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Abstract
We developed CREST (Clipping REveals STructure), an algorithm that uses next-generation
sequencing reads with partial alignments to a reference genome to directly map structural
variations at the nucleotide level of resolution. Application of CREST to whole-genome
sequencing data from five pediatric T-lineage acute lymphoblastic leukemias (T-ALLs) and a
human melanoma cell line, COLO-829, identified 160 somatic structural variations. Experimental
validation exceeded 80% demonstrating that CREST had a high predictive accuracy.

Somatically acquired structural variations (SVs) can induce alterations in genes that directly
contribute to cellular transformation1. Transcriptome2 and whole genome sequence
analysis3, 4 of tumor and matched germ line samples have led to a marked improvement in
our ability to identify SVs in cancer. Nevertheless, the accurate identification of SVs using
next generation sequencing (NGS) remains challenging. Typically in these analyses, 30–
100bp reads from the two ends of a sequence fragment are obtained, mapped to the
reference human genome, and discordances in distance, orientation, and/or mapping status
(e.g. whether a read is mapped or unmapped to the reference genome) are used to identify
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structural variations5–9. These approaches only infer the approximate genomic locations of a
SV but fail to pinpoint their exact breakpoint at the nucleotide level. Moreover, the available
methods tend to generate a high frequency of false positives when applied to experimental
data due to the presence of PCR and/or sequencing artifacts and the inherent difficulty of
accurately mapping sequences in repetitive regions.

To overcome some of these deficiencies, we explored an alternative approach for SV
discovery that is based on directly mapping of SV breakpoints at the nucleotide level
without relying on the discordant mapping of paired end reads. By definition a sequence
read that spans a bona fide structural variation will have partial alignment to each of the two
sides of the junction (Fig. 1a). Current NGS mapping algorithms like BWA10 compute local
alignment (that is, partial alignment) for a read either automatically when its mate is globally
aligned to the genome or by user request. The unaligned portion is masked by a process
termed “soft-clipping” because the unaligned subsequence is retained but not trimmed even
though it does not map to the current genomic location (Fig. 1b). With longer NGS read
length (≥75bp), these soft-clipped subsequences can be of sufficient length to map
unambiguously to a different genomic location, thus, identifying the second breakpoint for a
putative structural variation.

Based on this concept, we developed CREST (Clipping REveals STructure), a software tool
that uses the soft-clipping reads to directly map the breakpoints of structural variations. For
each SV, the first breakpoint is identified by presence of soft-clipped reads while its partner
is found by an assembly-mapping-searching-assembly-alignment procedure (Fig. 1c, Online
Methods). The identified SVs are then classified into the following five subtypes based on
location and orientation of the breakpoints: (1) inter-chromosomal translocations (CTX), (2)
intra-chromosomal translocations (ITX), (3) inversions (INV), (4) deletions (DEL), and (5)
insertions (INS) (Supplementary Figs. 1 and 2).

We applied CREST to whole genome DNA sequence data obtained from five cases of
childhood T-lineage acute lymphoblastic leukemia (T-ALL) with matched tumor and normal
samples that were sequenced as part of the St. Jude Children’s Research Hospital,
Washington University Pediatric Cancer Genome Project. This analysis identified a total of
110 SVs (Supplementary Table 1) including 36 CTX, 25 ITX, 1 INV, 26 DEL, 22 INS. PCR
primers were designed successfully for 107 (97%) of the predicted SVs and Sanger
sequencing of the generated amplicons from the respective tumors confirmed the predicted
SV breakpoints in 89 (82% validation rate, representative results are shown in Fig. 2a).
Across the five samples, the validated SVs include 31 CTX, 19 ITX, 1 INV, 22 DEL and 16
INS. The validated translocations detected through CREST ranged from balanced
translocations to highly complex rearrangements that involved multiple chromosomes. A
representative example is shown in Fig. 2b in which a complex rearrangement involving
chromosomes 1, 4, 5, and 10 was defined in one sample.

To compare the performance of CREST to other available algorithms, we first reanalyzed
this data set using BreakDancer5, a commonly used tool that implements a paired-end
discordance mapping (PEM) algorithm. BreakDancer identified only 27 out of the 89
validated SVs that were defined by CREST. Moreover, although BreakDancer identified
another 1,037 putative SVs, none of these survived a post-processing quality check and thus
represented false positive predictions. A second PEM algorithm, GSAV, detected 76 (85%)
of the validated SVs amongst a total of 5,880,492 predictions, demonstrating that this
relatively low false negative rate was achieved with a cost of an extremely high false
positive error. Re-analysis using Pindel11, a program that uses unmapped reads across
insertion/deletion (indel) breakpoints, detected only five of the 89 validated SVs found by
CREST suggesting that different methods are required for finding gross structural variations
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and indels. Details of the superior performance of CREST compared to these algorithms are
provided in Supplementary Data 1.

To further assess the performance of CREST, we applied it to a published whole-genome
sequencing dataset from the metastatic melanoma cancer cell line COLO-82912. Using a
paired-end discordant mapping method3 the published analysis reported 37 validated SVs12.
By comparison, CREST identified 76 SVs (Supplementary Data 2, Supplementary Table 2)
including 26 of the 37 reported SVs. Of the 11 reported SVs that were not identified by
CREST, 6 were found to have soft-clipped reads in the matching normal sample
COLO-829BL, indicating that these six SVs represent germline polymorphisms but not
tumor specific somatic SVs. Of the five remaining SVs, three lacked soft-clipped reads, one
had soft-clipped reads that mapped to multiple genomic locations and one had low-quality
soft-clipped reads across the breakpoints.

CREST identified 50 additional SVs that were not reported previously12. We selected 20 to
directly validate by PCR amplification of DNA extracted from the COLO-829 cell line
(Supplementary Table 3). 18 of the 20 novel SVs, including 7 CTX, 9 DEL and 2 INS were
validated by Sanger sequencing (Supplementary Figs. 3 and 4).

To assess the false negative rate of CREST in identifying germline structural variations, we
simulated whole-genome sequencing data for the 887 copy number variations (CNVs) in
NA12878, one of the individuals characterized by the 1000 Genomes Project by applying 19
different SV detection methods on high-coverage sequencing data generated by 3 different
platforms13. The false negative rate of CREST is 22–27% with 3% false positive calls,
demonstrating its superior performance in both sensitivity and accuracy compared with
BreakDancer and Pindel (Supplementary Table 4). 52% of the CNVs missed by CREST are
in regions of segmental duplications where germline CNVs are frequent (26% of NA12878)
but somatically acquired copy number alterations (CNAs) are rare (6% of the 5 T-ALLs)
based on the data analyzed in this study, suggesting that the false negative rate of somatic
CNAs could be lower than that of germline CNVs. The results of this analysis are presented
in more details in Supplementary Data 3

Although the concept of using sequences that span breakpoints has been previously explored
for finding chimeric mRNAs2, for mapping viral integration sites by targeted sequencing14

and for identifying indels11, CREST is the first use of this approach for mapping structural
variations at the level of the whole genome. CREST is particularly well suited for
identifying somatically acquired structural variations in paired tumor-normal samples, where
its precision in finding the breakpoints coupled with its integrated ability to subtract
common variations present in both germline and tumor samples also allows the removal of
false lesions caused by the artifacts generated during library construction and the difficulties
inherent in accurately mapping short sequence reads. Although other computational methods
for detecting SV have been developed, none outperform CREST in our comparative analysis
(see Supplemental Data 1). Moreover, methods specifically designed for the identification of
germline deletions15 are not capable of finding inter- and intra-chromosomal
rearrangements, which are key mechanisms for creating oncogenic fusion proteins in cancer.
The entire CREST package can be downloaded from http://www.stjuderesearch.org/site/lab/
zhang with user manual and test data.

Although CREST provides a significant improvement over standard paired-end approaches
for identifying SVs, it continues to have difficulty with repetitive DNA sequence regions,
rearrangements that occur within or adjacent to germline polymorphic structural variations,
and rearrangements that contain non-template DNA sequences that are inserted at the
breakpoints and are of similar or longer length than the NGS reads. In addition, CREST, like
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all mapping methods, demands high quality DNA reads of sufficient coverage to accurately
define the DNA sequence (details in Supplementary Discussion). The method provides base-
pair level resolution of breakpoints and can therefore be used not only for identifying the
number and type of SVs within a tumor genome, but should also allow an analysis of the
breakpoint DNA sequence as a way to gain insights into the mechanism responsible for the
generation of the structural rearrangement.

ONLINE METHODS
Whole-genome sequencing data

DNA samples were obtained from diagnostic bone marrow aspirates from five pediatric
patients with T-ALL and from matched remission bone marrow samples from each patient
(as non-tumor controls). The samples were obtained following informed consent given by
the patient (if over the age of majority), their parent, or guardian. The study was approved
by the Institutional Review Boards of both St Jude Children’s Research Hospital and
Washington University. The DNA samples were paired-end sequenced on an Illumina
GAIIX using DNA fragments with 300–500bp insert size and DNA sequence reads 100bp,
as previously described 4. The mean coverage for the tumor genomes ranged from 32 to 34
fold while that of the matching normal ranged from 24 to 28 fold. All reads were mapped to
the human assembly NCBI build 36 using the program BWA10 with the default parameters.
In addition to this primary DNA sequence data, paired tumor and normal whole-genome
sequencing data from the malignant melanoma cell line COLO-829 were obtained from the
Sanger Center in the format of bam files12 which store the read alignments to the human
assembly NCBI build 36.

CREST algorithm and SV analysis pipeline
The process flow of the SV analysis pipeline using CREST is shown in Supplementary
Figure 2. The input data can either be two bam files representing paired tumor/normal
samples or a single bam file. Germline variations are filtered in the paired analysis. The SV
detection algorithm first collects all soft-clipped reads, coded as “S” in the CIGAR
(Compact Idiosyncratic Gapped Alignment Report) string into a BAM (Binary Alignment/
Map format) file. The soft-clipped reads are then used to define putative SV breakpoints that
meet the following criteria: (1) the number of soft-clipped reads (c) and the sequence
coverage (C) by including reads with >97% sequence identity and a minimum BLAT score
of 30 (see methods for details); or (2) the probability of observing at least c soft-clipped
reads with the coverage C is greater than 0.05 based on a binomial distribution of observing
a heterozygous SV at a user-specified heterogeneity factor. Many putative SV breakpoints
have soft-clipped reads as well as wild-type reads because SVs usually occur either in a
subset of tumors due to tumor heterogeneity and/or are heterozygous events. Therefore, with
the exception for homozygous deletion events, there are usually two groups of reads at a
putative breakpoint. Using binomial distribution allows us to evaluate the significance of
observing c number of soft-clipped reads (one group) given the coverage (the wild-type
group) at the site. Use of the second criterion ensures that statistically significant SVs are
retained even if they do not meet the ad-hoc user-defined criteria regions where the NGS
coverage is low.

Each putative breakpoint is considered to be the first breakpoint of a potential SV. The
corresponding partner breakpoint is identified by applying an assembly-mapping-searching-
assembly-alignment procedure consisting of CAP316 for assembly and BLAT17 for genomic
search and alignment. If the alignment shows high identity (default set to 90%) between the
second contig and the first breakpoint, then the two breakpoints are considered to form a
putative structural variation. The identified putative SVs are then filtered to remove false
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positives due to alignment artifacts by the following process. For each SV, the distance
between the second contig to the first breakpoint is required to be within a short distance
(user-definable, default set to 15bp) to ensure it does map back to the first breakpoint. For a
paired analysis that use both germline and somatic data, presence of SV in the germline
sample is further evaluated by extracting germline reads that have soft-clipped bases at the
SV breakpoints and re-align them by BLAT to the second contig. This step ensures that a
germline SV that may have slightly different soft-clipping position from its somatic
counterpart is not classified as a somatic event.

CREST exports three output files: (1) a report file that records the breakpoints of SVs at
base-pair resolution, number of soft-clipping reads, and genes located across the
breakpoints; (2) a template file for experimental validation with 1000 flanking nucleotides
of each breakpoint; and (3) An XML output file that displays the assembled contigs for users
who are interested in visually inspecting the predicted SVs. Manual review is optional. The
XML file displays alignment of the reads across the breakpoints, quality score of each base
and the soft-clipping signature (Supplementary Fig. 5–10). The entire package can be
downloaded from http://www.stjuderesearch.org/site/lab/zhang with user manual and test
data.

Post-process of structure variations predicted by BreakDancer
For each predicted SV, we first check whether discordant mapping of paired-end reads is
caused by repetitive regions in human genome. All supporting reads are extracted in fastq
format and each read is re-mapped to the hg18 reference genome using BLAT. If a read-pair
is mapped within the library insert range (mean insert size +/− 3 standard deviation), it will
NOT be considered a supporting read pair for the SV. All SVs with ≥3 supporting read pairs
and BreakDancer score ≥30 after the re-mapping are retained and the tumor-only SVs are
considered putative somatic SVs.

The putative somatic SVs are then subjected to an assembly process to evaluate their
validity because a valid SV should have at least one cross-junction contig. All reads mapped
within 1kb of the two breakpoints along with their unmapped mate pairs are extracted. The
mapping information was based on the bam files. We then run phrap to assemble the
extracted sequences into contigs by using base call, quality value and paired-end
information. Assembly is carried out in two iterations because the first iteration usually
generates contigs that represent the wild-type allele unless the alternative allele is a
homozygous genomic change. The second iteration starts with reads not assembled in the
first iteration, which generates contigs for the heterozygous alternative allele. All contigs are
mapped to the reference human genome using BLAT. If a contig has two distinct parts (i.e.
two regions with minimum overlapping) mapped to two different genomic regions with high
similarity (≥97%) and good read-length (≥30bp), it is considered a cross-junction contig.
Once such a contig is identified and there is no germline reads mapped to the breakpoints
identified in the blat alignment, the SV is considered an assembly-validated somatic SV.

Estimation of somatic indels across the five T-ALL tumors based on background mutation
rate in childhood cancer

Background mutation rate (BMR) for adult glioblastoma multiforme was estimated to be
3.75×10−6 based on synonymous mutations identified in the protein coding regions18. A
recent study of childhood cancer medulloblastoma indicates that childhood cancer has
somatic mutations fewer by a factor of 5 to 10 than in the adult tumors19, resulting in a
background mutation rate of 7.5×10−6 to 3.75×10−7 for childhood cancer. Our analysis of
120 candidate gene sequencing data of 187 childhood leukemia patients shows that the BMR
of childhood ALL is within the estimated range but closer to the lower-end of the estimate.
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Since the estimated BMR was based on substitution variations while somatic indels are
approximately one tenth of that of the substitution mutations18, the somatic indel mutation
rate in childhood cancer is projected to be 7.5×10−7 to 3.75×10−8. Applying the indel
mutation rate to the entire human genome gives an estimated 112 to 225 somatic indels per
tumor. Therefore, the total number of somatic indels across the five T-ALL tumors is
estimated to be 562 to 1,125.

Preparation of simulated whole-genome sequencing data for NA12878
Simulated whole-genome sequencing data were generated to evaluate the sensitivity of
CREST in identifying validated germline structural variations (i.e. deletions, duplications
and insertions) compiled as a gold standard data set by the 1000 Genomes Project 13.
NA12878 was selected because it was sequenced at high coverage using three sequencing
platforms (Illumia/Solexa, Roche/454 and Life Technologies/SOLiD) and analyzed by 19
SV detection methods, 12 of which were evaluated for their sensitivity in detecting deletion
polymorphisms. The golden standard data set for NA12878 consists of 642 deletions, 271
duplications and 30 insertions. We were unable to include the 30 insertions for simulation
because the inserted sequences were not accessible. Of the 913 deletion/duplication events,
309 at 138 loci are overlapping events with multiple non-reference deletion/duplication
alleles. We consider these multi-allele polymorphisms with ≥ 2 non-reference alleles in the
population. Two haploid genomes were generated to represent the two non-reference
deletion/duplication alleles in these regions. For the 26 loci that have ≥3 overlapping non-
reference alleles, two were randomly selected resulting in a loss of 27 events (23 deletions
and 4 duplications). We simulated 100-bp paired-end reads with a mean size of 400 bp with
a standard deviation (s.d.) of 20bp. using the software MAQ (version 0.7.1)20 and obtained
20-fold coverage to human assembly NCBI build 36 for each haploid genome. Merging the
data from the two haploid genomes gives a total of 1,232,167,792 reads for the diploid
genome data with a mean coverage of 40. All reads were mapped to the human assembly
NCBI build 36 using the program BWA10 with the default parameters.

Two sets of whole-genome simulation data were generated based on the following two
quality models. One is a normal quality simulation that derives the sequencing error and
quality based on a training data set of 250k empirical reads randomly selected from our T-
ALL WGS data while the other is a high quality data set that use only reads with qualities in
the range of 32–40 for training. We created the high-quality simulation data because the
mapping rate of the normal quality WGS is 10% lower than that of the empirical WGS data
for the 10 T-ALL genomes which ranges from 92–95%. On the other hand, high-quality
simulation data has a mapping rate of 91% which is close to the empirical mapping rate.

Experimental validation
The COLO-829 cell line was purchased from the American Type Culture Collection
(ATCC) (http://www.atcc.org). Oligonucleotide primers for genomic PCR were designed
using Primer 3 (http://frodo.wi.mit.edu/primer3). Genomic DNA from T-ALL tumor
samples and COLO-829 was PCR amplified using either the Advantage 2 PCR Kit
(Clontech, Mountain View, CA) or Phusion High-Fidelity DNA polymerase (New England
Biolabs, Ipswich, MA). Thermal cycling conditions for Advantage 2 polymerase were 5
cycles of 94°C for 30 sec and 72°C 3 min, followed by 5 cycles of 94°C for 30 sec, 70°C for
30 sec and 72°C 3 min, followed by 25 cycles of 94°C for 30 sec, 68°C for 30 sec and 72°C
3 min; and for Phusion were 98°C for 30 sec, followed by 35 cycles of 98°C for 15 sec,
66°C for 15 sec and 72°C for 1 min, followed by a final extension step of 72°C for 10 min.
PCR products were electrophoresed through 1% agarose gels impregnated with Gel Red,
visualized using ultraviolet illumination, and purified directly from PCR mixtures or after
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gel electrophoresis. Purified PCR products were sequenced using 3730×l capillary
sequencers and Big Dye terminator chemistry.

Mapping algorithms for CREST analysis
Since soft-clipping signature which represents a partial (local) alignment to the reference
genome is a prerequisite for CREST, output from mapping tools with local alignment
function (such as Mosaik (http://bioinformatics.bc.edu/marthlab/Mosaik) and BFAST
(http://sourceforge.net/projects/bfast)) can be used after proper reformatting for this analysis.
On the other hand, mapping methods that only perform global alignments such as ELAND
(Illumina Genome Analyzer Pipeline Software) and bowtie (http://bowtie-
bio.sourceforge.net/index.shtml) will not be able to provide the suitable soft-clipping
signature.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This study was supported by Cancer Center support grant P30 CA021765 from the National Cancer Institute and
the American Lebanese Syrian Associated Charities of St. Jude Children’s Research Hospital. We would like to
thank K. Ye for stimulating discussion on the analysis of the COLO-829 cell line. C.G.M. is Pew Scholar in the
Biomedical Sciences. Information about the Pediatric Cancer Genome Project can be found at http://
www.pediatriccancergenomeproject.org/site.

REFERENCE LIST
1. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet. 2006;

7:85–97. [PubMed: 16418744]

2. Maher CA, et al. Transcriptome sequencing to detect gene fusions in cancer. Nature. 2009; 458:97–
101. [PubMed: 19136943]

3. Campbell PJ, et al. Identification of somatically acquired rearrangements in cancer using genome-
wide massively parallel paired-end sequencing. Nat Genet. 2008; 40:722–729. [PubMed: 18438408]

4. Ding L, et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature.
464:999–1005. [PubMed: 20393555]

5. Chen K, et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural
variation. Nat Methods. 2009; 6:677–681. [PubMed: 19668202]

6. Hormozdiari F, Alkan C, Eichler EE, Sahinalp SC. Combinatorial algorithms for structural variation
detection in high-throughput sequenced genomes. Genome Res. 2009; 19:1270–1278. [PubMed:
19447966]

7. Sindi S, Helman E, Bashir A, Raphael BJ. A geometric approach for classification and comparison
of structural variants. Bioinformatics. 2009; 25:i222–230. [PubMed: 19477992]

8. Korbel JO, et al. Paired-end mapping reveals extensive structural variation in the human genome.
Science. 2007; 318:420–426. [PubMed: 17901297]

9. Kidd JM, et al. Mapping and sequencing of structural variation from eight human genomes. Nature.
2008; 453:56–64. [PubMed: 18451855]

10. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics. 2009; 25:1754–1760. [PubMed: 19451168]

11. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break
points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics.
2009; 25:2865–2871. [PubMed: 19561018]

12. Pleasance ED, et al. A comprehensive catalogue of somatic mutations from a human cancer
genome. Nature. 463:191–196. [PubMed: 20016485]

Wang et al. Page 7

Nat Methods. Author manuscript; available in PMC 2012 December 20.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

http://bioinformatics.bc.edu/marthlab/Mosaik
http://sourceforge.net/projects/bfast
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://www.pediatriccancergenomeproject.org/site
http://www.pediatriccancergenomeproject.org/site


13. Mills RE, et al. Mapping copy number variation by population-scale genome sequencing. Nature.
470:59–65. [PubMed: 21293372]

14. Abel HJ, et al. SLOPE: a quick and accurate method for locating non-SNP structural variation
from targeted next-generation sequence data. Bioinformatics. 26:2684–2688. [PubMed: 20876606]

15. Handsaker RE, Korn JM, Nemesh J, McCarroll SA. Discovery and genotyping of genome
structural polymorphism by sequencing on a population scale. Nat Genet. 43:269–276. [PubMed:
21317889]

16. Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Res. 1999; 9:868–877.
[PubMed: 10508846]

17. Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res. 2002; 12:656–664. [PubMed:
11932250]

18. TheCancerGenomeAtlasResearchNetwork. Comprehensive genomic characterization defines
human glioblastoma genes and core pathways. Nature. 2008; 455:1061–1068. [PubMed:
18772890]

19. Parsons DW, et al. The genetic landscape of the childhood cancer medulloblastoma. Science.
331:435–439. [PubMed: 21163964]

20. Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping
quality scores. Genome Res. 2008; 18:1851–1858. [PubMed: 18714091]

Wang et al. Page 8

Nat Methods. Author manuscript; available in PMC 2012 December 20.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 1.
Mapping SV breakpoints using soft-clipped reads. (a) Illustration of SV analysis using
discordantly mapped paired-end reads versus mapping using soft-clipping reads. Red and
blue segments represent two discontinuous genomic regions. (b) An example of using soft-
clipping signature to identify an interchromosomal translocation. The region in display is
206579705-206579789bp on chromosome 2. The reference genome is shown at the top in
yellow while the NGS reads are displayed below. Mismatches to the reference are shown in
red letters while the gray letters at lower-left are soft-clipping subsequences not aligned to
the reference. Upper-case characters represent high-quality (phred score ≥20) bases and the
darkness of shading correlates to lower quality score. In this example, the soft-clipping
subsequences map to chromosome X, revealing a chromosome 2 to chromosome X
translocation. (c) The five-step CREST algorithm: extraction of soft-clipped reads (gray) in
the BAM file; assembly of soft-clipped reads at a putative breakpoint into a contig (red);
mapping of the contig against the reference genome to identify candidate partner
breakpoints; identification of all possible soft-clipped reads and assembly into a contig
(blue); and alignment of the contig derived from the partner (blue) back to the reference
genome. A match to the initial breakpoint is considered a SV.
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Figure 2.
SV validation result for one T-ALL sample (SJTALL003). (a) PCR amplification of 28 SV
breakpoints predicted by CREST. All putative SVs except for those tested in lanes marked
in blue were validated by Sanger sequencing. Lanes marked in red point to amplicons listed
in figure panels c, e, d and f. (b) A complex inter-chromosomal translocations involving
chromosomes 1, 4, 5 and 10. The blue segments on chromosomes 4 and 10 are deletion
segments identified by NGS coverage analysis. (c–f) Sanger sequencing data across the 4
breakpoints involved in the complex rearrangement illustrated in panel b.
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