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Abstract
Cardiac excitability and electrical activity are determined by the sum of individual ion channels,
gap junctions and exchanger activities. Electrophysiological remodeling during heart disease
involves changes in membrane properties of cardiomyocytes and is related to higher prevalence of
arrhythmia-associated morbidity and mortality. Pharmacological and genetic manipulation of
cardiac cells as well as animal models of cardiovascular diseases are used to identity changes in
electrophysiological properties and the molecular mechanisms associated with the disease. Protein
kinase C (PKC) and several other kinases play a pivotal role in cardiac electrophysiological
remodeling. Therefore, identifying specific therapies that regulate these kinases is the main focus
of current research. PKC, a family of serine/threonine kinases, has been implicated as potential
signaling nodes associated with biochemical and biophysical stress in cardiovascular diseases.
Thus, the role of PKC isozymes in regulating cardiac excitability has been a subject of great
attention. In this review, we describe the role of PKC isozymes that are involved in cardiac
excitability and discuss both genetic and pharmacological tools that were used, their attributes and
limitations. Selective and effective pharmacological interventions to normalize cardiac electrical
activities and correct cardiac arrhythmias will be of great clinical benefit.

INTRODUCTION
The final common pathway of electrical excitability in the heart is the generation of
conducted action potentials, whereas voltage-gated ion channels and gap junctions play an
important role in the action potential electrogenesis (1, 2). Cardiovascular diseases (i.e.
coronary artery disease, stroke and heart failure) are associated with changes of cardiac
electrical excitability due to transcriptional and post-translational modifications of ion
channels and gap junction proteins (3, 4).

Conceptual and technical breakthroughs during the last decade have led to revolutionary
advances in our knowledge of allosteric regulation of ion channels, whereas several studies
have focused on identifying cellular nodes where signals converge and serve as multi-
effector brakes to re-establish the normal electrophysiological properties inside the damaged
heart. Nowadays, there is abundant evidence showing that channel phosphorylation can
influence profoundly the electrical properties of cardiomyocytes and other cells (5, 6),
whereas various kinases have been described as candidate mediators of the pathological
cardiac electrophysiological remodeling (6–8). Among different kinases, activation of PKC
isozymes has been a subject of great attention in the cardiovascular field since it is
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implicated in pathological settings such as heart failure (9, 10), ischemia (11, 12) and
ischemic preconditioning (13–15).

We first demonstrated the relevance of PKC isozymes to cardiac excitability by showing
that prolonged exposure of isolated neonatal cardiomyocytes to 4-β phorbol ester 12-
myristate-13-acetate (PMA, 1–100nM, a non-selective PKC activator) enhanced the rate of
contraction in a dose-dependent fashion (16). Indeed, several studies have reported the
contribution of specific PKC isozymes to cardiac excitability by regulating ion channel
expression (17–19) and activity (20–22), and inotropic and chronotropic effects (23). In this
review, we focus on insights gained from the rational design of small molecule inhibitors
and activators of selective PKC isozymes to understand their critical role in modulating
cardiac excitability (Figure 1).

PKC family
PKC is a group of ten closely related phospholipid-dependent serine-threonine protein
kinases (24). These isozymes are classified based on their structure and activation
requirements into three subgroups: conventional PKCs (α, βI, βII and γ), which are Ca-
dependent and activated by diacylglycerol (DAG) and phosphatidylserine (PS); novel PKCs
(ε, δ, η and θ), which are Ca-independent but activated by DAG and PS; and atypical PKCs
(ζ and ι/λ), which are Ca and DAG-independent but activated by PS.

Of these PKC isozymes, α, βI, βII, ε, θ, λ, δ, ζ and γ PKC have been found in the heart in
different animal species (25, 26), and high levels of PKC isozymes α, βI, βII, δ and ε have
been reported in tsA201 and HL-1 cell lines (27). The presence of multiple PKC isozymes in
the same tissue and even in the same cell type suggests that individual isozymes mediate
distinct cellular functions. The effort to dissect the roles of individual PKC isozymes in cell
functions has been hampered by the lack of isozyme-specific activators and inhibitors.

General PKC regulators (non-isozyme selective)
A number of small molecule drugs that regulate PKC isozymes has been generated over the
last decades. Many of these compounds are competitive inhibitors of ATP binding to the
catalytic site of the kinase (Table 1). However, because the catalytic site within the PKC
family as well as in other protein kinases is highly conserved, generating a truly selective
inhibitor of one protein kinase has proven to be a challenge (28) (Table 1). Small molecule
activators of PKC isozymes are also available. Those compounds mimic the second
messenger DAG and are related to the tumor promoter phorbol ester (PMA) (29), to
bryostatin (30) and some other natural compounds. Some activators have higher affinity for
one specific PKC subgroup over others in a dose-dependent manner (16). However,
considering that these compounds are not able to distinguish the activation of PKC isozymes
in the same subgroup, they are usually described as non-selective PKC activators.
Furthermore, because there are multiple diacylglycerol-binding proteins (31), using them as
PKC isozyme selective tools works only in a narrow concentration range and can activate
proteins other than PKCs.

Isozyme-selective PKC regulators
Over twenty years ago, we suggested that protein-protein interactions play a critical role in
determining the selectivity of individual PKC isozymes. We identified a family of proteins,
collectively termed RACKs (Receptors for Activated C Kinase) that anchor individual
activated PKC isozymes near their substrates and away from others (32). We then designed
peptide regulators of these protein-protein interactions as isozyme-selective inhibitors
(Figure 2). The rationale used for the design of the peptides and the data used to demonstrate
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their selectivity were provided in over 200 publications from a variety of labs. For recent
review see (33). In short, the peptides, 6–10 amino acids in length, correspond to unique
sequences within the PKC isozyme-binding site on the RACK or the RACK-binding site on
that PKC isozyme. Using this approach, we have identified selective inhibitors for all the
PKC isozymes (see Table 1).

Selective 6–10 amino acid-long peptide activators of PKC isozymes were also rationally
designed. These peptides are derived from intra-molecular interaction sites within each PKC
isozyme (34). Each peptide activator interferes with an isozyme-specific (or sub-family-
specific) inhibitory intra-molecular interaction within that PKC; each peptide is identical in
sequence to one of the two intra-molecular interaction sites. By acting as a competitive
inhibitor of the inhibitory intra-molecular interactions, the peptide acts as a selective
activator of that isozyme. The intra-molecular interaction that we focused on is the pseudo-
RACK site, the site that covers the RACK-binding site when PKC is inactive. Peptides
derived from the pseudo-RACK binding site are selective activators of the corresponding
PKC. Using this approach, we have identified a selective activator for all the conventional
PKC isozymes, ψβRACK, and isozyme-selective activators for δ, ε, η and θPKCs (see
Table 1).

Peptides that act intracellularly need to be conjugated to carrier peptides to deliver them
across biological membranes. A number of such short peptide carriers were identified. We
used mainly TAT47–57 (35). All the peptide regulators of PKC conjugated to such peptide
carriers showed high selectivity for the corresponding isozyme. They were efficacious in
vitro and in vivo at low nanomolar concentrations and were well-tolerated when acutely
injected intravenously, intraperitoneally, and subcutaneously. They were also effective when
delivered in a sustained fashion, using subcutaneous Alzet pumps to obtain weeks of
constant delivery (3–10mg/kg/day).

PKC and Ca Channels
Ca channels consist of a central α1 subunit, which forms the ion-conducting pore, and the
auxiliary subunits α2-δ, β and γ, which modulate surface expression and biophysical
properties. In the sarcolemma of cardiac cells, two types of Ca channels have been
identified: the high-voltage, L-type Ca channel, and the low-voltage, T-type Ca channel (2).
They play an important role in normal and diseased myocytes (1).

L-type Ca channels
The influx of Ca through L-type Ca channels plays an essential role in both cardiac
excitability and excitation-contraction coupling. The depolarizing current through L-type Ca
channels contributes to the cardiac action potential plateau and to Ca-induced Ca release
from the sarcoplasmic reticulum. Four genes encode L-type Ca channel α1 subunits in
mammals: Cav1.2 (α1C), Cav1.3 (α1D), Cav1.1 (α1S) and Cav1.4 (α1F) (36). α1S and α1F
expression is restricted to the skeletal muscle and the retina. α1C is assumed to be the most
abundant isoform in the cardiovascular system, whereas α1D is expressed in neurons and
neuroendocrine cells (1, 37). It is therefore believed that the contribution of L-type Ca
currents to the physiology/pathophysiology of the heart and the therapeutic effects of Ca
channel antagonists are mainly mediated through α1C Ca channels. This assumption has
been challenged by recent findings that α1D knockout mice unexpectedly exhibited intrinsic
sino-atrial dysfunction and predisposition to atrial fibrillation (38–40), suggesting an
important functional role for the α1D Ca channel in the supraventricular tissue.

Multiple G protein-coupled receptors in the heart act through phospholipase C-dependent
hydrolysis of membrane phosphoinositides to regulate many cellular proteins, including the
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L-type Ca channels. Early studies suggested that neurohormones (i.e. endothelin-1 and
angiotensin II) modulate L-type Ca channels in a PKC isozyme-dependent manner. For
example, acute endothelin 1 treatment (which activates PKC) resulted in increased,
decreased or no change in basal Ca influx in isolated cardiomyocytes under different
conditions (41–43).

Disparate results have also been found in studies using non-selective PKC activators. The
published work from our group showed that PMA (a non-selective PKC activator)
consistently inhibited Ca channels in rat ventricular cells (22, 44). However, PMA has also
been reported to inhibit, have no effect, stimulate, or initially stimulate but later inhibit L-
type Ca currents in cardiac myocytes (45). Non-selective PKC activators produce
inconsistent responses in non-cardiac Ca channels as well. Stimulation of Ca channels by
phorbol esters has been reported in Aplysia bag cell neurons (46), neuroblastomas (47),
secretory RINm5f cells (48) and frog sympathetic neurons (49). Conversely, inhibition of Ca
channels by phorbol esters has been reported in chick DRG cells (50), and PC-12 cells (51).
Because specific PKC isozymes contribute to a wide variety of cellular responses and
sometimes exert even opposite effects inside the cell, the usage of non-selective PKC
activators might provide misleading information on the relative contribution of PKC
isozymes to Ca channels. It seems therefore that the outcome of PKC activation is species
and tissue-dependent, probably because of the isozyme type present in each cell type.

Over the last decade, the rational design of selective PKC modulators as well as the use of
genetic models has contributed to better understanding the role of selective PKC isozymes
on both α1C and α1D L-type Ca channels. The PKC phosphorylation sites of the cardiac α1C
subunit of the L-type Ca channel have been mapped to threonines 27 and 31 of the N-
terminus, in which conversion of the threonines 27 and 31 to alanine abolishes the PKC-
mediated downregulation of α1C Ca channel current (ICa-L) in tsA-201 cells (52). In parallel,
mutating the threonines 27 and 31 to aspartate restored the PKC sensitivity of α1C ICa-L,
suggesting that change in net charge by phosphorylation of threonines 27 and 31 of the N-
terminus is responsible for the α1C ICa-L inhibition (52). In order to dissect the role of
specific PKC isozymes in the regulation of cardiac Ca channels, we took advantage of PKC-
regulating peptides developed by our lab (24, 33). Intracellular delivery of selective εPKC
activator peptide (ε V1-7) resulted in significant inhibition of ICa-L in ventricular myocytes
isolated from adult rats (22). The inhibitory effect of εV1-7 was completely prevented by
the εPKC peptide inhibitor (εV1-2). Because sustained εPKC activation has been associated
with cardiac dysfunction and heart failure in different animal models (53–55), we tested
whether chronic in vivo modulation of εPKC leads to altered ICa-L. Using transgenic mice
with specific cardiac constitutive activation of εPKC (expressing the pseudo-RACK
sequence of εPKC, ψεRACK), we found that sustained εPKC resulted in reduced basal
ICa-L density as well as blunted the β-adrenergic activation of ICa-L (56).

Besides the negative effects of εPKC on α1C ICa-L by phosphorylating amino acid residues
at N-terminal domain, Yang et al. (2005) have demonstrated in HEK293 cells that α, ε and
ζ PKC isozymes phosphorylated serine 1928 at the C-terminal domain of the α1C L-type Ca
channel, resulting in increased α1C L-type Ca channel activity (57). The serine 1928
phosphorylation has been previously related to up-regulation of α1C L-type Ca channel
activity in a protein kinase A-dependent manner (58). Furthermore, Yang et al. (2009) have
showed in Langendorff-perfused heart that both serines 1674 and 1928 were phosphorylated
in response to PMA (non-selective PKC activator) (59). Using GST fusion proteins, the
authors provided evidence that α, βI, βII, γ and θ PKC isozymes were able to phosphorylate
the serine 1674 site in HEK293 cells. Therefore, isolated hearts from transgenic mice over-
expressing αPKC displayed increased phosphorylation of serine 1674 and 1928 (59).
Conversely, αPKC knockout mice presented decreased cardiac levels of serines 1674 and
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1928 phosphorylation (59). Besides its effect on cardiomyocyte excitability, αPKC may
affect cardiac excitation-contraction coupling through a negative regulation of sarcoplasmic
reticulum Ca load, thereby affecting cardiac performance during cardiac dysfunction and
heart failure (60).

Unlike the well-characterized α1C L-type Ca channels, α1D L-type Ca channels have not
been highlighted in earlier studies. We have demonstrated in the tsA201 cell line, using
single channel analysis, that PMA (non-selective PKC activator) treatment resulted in a
decrease in open probability and increase in closed-time without any significant effect on the
conductance of the α1D L-type Ca channel (61). More recently, we showed that
phosphorylation of serine 81 in the N-terminal region plays a negative role in α1D Ca
channel activity in tsA201 cell line (62). This response was mediated by non-selective PKC
activation. The introduction of a negatively charged residue at position 81, by converting
serine to aspartate, mimicked the PKC phosphorylation effect on the α1D Ca channel. The
modulation of the α1D Ca channel by PKC was prevented by dialyzing cells with a 35 amino
acid peptide mimicking the α1D N-terminal region comprising serine 81. In addition, we
evaluated, in the tsA201 cell line, the role of specific PKC isozymes on α1D ICa-L by using
different PKC isozyme-selective inhibitor peptides. We first demonstrated that βIIV5-3
(selective βIIPKC inhibitor) and εV1-2 (selective εPKC inhibitor) peptides antagonized the
negative effects of PMA on α1D ICa-L (62). These results indicate that phosphorylation of
serine 81 by βIIPKC and εPKC is required for down-regulation of α1D Ca channel activity.
Parallel to their effects on cardiomyocyte excitability, βIIPKC and εPKC may affect cardiac
excitation-contraction coupling through a negative myofilament Ca-sensitivity and cardiac
hypertrophy, respectively, thereby affecting cardiac function during ventricular remodeling
and heart failure (10, 54, 63).

T-type Ca channels
Transient low-voltage activated currents (ICaT) characterize T-type channels. They have
been identified in the sinoatrial node, AV node, Purkinje system, vascular smooth cells, and
in neurons (2, 37). The T-type Ca channel has been involved in pacemaking and in Ca
signaling in secretory cells and vascular smooth muscle (37). ICaT has been implicated in
triggering Ca release from the sarcoplasmic reticulum (64) and in contraction of Purkinje
cells (65). There is evidence indicating that T-type Ca channels also promote cell
proliferation and growth (66). In this regard, increased levels of re-expression of T-type Ca
channels in certain pathologic states, such as ventricular hypertrophy, have been reported by
others (67) and us (68). Only a few studies reported on the interaction of PKC with T-type
Ca channels in the heart. Tseng and Boyden (69) demonstrated that PKC activation inhibited
ICaT in canine cardiac cells. Similarly, Zhang et al. (2000) showed that indirect activation of
PKC by arachidonic acid attenuated the recently cloned human T-type α1H current
expressed in HEK 293 cells (70). At the molecular level, Cribbs et al. (1998) showed the
existence of several PKC consensus motifs on the T-type Ca channel α1H subunit (71). Two
sites are located on the domain I–II cytoplasmic loop and one site on the domain III–IV
connector. Zheng et al. (2010) recently showed that lysophosphatidylcholine up-regulated T-
type Ca channels in a PKC-dependent manner (72). However, the identity of the PKC
isozyme which regulates T-type Ca channels is not yet known.

Based on the findings described above, we summarize that integration of different regulatory
mechanisms controlled by specific PKC isozymes may provide sensitive modulation of Ca
channel activity in response to cardiac physiopathology. In fact, it is possible that different
PKC isozymes may have opposing effects on Ca channels, as previously suggested by the
effect of PMA on the L-type Ca channel activity. Therefore, considering that Ca channels
are the main mediators of Ca influx and are pivotal in cardiac function, further studies
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clarifying the physiological contribution of PKC isozyme-mediated Ca channel function
need to be performed in normal and diseased hearts.

PKC and Na Channels
Voltage-gated Na channels are the primary channels responsible for the rising phase of the
action potential in excitable cells. The regulation of Na channels by PKC has been studied
using general PKC activators such as PMA (73) and OAG (1-oleoyl-2-acetyl-sn-glycerol)
(74). In general, activation of PKC by these non-isozyme specific activators leads to a
reduction in Na current in both brain and heart (75–77). Heterologously expressed rat brain
(rBIIA) (73, 77) and human cardiac Na channel currents (hH1) (76) were reduced upon PKC
activation. While both rBIIA and hH1 contain consensus sites for phosphorylation by PKC,
most of the sites are not conserved between these two isozymes. In one study (76),
elimination of conserved consensus PKC sites in the hH1 interdomain III–IV linker, which
contains the putative PKC site (Ser1503) does not completely eliminate the PMA-induced Na
current inhibition, implying that other phosphorylation site(s) may exist. Considering that
Na channels are associated with other proteins forming a multi-protein complex (78), the
remaining Na current may be due to PKC regulation of other kinases or phosphatases, and
not necessarily to phosphorylation of another Na channel residue.

While these previous studies implicated PKC in the regulation of Na channels, the role and
the identity of the isozyme(s) responsible for this regulation remained largely unexplored.
Our laboratory has utilized rationally designed PKC modulators to gain insight into the Na
channel regulation by PKC. Studies from our lab using Xenopus oocytes showed that the Na
current is inhibited by PMA, a general PKC activator. In addition, the use of the peptide
specific activator of εPKC, ψεRACK (Table 1), mimicked PMA effects on INa and the use
of the peptide specific inhibitor of εPKC, εV1-2 (Table 1), prevented these effects, thus
establishing the involvement of at least εPKC in the regulation of Na channels. Similarly,
the decrease in the neuronal Nav1.8 peak current induced by PMA was prevented by a
specific εPKC isozyme peptide antagonist, whereas the PMA effect on Nav1.7 was
prevented by εPKC and βIIPKC peptide inhibitors (79).

Considering that βIIPKC and εPKC are key molecules involved in cardiac hypertrophy,
heart failure [for recent review see (24)], and disrupted cardiac excitability (i.e. down-
regulation of Ca and Na channel currents), it may be possible to consider using βIIPKC and
εPKC isozyme-selective inhibitors as therapeutic tools for the treatment of chronic cardiac
diseases.

PKC and K Channels
K channels are of importance in determining the shape and mostly the repolarization of the
cardiac action potential (80). In cardiac myocytes, at least eleven K currents have been
characterized pharmacologically or by molecular cloning. These currents include the inward
rectifier K current, IKl; the transient outward K current, Ito; the ultra-rapidly activating
delayed rectifier K current, IKur; and the rapidly IKr and slowly IKs activating delayed
rectifier K currents (4). In general, the initial and rapid phase (phase 2) of the repolarization
is caused by outward K movement (transient outward current, Ito) through rapidly activating
and inactivating K channels, and the late phase (phase 3) is under the control of the delayed
rectifier current (IK). As such, K currents can modulate the duration of the action potential
and refractoriness of the myocardium. It is noteworthy to emphasize that there is
considerable heterogeneity in the morphology of action potentials and underlying K currents
from various areas of the heart and between species.
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The human ether-a-go-go-related gene hERG encodes the voltage-gated K channel
underlying IKr, which initiates repolarization and terminates the plateau phase of the action
potential (81). Several papers have reported that either α-adrenergic or non-selective PKC
stimulation by PMA reduces hERG currents in cardiomyocyte (82–85). However, this
phenomenon seems to be independent of direct PKC phosphorylation of the channel, since
deletion by mutagenesis of PKC-dependent phosphorylation sites in hERG does not abolish
PMA-induced effects on the channel (85). The cellular mechanisms of this PKC-mediated
are still not completely understood. Of interest, the non-selective PKC inhibitor, BIM-I
blocks hERG currents in a PKC-independent manner (86). Thus, PKC-independent effects
have to be carefully considered when using non-selective PKC inhibitors in models
involving IKr currents. Other K currents such as Ito1, IKl and Kv4.2/Kv4.3 currents are also
negatively regulated by non-selective PKC activation in the heart (87), whereas increased
εPKC translocation (and not δPKC) indirectly attenuates K currents by suppressing the
synthesis of K channel proteins in the heart (88).

IKs channel is encoded by KvLQT1 and minK genes. KvLQT1/MinK channel contributes to
the phase 2 slow repolarization of cardiac action potential. PKC has been suggested as a key
mediator of KvLQT1/MinK channel regulation. The inhibition of the KvLQT1/MinK
channel in ventricular myocytes by angiotensin II occurs in a PKC-dependent manner (89).
In contrast, PKC is implicated in KvLQT1/MinK channel activation upon beta-3 adrenergic
stimulation in Xenopus oocytes (90). Considering that different PKC isozymes have
opposite effects in the cell (91), future studies are required in order to better understand the
contribution of specific PKC isozymes in these processes. Mouse and rat IKs currents were
decreased by PKC activation (92), whereas guinea pig IKs was activated by PKC (93). These
findings suggest that regulation of IKs by PKC is also species dependent. In mouse and rat
minK K channel, there is a putative PKC phosphorylation site at Ser102. Position Ser102 in
the minK protein has been shown to be critical in determining the effect of PKC. Work in
our lab has focused on the use of rationally designed small molecules to gain insight into the
modulatory actions of PKC on the delayed rectifier, IKs. The data from our lab showed that
in Xenopus oocytes, activation of PKC by PMA activates the human cardiac IKs channel and
that selective inhibition of βIIPKC, but not βIPKC (using βIIV5-3 and βIV5-3, respectively;
Table 1) abolishes PMA-induced IKs activation. These findings support the hypothesis of
specialized function of only βIIPKC (21). However, additional work is required to better
understand the behavior of K channels upon βIIPKC activation during cardiac stress such as
ventricular dysfunction and heart failure. In addition, the identification of the particular PKC
isozymes that mediate the regulation of K currents is of importance for the understanding of
the mechanism of ion channel regulation and the development of new therapeutic agents.
Future studies utilizing rationally designed PKC modulators may help to answer this
question.

PKC and Gap Junction
In the heart, the gap junction plays an essential role in the electrical cell-to-cell coupling and
impulse propagation between cells. Gap junction proteins are encoded by the connexin
multigene family, whereas connexin 43 (Cx43) is the most abundant and widespread of the
connexins in the heart. Cx43 phosphorylation influences its expression, degradation and
functional properties such as conductance and open-probability of channels. Thus,
dysfunction of the cardiac gap junction due to Cx43 post-translational changes mainly
contributes to ventricular arrhythmia. Over the last decade, PKC-mediated phosphorylation
of Cx43 has been reported and associated with both increased (94, 95) and decreased
conductance (7, 96). However, the contribution of specific PKC isozymes to this
phenomenon remains poorly understood due to the utilization of non-selective PKC isozyme
inhibitors.
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Among different PKC isozymes, only αPKC and εPKC have been described to co-localize
with Cx43 in the heart (3, 97, 98). Bowling et al. (2001) showed that both εPKC and αPKC
co-localize with Cx43 in non-failing and failing hearts, however, only εPKC directly
phosphorylates Cx43 (99). Doble et al. (2000) demonstrated that non-specific PKC
activation by either fibroblast growth-factor 2 (FGF-2) or PMA increased εPKC but not
αPKC co-localization with Cx43 in myocytes, resulting in decreased gap junction
permeability, whereas chelerythrine treatment (a non-selective PKC inhibitor) blocked the
effects of FGF-2 on Cx43 phosphorylation and permeability (7, 13). Furthermore, evidence
that the εPKC isozyme is directly involved in Cx43 phosphorylation was provided by
showing that over-expression of the mutated dominant-negative form of εPKC decreased
myocyte Cx43 phosphorylation and permeability (7, 13). Therefore, Cx43 phosphorylation
by εPKC has been associated with decreased gap junctional intercellular communication.
Bao et al. (2004) proposed that phosphorylation of Ser368 by PKC produces a
conformational change in the C-terminal domain that leads to a decrease in Cx43
permeability (100).

PKC and Na/Ca Exchanger
The cardiac Na/Ca exchanger (NCX) plays a pivotal role in regulating intracellular Ca
homeostasis to maintain normal electrical and mechanical activities of the heart. NCX1 is
particularly important to excitability because during each action potential, NCX1 rapidly
extrudes the Ca which entered the myocytes and brings Ca into the myocytes during cardiac
depolarization.

Ruknudin et al. (2007) have shown that NCX is a member of a macromolecular complex
that includes different kinases and phosphatases (101). However, the role of protein
phosphorylation in the NCX has not been well defined. Iwamoto et al. (1996, 1998) first
provided evidence that the cardiac isoform of NCX can be phosphorylated by PKC in
CCL39 fibroblasts, resulting in increased NCX activity (102, 103). They found that NCX1
was phosphorylated upon incubation with PMA (non-selective PKC activator). Of interest,
when all the consensus sites of the PKC phosphorylation were mutated in the NCX1, the
protein still showed response after PMA stimulation (102), suggesting that either PMA
stimulation could result in non-specific kinase activation or that there could be
nonconsensus sites for PKC on NCX1.

Zhang et al. (2001, 2009) have reported that chelerythrine (a non-selective PKC inhibitor)
abolished the deleterious effect of endothelin-1 treatment on NCX1 activity in guinea-pig
ventricular myocytes (8, 104). Using an animal model, Katanosaka et al. (2007) showed
increased NCX phosphorylation and association of NCX1 with εPKC in the hypertrophic
hearts of thoracic aortic-banded (TAB) mice (105). Indeed, transgenic mice over-expressing
an NCX1 mutation in specific-PKC phosphorylation sites (NCX1-S249A/S250A/S357A)
were more resistant to TAB-induced cardiac hypertrophy (105). To date, it is well-
established in the literature that NCX level and activity are increased in heart failure as
consequence of sarcoplasmic reticulum dysfunction and cytosolic calcium accumulation
during diastole (106). Direct PKC-mediated NCX phosphorylation contributes to NCX
activation. In fact, cardiac NCX1 was shown to be stimulated by acute treatment with
protein kinase C (PKC) activators, such as PMA and Gq-coupled receptor agonists (103,
107). In that sense, the use of rationally designed inhibitor peptides of selective PKC
isozymes might contribute to correct NCX hyper activation and improves heart failure
prognosis.

Besides its direct effect on NCX activity, PKC indirectly regulates NCX function by
phosphorylating phospholemman, a small transmembrane protein which belongs to a family
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of proteins (FXYD gene family) that bind to and regulate NCX. Many papers have reported
that regulation of cardiac contractility and NCX1 activity by phospholemman is critically
dependent of its phosphorylation at serines 63 and 68 by PKC in cardiac myocytes (108–
110). In fact, overexpression of S68E or S63A mutations in phospholemman inhibited NCX
activity. Indeed, NCX1 activity is known to be modulated by ε-adrenergic stimulation in a
PKC-dependent manner (103, 111). NCX1 activity is also regulated by PKA
phosphorylation at serine 68.

Phospholemman phosphorylation also regulates the membrane Na/K ATPase (Na/K pump)
activity, a vital component for the maintenance of normal electrical activity. Han et al. have
demonstrated that non-selective PKC activation (using PMA) increases Na/K pump Vmax
(112). Of interest, PKC-associated Na/K pump activation is abrogated in phospholemman
deficient mice, providing evidences that PKC regulates Na/K pump by phosphorylating
phospholemman (113). Phospholemman phosphorylation at both Ser63 and Ser68 is
necessary for completely relieving the phospholemman-induced Na/K pump alteration
(114). Considering that NCX and the Na/K pump are found together in a functional complex
in cardiac myocytes (115), the contribution of PKC-mediated phospholemman
phosphorylation to this complex needs to be better exploited. Therefore, futures studies
using rationally designed peptides regulators may help to clarify the contribution of PKC
isozymes to direct and indirect NCX and Na/K pump regulation.

PKC and Arrhythmias
Ischemic heart disease is the leading cause of congestive heart failure and death in the
Western world (116). Early reperfusion after coronary occlusion improves cardiac function
and reduces infarct size, but it is invariably accompanied by an overload of intracellular Ca
that mediates cellular damage and contractile dysfunction (117, 118) and fatal ventricular
arrhythmias, such as ventricular fibrillation. Efforts have thus been made to minimize the
adverse arrhythmic events related to myocardial ischemia-related reperfusion. While the
protective role of εPKC activation in myocardial ischemia-reperfusion injury was
extensively characterized regarding the alteration in hemodymamics, cellular damage, and
infarction size (119), the potential protective effect of εPKC activation on the fatal
ventricular arrhythmia associated with ischemia-reperfusion is just emerging.

We used optical mapping techniques to focus on the potential protective role of εPKC
modulation on ischemia-reperfusion arrhythmias in two lines of transgenic mice which
moderately over-express the εPKC (termed εPKC agonist mice) activator peptide
(ψεRACK, Table 1) (120) resulting in a 20% increase in εPKC activity, and εPKC inhibitor
peptide (εV1-2; Table 1) resulting in a 15% inhibition of εPKC activity (termed εPKC
antagonist mice) in the heart only (expression of the peptides was restricted to cardiac
myocytes) (121). Mice were subjected to 10 min global ischemia and 30 min reperfusion
and action potentials and intracellular Ca transients were recorded simultaneously at 37 °C.
In the εPKC antagonist group, in which εPKC activity was down-regulated, 10 out of 13
(76.9%) TG mice developed VT, of which six (46.2%) degenerated into sustained VF upon
reperfusion (121). Interestingly, in εPKC agonist mice, in which the activity of εPKC was
up-regulated, no VF was observed and only 1 out of 12 mice showed only transient VT
during reperfusion. During ischemia and reperfusion, intracellular Ca transient decay was
exceedingly slower in the antagonist mice compared to the agonist TG mice. The data
showed that moderate in vivo activation of εPKC exerts beneficial anti-arrhythmic effects
vis a vis the lethal reperfusion arrhythmias (121). Similarly, in vivo treatment of pigs with
the εPKC activator, ψεRACK, early during ischemia completely blocked post-ischemic
arrhythmia (122). It is interesting to note that although both εPKC inhibition (by treatment
with δV1-1) and εPKC activation (by treatment with ψεRACK) resulted in similar
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reduction in infarct size in this transient ischemic model in pigs, only εPKC activation
prevented post-ischemic arrhythmia (123). These findings have important implications for
the development of PKC isozyme targeted therapeutics and subsequently for the treatment
of ischemic heart disease. Further studies are required in order to identify the specific targets
involved in this anti-arrhythmic PKC-mediated phenomenon.

Summary and Perspectives
In this review, we describe a continuum of responses emanating from different PKC
isozymes that contribute to cardiac excitability. It is clear that PKC isozymes play critical
roles in the individual ion channels, gap junction and exchangers, which ultimately interfere
in the initiation and propagation of the action potential and thus cardiac excitability (Figure
1). The conflicting data on the role of individual PKC isozymes in the regulation of cardiac
excitability may be due not only to the differences between species and tissue distribution,
but also to the pharmacological and genetic tools used in the studies. Because PKC isozymes
have unique, and sometimes, opposing functions, the use of isozyme-selective tools is
critical. Using either genetic manipulation or pharmacological tools able to deliver selective
agonist and antagonist peptides for the same PKC isozyme in the heart is particularly useful;
it helps to determine the contribution of selective PKC isozyme(s) to cardiac excitability-
related processes. Clearly, PKC isozymes are central in regulating the electrical activity of
the heart. Using these isozyme-selective inhibitors and activators, we demonstrated a role
for specific PKC isozymes in the regulation of Ca, Na and K channels [1–3]. It may be
possible now to investigate the positive and negative contributions of specific PKC
isozymes to action potential electrogenesis and excitation-contraction coupling in different
pathological conditions such as ischemia, cardiac dysfunction and heart failure. Therefore,
in vivo studies using different animal models will help to point out the relevance of specific
PKC isozymes as therapeutic targets for the treatment of electrochemical changes induced
by cardiovascular diseases.
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Figure 1.
Schematic representation of protein kinase C (PKC) regulation of cardiac excitability and
membrane associated function through phosphorylation mechanisms. Ca: Ca channel; K: K
channel; Na: Na channel; Na/Ca: Na/Ca exchanger; DG: Diacyl glycerol; G: G-protein;
PLC: Phospholipase C; PIP2: Phosphoinositol di-phosphate; P: Phosphate.
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Figure 2.
Schematic representation of protein kinase C (PKC) inhibitors and activators. A: A peptide,
derived from the RACK-binding site on PKC binds to the RACK and inhibits binding of the
activated PKC to its RACK. Under these conditions, a substrate near the RACK (e.g., an ion
channel) is not phosphorylated and therefore the physiological response mediated by this
phosphorylation does not occur. B: An intra-molecular interaction between the RACK-
binding site on PKC and a sequence in the enzyme that mimics the PKC-binding site on the
RACK (hence pseudo-RACK), keeps the enzyme in the inactive state. A peptide
corresponding to the pseudo-RACK sequence binds to the RACK-binding site on PKC and
renders the enzyme active. Because the affinity of the pseudo-RACK peptide for the RACK-
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binding site on PKC is lower than that of the RACK, the pseudo-RACK peptide is replaced
by the RACK. That results in anchoring of the active PKC near its substrate (e.g., ion
channel), leading to the channel’s phosphorylation and the consequent physiological
response (e.g., ion influx).
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