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Sirtuin 1 (SIRT1) is the most conserved mammalian
NAD1-dependent protein deacetylase that has emerged as
a key metabolic sensor in various metabolic tissues. In re-
sponse to different environmental stimuli, SIRT1 directly
links the cellular metabolic status to the chromatin struc-
ture and the regulation of gene expression, thereby modu-
lating a variety of cellular processes such as energy
metabolism and stress response. Recent studies have
shown that SIRT1 controls both glucose and lipid metab-
olism in the liver, promotes fat mobilization and stimulates
brown remodeling of the white fat in white adipose tissue,
controls insulin secretion in the pancreas, senses nutrient
availability in the hypothalamus, influences obesity-
induced inflammation in macrophages, and modulates the
activity of circadian clock in metabolic tissues. This review
focuses on the role of SIRT1 in regulating energy metabol-
ism at different metabolic tissues.
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Introduction

Sirtuins, a family of highly conserved protein modifying
enzymes founded by the yeast silent information regulator
2 (Sir2) protein, are NADþ-dependent protein deacetylases
and/or ADP-ribosyltransferases [1–4]. Although yeast Sir2
plays an important role in the maintenance of the silent
chromatin (reviewed in ref. [5]), sirtuins in other model
organisms have been increasingly recognized as crucial reg-
ulators of a variety of cellular processes, ranging from
energy metabolism, and stress response, to tumorigenesis
and aging [6,7].

Among the seven sirtuins that the mammalian genome
encodes [8], SIRT1 is the ortholog of the yeast Sir2 protein
and a nuclear NADþ-dependant protein deacetylase
(Fig. 1). As the most evolutionally conserved mammalian

sirtuin, SIRT1 has been a topic of intense research for more
than a decade. A wealth of data have shown that this sirtuin
is a nuclear metabolic sensor that directly couples the cellu-
lar metabolic status (via NADþ) to the chromatin structure
and the regulation of gene expression (through deacetyla-
tion of histones, transcription factors, and transcription
co-factors). Since it plays a vital role in metabolism, devel-
opment, reproduction, it is not surprising that SIRT1 affects
more complex biological phenomena such as aging and
disease [7,9,10]. Therefore, understanding the role of
SIRT1 in energy metabolism will likely provide insights
into therapeutic strategies designed towards metabolic
diseases and possibly aging.

SIRT1 is a Cellular Metabolic Sensor

As a protein deacetylase, SIRT1 has a very broad range of
protein substrates [7,10] and also shuttles between nucleus
and cytosol in response to certain environmental stimuli
[11]. However, despite the diversity in protein substrates
and subcellular localizations, the activity of SIRT1 is
tightly controlled by the cellular levels of one of its sub-
strates, NADþ (Fig. 1). NADþ is an essential coenzyme
found in all living cells. In metabolism, NADþ is involved
in redox reactions through electron transfer, in which it can
readily switch from electron accepting form (oxidizing)
NADþ to electron donating form (reducing) NADH, and
vice versa [12]. Therefore, NADþ and NADH are exten-
sively utilized in an array of metabolic reactions, and the
cellular level of NADþ is an important indicator of the cel-
lular energy status. As a result, SIRT1 provides a molecular
link between the cellular energy status and the adaptive
transcriptional responses [13]. Due to its ability to modify
and control numerous transcription factors and co-factors
involved in systemic metabolic homeostasis, SIRT1 is in-
creasingly referred to as a master metabolic regulator
(Fig. 2).

Not surprisingly, the activity of SIRT1 is closely con-
trolled by different environmental cues that can change the
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cellular NADþ availability. For instance, a low-energy
status that increases cellular levels of NADþ, such as

fasting, caloric restriction (CR), and exercise, has been
shown to stimulate SIRT1 activity [14–20]. On the other
hand, a high-energy status that decreases cellular NADþ

levels, including high-fat diet feeding and acute inflamma-
tory responses, reduces SIRT1 activity [21–24]. In add-
ition, direct manipulation of the biosynthesis and
catabolism of NADþ can also alter cellular NADþ levels
and thereby SIRT1 activity. For example, increasing the ac-
tivity of Nampt, the rate-limiting enzyme in the salvage
pathway of NADþ biosynthesis, enhances the levels of
NADþ and activity of SIRT1 [25–29], whereas decreasing
the activity of Nampt leads to reduced NADþ levels and
SIRT1 activity [30,31]. Consistently, the treatment of cells
or animals with nicotinamide mononucleotide or nicotina-
mide riboside, NADþ precursors elevates NADþ levels and
SIRT1 activity [21,25,32–34]. Furthermore, deletion of
Parp1, an enzyme that creates polymers of ADP-ribose at
the expense of NADþ [35–37], or decrease in the activity
of CD38, the major NADþ glycohydrolase that is present
in the inner nuclear membrane [34,38,39], elevates NADþ

levels and promotes the activity of SIRT1. Taken together,
these data indicate that SIRT1 is an essential metabolic
sensor that can directly adapt the nuclear transcriptional
networks to the cellular metabolic state.

Figure 1 SIRT1 is an NAD1-dependent protein deacetylase SIRT1

splits NADþ into nicotinamide and ADP-ribose, then transfers the acetyl

group from the protein substrate to the 20-OH group of ribose ring in the

ADP-ribose molecule. Nutritional, hormonal, and environmental signals

can modulate the deacetylase activity of SIRT1 through changes of the

cellular NADþ levels, alterations in the expression of SIRT1 protein, or

posttranslational modifications/interactions on SIRT1 protein.

Figure 2 SIRT1 is a master metabolic regulator in different metabolic tissues SIRT1 couples the deacetylation of a number of transcription factors

and co-factors to the cleavage of NADþ, an indicator of cellular metabolic status, playing a vital role in metabolism, inflammation, development, and

reproduction, which will ultimately affect the processes of aging and disease.
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In addition to cellular NADþ levels, the expression and
activity of SIRT1 are also under control of an intricate regu-
latory network at multiple layers in response to nutritional,
hormonal, and environmental signals (Fig. 1). This regula-
tory network functions at different levels and is critical for
maintaining a suitable dosage of SIRT1 in response to
various environmental stimuli (for detailed reviews, please
see [40–42]).

SIRT1 is a Key Regulator of Hepatic Glucose
and Lipid Metabolism

The liver is a central metabolic organ that controls several
key aspects of lipid and glucose metabolism in response to
nutritional and hormonal signals [43]. It is essential for the
maintenance of systemic energy homeostasis in the body.
Recent reports have shown that SIRT1 is an important regu-
lator of hepatic glucose metabolism (Fig. 2). For instance,
hepatic SIRT1 is a key modulator of gluconeogenesis in re-
sponse to fasting. It has been shown that during the short-
term fasting phase, SIRT1 inhibits TORC2 (also known as
CRTC2), a CREB-regulated transcription coactivator that is
important for cAMP/CREB-mediated activation of gluco-
neogenesis genes, leading to reduced gluconeogenesis [44].
Yet the prolonged fasting increases SIRT1-mediated deace-
tylation and activation of PGC-1a, an essential co-activator
for a number of transcription factors, resulting in increased
fatty acid oxidation and improved glucose homeostasis
[14,45,46]. In addition to TORC2 and PGC-1a, SIRT1 also
deacetylates and activates Foxo1, resulting in increased glu-
coneogenesis [47]. Therefore, the net effect of SIRT1 on
the regulation of gluconeogenesis is determined by the
complex interaction between multiple factors at different
phases of fasting and/or feeding.

Hepatic SIRT1 also plays an important role in hepatic
fatty acid metabolism (Fig. 2). For example, it has been
shown that adenoviral knockdown of SIRT1 reduces ex-
pression of fatty acid b-oxidation genes in the liver of
fasted mice [48]. Our lab recently showed that specific dele-
tion of the exon 4 of the mouse hepatic SIRT1 gene, which
results in a truncated inactive SIRT1 protein, impairs fatty
acid b-oxidation through the PPARa/PGC-1a pathway,
thereby increasing the susceptibility of mice to high-fat
diet-induced dyslipidemia, hepatic steatosis, inflammation,
and endoplasmic reticulum (ER) stress [45]. Consistently, a
complete deletion of hepatic SIRT1 by floxing exons 5 and
6 leads to development of liver steatosis even under normal
feeding conditions [49]. Conversely, hepatic overexpression
of SIRT1 mediated by adenovirus attenuates hepatic stea-
tosis and ER stress, and restores glucose homeostasis in
mice [50], confirming the essential role of SIRT1 in main-
taining hepatic glucose and lipid homeostasis.

SIRT1 also regulates hepatic cholesterol and bile acid
homeostasis through direct modulation of the liver X recep-
tors (LXRs) and farnesoid X receptor (FXR) [51–53]. LXR
and FXR are nuclear receptors that function as important
cholesterol and bile acid sensors [54]. It has been previous-
ly shown that SIRT1 can directly deacetylate LXRs, result-
ing in increased LXR turnover and enhanced target gene
expression [51]. Systemic deletion of SIRT1 in mice results
in decreased serum HDL levels [51]. More recently, we and
others have shown that the bile sensor FXR is also a target
of hepatic SIRT1 in metabolic regulation [52,53]. It appears
that SIRT1 is able to regulate the activity of FXR signaling
at multiple levels. Firstly, SIRT1 regulates the expression of
FXR through interaction with a hepatic nuclear factor
HNF1a, which may also involve the co-activator PGC-1a
[53]. Secondly, SIRT1 deacetylates FXR, increasing its
DNA binding affinity [52]. Thirdly, SIRT1 appears to dir-
ectly co-activate FXR through its co-activator PGC-1a.
Finally, hepatic SIRT1 seems to stimulate the biosynthesis
of bile acids, endogenous ligands of FXR, which in turn
bind to FXR and induce its transcriptional activity [53].
Interestingly, recent studies have demonstrated that the
FXR pathway also positively regulates the translation of
SIRT1 protein via p53/miR-34a pathway [55,56]. Therefore,
SIRT1 and the FXR signaling pathway mutually interact at
multiple levels, coordinately regulating hepatic bile acid
and cholesterol homeostasis.

Walker et al. and Ponugoti et al. recently showed that
SIRT1 may also regulate hepatic lipid metabolism through
deacetylation of SREBPs [57,58], critical regulators of lipo-
genesis and cholesterolgenesis [59]. These two reports
revealed that SIRT1 can directly deacetylate SREBPs, and
that SIRT1 activity is important in the fasting-dependent at-
tenuation of SREBPs [57,58]. Consistently, chemical acti-
vators of SIRT1 inhibit SREBPs target gene expression
in vitro and in vivo, correlating with attenuated liver stea-
tosis in diet-induced and genetically obese mice. In
summary, these findings imply that hepatic SIRT1 plays a
critical role in the regulation of local and systemic metabol-
ic homeostasis.

SIRT1 is an Important Modulator of
Maturation and Remodeling of
Adipose Tissues

Adipose tissues, including white adipose tissue (WAT) and
brown adipose tissue (BAT), are important metabolic
tissues involved in fat storage, body insulation, and body
temperature regulation. They are also major endocrine
organs functioning to modulate systemic energy metabol-
ism. For example, WAT-derived hormones, such as leptin,
adiponectin, and resistin, control energy balance, glucose
regulation, and fatty acid catabolism. Adipose tissues
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originate from the differentiation of lipoblasts, and one of
the primary factors involved in adipose tissue differenti-
ation is the nuclear receptor PPARg [60]. SIRT1 has been
shown to repress PPARg in WAT, thereby suppressing the
expression of adipose tissue markers, such as the mouse
aP2 gene ([61], Fig. 2). Consistently, genetic ablation of
SIRT1 in adipose tissues leads to increased adiposity and
insulin resistance [62]. The treatment of mice on a high-fat
diet with resveratrol, a polyphenol that activates SIRT1 in
cells directly or indirectly [63–67], has also been shown to
protect against high-fat-induced obesity and metabolic
derangements [68–70]. These findings demonstrate that
SIRT1 acts in concert with lipid sensing transcription
factors, such as PPARg, to adapt gene transcription in
WAT to changes in systemic nutrient levels.

In addition to WAT, previous studies have also impli-
cated a role of SIRT1 in the differentiation and function of
BAT, an important non-shivering thermogenesis organ that
is essential for survival of non-shivering animals and neo-
nates. It appears that SIRT1 can modulate BAT through
both cell autonomous and non-cell autonomous mechan-
isms. On the one hand, SIRT1 in BAT may directly
promote BAT differentiation through repression of the
MyoD-mediated myogenic gene expression signature and
stimulation of PGC-1a-mediated mitochondrial gene ex-
pression [71]. On the other hand, SIRT1 in propiomelano-
cortin (POMC) expressing neurons is able to selectively
control perigonadal WAT-to-BAT-like remodeling to in-
crease energy expenditure in female mice [72]. A recent
study indicates that SIRT1 can also regulate the brown
remodeling of WAT in response to cold exposure by deace-
tylation of PPARg [73]. Qiang et al. showed that SIRT1-
dependent deacetylation of PPARg is required to recruit the
BAT program coactivator Prdm16 to PPARg, leading to se-
lective induction of BAT genes and repression of WAT
genes [73]. Therefore, it seems that SIRT1 differentially
modulates the activity of PPARg signaling in response to
different environmental stimuli in WAT. SIRT1 inhibits the
PPARg signaling through modulation of local acetylation
status of histones and recruitment of co-repressor NCoR
during the fasting response [61], yet directly enhances the
PPARg signaling through deacetylation of the nuclear re-
ceptor itself in response to cold exposure [73].

SIRT1 Regulates Pancreatic Insulin
Secretion in Response to Nutritional
and Hormonal Signals

Pancreatic b cells are specialized endocrine cells located in
the islets of Langerhans in pancreas. They are systemic
metabolic sensors that synthesize and store insulin, and
release insulin in response to the increase in blood glucose
levels. Destruction of these cells is the leading cause of

type 1 diabetes mellitus, and their dysfunction partially
contributes to the pathogenesis of type 2 diabetes [74–76].
SIRT1 has been shown to be a positive regulator for pan-
creatic insulin secretion, which in turn triggers glucose
uptake and utilization. For example, increased dosage of
SIRT1 specifically in pancreatic b cells improves glucose
tolerance and enhances insulin secretion in response to
glucose in mice [77], whereas systemic deletion of SIRT1
impairs glucose-stimulated insulin secretion [78]. In both
studies, SIRT1 has been shown to promote insulin secretion
through transcriptional repression of uncoupling protein 2
(UCP2) (Fig. 2). Furthermore, mice treated with resveratrol
display an increased capability to secrete insulin in b cells
in response to glucose [79]. In line with these observations,
activation of SIRT1 by its activators in animals protects
against high-fat-induced obesity and insulin resistance [68–
70], and modest overexpression of SIRT1 has a protective
effect against high-fat induced glucose intolerance [80,81].
Collectively, these observations indicate that SIRT1 is a
vital regulator of pancreatic insulin secretion in response to
the nutrient availability.

SIRT1 in Central Control of Metabolic
Homeostasis

The brain plays a critical role in the regulation of systemic
energy homeostasis. Through assessment and integration of
peripheral metabolic, endocrine, and neuronal signals,
central nervous circuits are able to orchestrate a modulating
program on both behavioral patterns and peripheral metab-
olism to adapt acute and chronic energy requirements
[82,83].

Among several key brain areas involved in the regulation
of energy balance, the hypothalamus/pituitary axis is the
primary structure that interprets adiposity and nutrient-
related inputs. Recent studies have implied that SIRT1 may
play a role in this central energy regulatory area. For in-
stance, it has been shown that both CR and fasting enhance
SIRT1 expression and activity in the hypothalamus [84,85].
Mice lacking SIRT1 in the brain show specific anterior pi-
tuitary cell defects and fail to mediate changes in pituitary
signaling and physical activity in response to CR [86],
while brain-specific SIRT1 transgenic mice display
enhanced neural activity in the hypothalamus [85]. These
findings suggest that SIRT1 in the brain may function as a
link between the hypothalamus/pituitary hormones and
animal metabolic status.

However, it turns out that the role of SIRT1 in the
central control of whole body energy homeostasis is more
complicated than previously expected (Fig. 2). In the hypo-
thalamus, the anorexigenic POMC expressing neurons and
the orexigenic agouti-related protein (AgRP) expressing
neurons are the major regulators of feeding and energy
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expenditure [87]. The POMC neurons produce satiety pep-
tides thereby inhibiting food intake after feeding, while the
AgRP neurons promote feeding in response to fasting and
CR. It appears that SIRT1 displays distinct functions in
these two neuron populations. On the one hand, inhibition
of hypothalamic SIRT1 activity increases acetylation of
FOXO1, resulting in increased POMC and decreased AgRP
expressions, thereby decreasing food intake and body
weight gain [84]. In line with these observations, AgRP
neuron-specific deletion of SIRT1 decreases AgRP neuron-
al activity, thereby alleviating the inhibitory tone on the
POMC neurons, resulting in decreased food intake and
body weight [88]. On the other hand, specific deletion of
SIRT1 in POMC neurons in mice causes a blunted response
to leptin signaling and reduced energy expenditure, leading
to hypersensitivity to diet-induced obesity [72]. Although
the physiological significance of these distinct functions of
SIRT1 is still not clear, these studies confirm that SIRT1 is
an essential element in the periphery-central feedback
circuits that mediate normal responses to nutrient availabil-
ity. Consistent with these notions, central administration
of small molecule SIRT1 activator has shown promise
in controlling of diet-induced obesity. For example, long-
term intracerebroventricular infusion of resveratrol nor-
malizes hyperglycemia and greatly improves hyperinsulinemia
in mice with diet-induced obesity and diabetes [89]. In
summary, SIRT1 activity appears to be an important player
in the central regulation of nutrient sensing.

SIRT1 is a Key Transcriptional Regulator
of Inflammation

Macrophage activation and infiltration into resident tissues
is known to mediate local inflammation and is a hallmark
of metabolic syndrome [90–92]. This infiltration-induced
local inflammation has been increasingly recognized as a
causal factor leading to the development of the cluster of
diseases surrounding metabolic syndrome [93].

Over the past few years, SIRT1 has been identified as an
important repressor of inflammation in multiple tissues/
cells including the macrophage [94–97]. For example, in
mice, modest overexpression of SIRT1 leads to suppression
of the inflammatory response, whereas whole-body insuffi-
ciency of SIRT1 induces systemic inflammation upon
high-fat diet challenge [80,98,99]. Furthermore, deletion of
SIRT1 in hepatocytes results in increased local inflamma-
tion under high-fat diet [45]. Several recent studies indicate
that the beneficial effect of SIRT1 on metabolic disorders
is due in part to its ability to suppress the activity of
NF-kB, the master regulator of cellular inflammatory re-
sponse, in macrophages ([100], Fig. 2). It has been shown
that SIRT1 deacetylates the RelA/p65 subunit of NF-kB
at lysine 310, leading to decreases in the NF-kB

transcriptional activity, thereby reducing production of
proinflammatory cytokines and anti-apoptotic genes [100].
In line with this notion, moderate overexpression of SIRT1
in mice leads to reduced NF-kB activity [80], while knock-
down of SIRT1 in the mouse macrophage cell line
RAW264.7 and in intraperitoneal macrophages increases
LPS-stimulated TNFa secretion [96]. Moreover, it has been
shown that cigarette smoke decreases cellular SIRT1
protein levels, causing increased acetylation and activation
of NF-kB proinflammatory response in human macro-
phages [94]. Using a macrophage-specific knockout mouse
(Mac-SIRT1KO), our group has recently provided in vivo
evidence that SIRT1 deacetylates the nuclear RelA/p65
subunit of NF-kB and attenuates NF-kB-mediated gene
transcription, predisposing mice to the development of
insulin resistance and metabolic disorders [97]. Together,
these findings demonstrate that SIRT1 activity in macro-
phages directly regulates immune responses and suggests
that activators of SIRT1 may play an important therapeutic
role in the treatment of chronic inflammatory diseases.

Interestingly, the activity and expression of SIRT1 are
also under control of systemic inflammation. For instance,
it has been shown that interferon gamma (IFNg), a
pro-inflammatory cytokine, represses the transcription of
SIRT1 through class II transactivator, thereby disrupting
metabolism and energy expenditure [101]. Moreover, TNFa
has been shown to induce cathepsin B-mediated cleavage
and inactivation of SIRT1 in chondrocytes [102]. More im-
portantly, high-fat diet feeding in mice induces the cleavage
of SIRT1 protein in adipose tissue through the
inflammation-activated caspase-1 [62]. Therefore, SIRT1
and inflammatory signals mutually interacts at various
levels, and SIRT1 is an essential molecular link between
nutrient, inflammation, and metabolic dysfunction.

SIRT1 in the Regulation of Circadian
Rhythm

Circadian rhythm refers to an endogenous entrainable
24-hour oscillation of any biological process in all living
entities on Earth. This circadian rhythm depends on internal
clocks that work in part through chromatin modification
and epigenetic control of gene expression [103]. In
mammals, the circadian clock is largely controlled by
negative-feedback loops mediated by the heterodimeric
transcription factors CLOCK-BMAL1 and their transcrip-
tional targets, including the PER and CRY proteins that in
turn directly repress CLOCK-BMAL1 activity, as well as
REV-ERB and ROR nuclear receptors that control BMAL1
expression [104]. Intriguingly, the circadian clock has been
recently associated with cellular metabolism. For example,
circadian disruption in mice has been linked to metabolic
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dysfunctions [105,106], while high-fat diet feeding alters
both behavioral and molecular circadian rhythms [107,108].

Chromatin modification has been shown to play an im-
portant role in the regulation of circadian gene expression.
For example, the CLOCK protein itself is a transcriptional
activator that functions as a histone acetyltransferase [109].
Moreover, SIRT1 has also been linked to the regulation of
the circadian rhythm (Fig. 2). Early studies have shown that
the expression and/or activity of SIRT1 are cyclically regu-
lated by the circadian clock [110,111]. SIRT1 then interacts
with CLOCK-BMAL1 to directly regulate the amplitude
and duration of circadian clock-controlled gene expression
through deacetylation of PER2 and/or BMAL1 [110,111].
However, how the circadian clock modulates SIRT1 expres-
sion/activity remained unclear in these studies. Two later
studies discovered that the circadian regulation of SIRT1
activity is due to circadian oscillations of the cellular
NADþ levels [112,113]. It has been found that Nampt is a
direct transcriptional target of CLOCK-BMAL1. Together,
these studies add a new feedback loop in the circadian
clock that involves CLOCK-BMAL1, Nampt, NADþ, and
SIRT1, providing an important connection between physio-
logical rhythm and cellular metabolism.

Although oscillations in the cellular NADþ levels have
been limited to the cyclical regulation of SIRT1 activity
[112,113], an earlier study pointed towards an alternative
mechanism [111]. Nakahata et al. [111] showed that the
activity of immuno-purified endogenous SIRT1 proteins
display a circadian oscillating pattern when measured in vitro
with fixed amount of exogenous NADþ, suggesting that post-
translational modifications or protein–protein interactions
also play a role in the circadian regulation of SIRT1 activity.
SIRT1 has been shown to be phosphorylated by several
kinases in cells [114–116]. In particular, phosphorylation of
SIRT1 by DYRK1A, an essential clock component that
governs the rhythmic phosphorylation and degradation of
CRY2 protein [117], activates its NADþ-dependent deacety-
lase activity in response to various environmental stresses
[118]. SIRT1 also has several interacting partners that can dir-
ectly inhibit or activate its activity [119–122]. Therefore, ex-
ploring the possible role of these factors in the circadian
regulation of SIRT1 activity may provide novel insights into
its function in circadian rhythm.

SIRT1 is a Key Regulator of Systemic Insulin
Sensitivity

The important roles that SIRT1 plays in metabolism, in-
flammation, and circadian rhythm in various metabolic
organs strongly suggest that SIRT1 is vital in regulation of
whole-body insulin sensitivity, a physiological condition
that is tightly associated with development of metabolic

syndrome, a cluster of metabolic abnormalities including
obesity, type 2 diabetes, dyslipidemia, fatty liver, and a pro-
inflammatory and prothrombotic state [123–125]. Consistent
with this notion, SIRT1 has been shown to directly regulate
pancreatic insulin secretion, which in turn helps to improve
systemic insulin sensitivity [77]. It has also been shown that
SIRT1 stimulates mitochondrial fatty acid oxidation genes
through PGC-1a in skeletal muscle, thereby promoting
insulin sensitization [126]. Moreover, SIRT1 can improve
systemic insulin sensitivity through interaction with
AMP-activated protein kinase (AMPK), another essential
metabolic sensor. On the one hand, SIRT1 directly deacety-
lates the AMPK protein kinase liver kinase B1, increasing the
phosphorylation and activity of AMPK [127,128]. On the
other hand, activation of AMPK by its synthetic activator,
AICAR, increases cellular NADþ/NADH ratio, activating
SIRT1 and increasing fatty acid oxidation and mitochondrial
biogenesis [19,20,67]. In addition, it has been shown that
SIRT1 directly regulates the secretion of adiponectin from
adipocytes through deacetylation of FoxO1 [129], which can
then help to improve insulin sensitivity in the liver and
muscle [130,131].

SIRT1 also appears to be involved in the insulin down-
stream signaling pathway. It has been shown that SIRT1
represses the expression of PTP1B, a negative regulator of
insulin signaling, thereby improving insulin sensitivity, par-
ticularly under insulin-resistant conditions [132]. A few cell
culture studies also indicate that SIRT1 can interact with
insulin receptor substrates, such as IRS-1 and IRS-2,
thereby modulating their phosphorylation or acetylation
status and improving insulin signaling [133].

Consistently, genetic deletion of SIRT1 in adipose
tissues [62], myeloid cells [97], or liver [45,134], or system-
ic loss of a single-copy of the SIRT1 gene [96,97], leads to
the development of insulin resistance and signs of metabol-
ic syndrome upon high-fat diet feeding, whereas modest
overexpression of SIRT1 protects animals against high-
fat-induced glucose resistance [80,81]. In line with these
observations, activation of SIRT1 by its activators such as
the resveratrol and SRT1720 in animals protects against
high-fat-induced obesity and insulin resistance [68–70].
Therefore, SIRT1 could be an important therapeutic target
for insulin-resistance-associated metabolic syndrome.

Conclusions

The alterations of hepatic lipid metabolism, pancreatic
insulin secretion, fat maturation and remodeling, central nu-
trient sensing, inflammatory response, circadian gene ex-
pression, as well as insulin sensitivity in SIRT1 knockout
and transgenic mouse models suggest that SIRT1 is an es-
sential regulator of systemic energy homeostasis, and that
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pharmacological modulation of SIRT1 could be of interest
to control diseases associated with obesity. Consistent with
this notion, small-molecule activators of sirtuins, such as the
resveratrol and SRT1720, have shown promise as therapeutic
agents for the treatment of metabolic diseases [63,70,135].
However, whether these small-molecule drugs are direct
activators of SIRT1 that function to prevent obesity and dia-
betes is still a topic of intense debate [64–67]. Therefore,
further research on the mechanism-based drug design, such
as chemical compounds designed based on the phosphoryl-
ation mimetics of SIRT1 [118,136], might help to develop
the next generation of SIRT1-activating molecules.
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