

to the results from the Eq. (1) for inversion, normal-

ization, and cut-off. The constant C in Eqs. (1) and

(2) determines the direction of the signal. The Imax

and Imin parameters in Eq. (2) determine the range

of the signal for normalization and cut-off. It should

be noted that experimental noise in the measure-

ments may affect the resulting structural index

derived from Eq. (1), because small fluctuations in

the first derivative will be accumulated and resulted

in a gradual increase of the index. Thus, an appro-

priate smoothing algorithm such as the Savitzky–

Golay smoothing filter27 should be applied to the

data to improve the signal to noise ratio, before

application of Eq. (1).

Construction of three-index EPDs

The purpose of the three-index empirical phase dia-

gram (EPD) is to present a colored diagram that not

only displays the degree of change in a macromole-

cule’s structure and association state in response to

its environmental conditions, but the color itself can

also be related to changes in specific elements of pro-

tein structure. The degree of change is commonly

studied using three structural levels: secondary

structural change, tertiary structural change, and

aggregation. The change in each aspect is defined by

the previously introduced structural indices: SI, TI,

and AI.

The three-index EPD is constructed simply by

mapping each structural index to an RGB color com-

ponent. Because a color in an RGB scheme is

expressed as a tuple of red, green, and blue compo-

nents, we have assigned SI to red, TI to green, and

AI to blue. Thus, a color produced by the summation

of these three color components is mapped to a spe-

cific state of the target macromolecule. Table I lists

the resultant colors and their interpretation in ideal

cases. In the native state of a macromolecule, TI and

SI would have a value of 1, and AI would be zero,

because the amount of tertiary structure and second

structure would be highest, and there will be no

aggregation. This combination confers a yellow color

to the native state, because a range of index value

from zero to one is assigned to a color gradation

from black to the full color of the index respectively.

In some cases, a red color will be observed as the

amount of tertiary structure decreases but the sec-

ondary structure content remains high. This may

also indicate a molten globular state in which
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tertiary structure change occurs before secondary

structure alteration. A brown color, however, will

more frequently appear, because the amount of sec-

ondary structure will probably be reduced slightly

compared to the native state, although it is still rela-

tively higher than the fractional amount of tertiary

structure. At the same time, some aggregation may be

observed in the molten globular state, which forms a

pink color. Once the macromolecule becomes fully

unfolded, the amount of both tertiary and secondary

structure becomes minimal, and therefore the red and

green color components decrease to black. If there is

no aggregation, the resulting color will be black. This

conformationally altered state attains a blue color if

the macromolecule extensively aggregates.

As an optional feature, the individual RGB com-

ponents can be provided alongside the three-index

EPD. Because it is difficult to determine the amount

of an RGB component with a given color, the explicit

display of its RGB components could be helpful in

understanding the interpretation of a color. The

three-index EPD accompanied with its RGB compo-

nent diagrams, therefore, enable facile identification

of changes at each level of structure in the protein.

Construction of radar (star) diagrams
The radar diagram is a widely used graphical repre-

sentation for multivariate data.12,17–23 It has many

similar forms and names such as star glyph, star

chart, and spider chart. The major idea for this data

visualization approach is to arrange multiple axes in

evenly spaced angles from the same starting point to

form a polar coordinate system. Multivariate data,

represented as n-dimensional vectors, is plotted on

the n-axes and connected to each other to form a

(filled) polygon.

The radar diagram used in this work is composed

of multiple radar charts arranged in two-dimensional

Cartesian coordinates of environmental stress condi-

tions. Each radar chart represents physical data

measured at the given stress conditions. For simplic-

ity, all polar axes in a radar plot are adjusted to a dis-

play value between zero and one in which zero is

mapped to the axial starting point and one to the

outer rim. Therefore, stability data should first be

converted to the corresponding structural indices

using Eqs. (1) and (2). In each environmental condi-

tion (e.g., solution pH and temperature), the values in

the associated data indices are mapped to points in

the polar coordinates of the radar chart. The points

are then connected to each other. To enhance the dis-

play of the relative magnitude of these data, circular

grids are placed every 0.2 interval between zero and

one in a radar chart. Unlike the three-index EPD

described earlier, the radar diagram can display any

number of variables. Figure 8(A) shows an example of

a radar chart with eight axes (e.g., using eight differ-

ent experimental readouts). The radar diagram is

known to be well suited to identify similarity and dif-

ference in patterns. The radar diagrams in this work

are also able to aid in the recognition of a range of

environmental conditions in which a macromolecule

shows similar structural behavior. To better serve

this purpose, two guidelines are proposed: (1) Some of

the normalized data (i.e., structural indices) should

be inverted, so that the native state of a macromole-

cule will be displayed as a dot (or smallest area). The

magnitude of signal changes will thus represent the

amount of deviation from a native state. (2) Experi-

mental methods should be grouped on the radar chart

according to which structural feature is being meas-

ured, that is, tertiary and secondary structure and

aggregation.

With regard to the first point, one of the most

critical pieces of information explored in a protein

characterization study is the environmental condi-

tions under which a macromolecule starts to be

structurally altered. If the native state is described

as a dot, small transitions from the native state

become more easily detectable. More importantly,

the nature of the experimental method that detects

a transition becomes readily evident. Second, the

order of presentation of experiments in the radar

plot is an important factor in intuitive pattern recog-

nition. If there are multiple experiments that mea-

sure similar properties, they should be grouped to-

gether instead of undergoing random placement. For

example, three tertiary structure sensitive measure-

ments (e.g., intrinsic fluorescence peak position

shift, UV absorbance second derivative peak posi-

tions, and near UV CD) can be placed in the posi-

tions of Methods 1–3 in Figure 8(A), two secondary

structure measurements (e.g., CD and FTIR) in the

positions of Methods 4–5, and three aggregation

measurements (e.g., static and dynamic light scat-

tering and optical density) in the positions of Meth-

ods 6–8. Such a grouping of data should increase the

visual interpretability by assigning the type of mea-

surement to an appropriate angular placement in

the radar diagram.

Construction of Chernoff face diagrams
H. Chernoff invented the Chernoff face diagram as a

multivariate data visualization technique.13–15 The

Table I. The Relationship of Colors to Protein
Structural Features in Three-Index Empirical Phase
Diagrams

Color Protein structure

Yellow (green þ red) Native state
Red, brown, or pink

(red þ blue)
Molten globular state

Blue Aggregated state
Black Extensively unfolded state

without aggregation
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key idea of this approach is to use the sensitive abil-

ity of human face recognition as an efficient tool to

read and partition multivariate data represented as

human faces. There is no restriction on how to map

multivariate data to human facial features such as

the shape, size, and location of eyebrows, eyes, nose,

mouth, ear, hair, and face. Although the number of

variables can be quite large, seven key facial fea-

tures were implemented here for exploratory pur-

poses as presented in Figure 8(B).

The Chernoff face diagram has the same format

as the radar diagram except each plot at any coordi-

nate is a Chernoff face instead of a radar chart.

Because each facial feature is defined to have a pa-

rameter value ranging from zero to one, all physical

data should be converted to the corresponding struc-

tural indices using Eqs. (1) and (2). In each stress

condition (e.g., pH and temperature), the values in

the associated data indices are mapped to display

associated facial features. In general, three or four

facial variables are adequate to represent macromo-

lecular conformational stability data as shown later

in this work. The native state of a macromolecule is

assigned to a smiling face for better recognition

[along with a short noise combined with no hair or

ears; see Fig. 8(B)].

Clustering analysis of phases
One of the objectives of ‘‘stress/response’’ diagrams is

to better understand macromolecular behaviors

induced by environmental stresses. Macromolecular

structural behavior observed by multiple experimen-

tal techniques is displayed in a two-dimensional

environmental stress grid by color in the three-index

EPD, an equiangular polygon in the radar diagram,

and a human face in the Chernoff face diagram. All

visualization techniques emphasize the detection of

similarity and outliers, which is suited to identifying

boundaries where macromolecular structure initiates

alteration. In many cases, however, changes in color,

the shape of polygons, and human facial characteris-

tics may be too subtle for human visual perception

to recognize a distinct boundary. Computational

clustering algorithms can be helpful in determining

such boundaries. A number of clustering algorithms

have been developed for various types of prob-

lems.28,29 The development and performance evalua-

tion of a certain clustering algorithm and its param-

eters are out of the scope of this study. Rather,

visualization of clustering results will be demon-

strated for each of the three data visualization

approaches.

The k-means clustering algorithm28,29 was cho-

sen for this study because of its popularity. The k-

means clustering algorithm is a widely used method

to calculate k central points (or centroids) in which

all samples belong to each cluster whose mean is the

calculated centroid. The number of clusters k must

be postulated, and therefore, various values of k are

tried and selected after evaluation. The result is not

always optimal, because the algorithm tries to con-

verge rapidly to a local optimum from random initial

centroid locations. Therefore, the results can be

manually correctable based on the interpretation of

raw data. In addition, the same observation values

under different environmental conditions are usually

chosen as the same cluster by the algorithm,

although actual interpretation may be different. In

this case, clustering of indices rather than raw data

might produce better results.

Once the clusters are obtained, they can be dis-

played on the three-index EPD, the radar diagram,

and the Chernoff face diagram as line boundaries.

For the radar and Chernoff face diagrams, a cluster

can be represented as a single radar chart or a

Chernoff face, which displays averaged values of all

images in the cluster. This clustered version of a ra-

dar chart or Chernoff face diagram provides a more

Figure 8. (A) Example of a radar chart with eight variables (experimental methods). All variables are set to a value of 1 with

intervals of 0.2 (see text). (B) Chernoff face diagrams with seven variables. Each variable can vary from zero to one. Three

faces are constructed with all variables set at 0, 0.5, and 1. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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compact view in summarizing the characteristics of

each cluster. We generally find the clustered radar,

or Chernoff face diagrams provide the best summary

of the data, as shown in the Results section.
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