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ABSTRACT A large offspring-number diploid biparental multilocus population model of Moran type is our object of study. At each
time step, a pair of diploid individuals drawn uniformly at random contributes offspring to the population. The number of offspring can
be large relative to the total population size. Similar “heavily skewed” reproduction mechanisms have been recently considered by
various authors (cf. e.g., Eldon and Wakeley 2006, 2008) and reviewed by Hedgecock and Pudovkin (2011). Each diploid parental
individual contributes exactly one chromosome to each diploid offspring, and hence ancestral lineages can coalesce only when in
distinct individuals. A separation-of-timescales phenomenon is thus observed. A result of Mohle (1998) is extended to obtain conver-
gence of the ancestral process to an ancestral recombination graph necessarily admitting simultaneous multiple mergers of ancestral
lineages. The usual ancestral recombination graph is obtained as a special case of our model when the parents contribute only one
offspring to the population each time. Due to diploidy and large offspring numbers, novel effects appear. For example, the marginal
genealogy at each locus admits simultaneous multiple mergers in up to four groups, and different loci remain substantially correlated
even as the recombination rate grows large. Thus, genealogies for loci far apart on the same chromosome remain correlated.
Correlation in coalescence times for two loci is derived and shown to be a function of the coalescence parameters of our model.
Extending the observations by Eldon and Wakeley (2008), predictions of linkage disequilibrium are shown to be functions of the
reproduction parameters of our model, in addition to the recombination rate. Correlations in ratios of coalescence times between loci
can be high, even when the recombination rate is high and sample size is large, in large offspring-number populations, as suggested by

simulations, hinting at how to distinguish between different population models.

DIPLOIDY, in which each offspring receives two sets of
chromosomes, one from each of two distinct diploid
parents, is fairly common among natural populations. Math-
ematical models in population genetics tend to assume, how-
ever, that all individuals in a population are haploid,
simplifying the mathematics. Mendel’s laws describe the
mechanism of inheritance as composed of two main steps,
equal segregation (first law) and independent assortment
(second law). The first law proclaims gametes are haploid,
i.e., carry only one of each pair of homologous chromo-
somes. Most models in population genetics are thus models
of chromosomes or gene copies. Mendel’s second law pro-
claims independent assortment of alleles at different genes,
or loci, into gametes. Linkage of alleles on chromosomes,
resulting in nonrandom association of alleles at different loci
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into gametes, is of course an important exception to the
second law.

Coalescent processes (Kingman 1982a,b; Hudson 1983b;
Tajima 1983) describe the ancestral relations of chromo-
somes (or gene copies) drawn from a natural population.
The coalescent was initially derived from a Cannings (1974)
haploid exchangeable population model. Related ancestral
processes take into account population structure (Notohara
1990; Herbots 1997), selection (Krone and Neuhauser
1997; Neuhauser and Krone 1997; Etheridge et al. 2010),
and recombination between linked loci (Hudson 1983a;
Griffiths 1991; Griffiths and Marjoram 1997). The coales-
cent has proved to be an important advance in theoretical
population genetics and a valuable tool for inference of evo-
lutionary histories of populations.

Ancestral recombination graphs (ARGs) (Hudson 1983a;
Griffiths 1991; Griffiths and Marjoram 1997) trace ancestral
lineages of gene copies at linked loci, in which linkage
is broken up by recombination. An ARG is a branching-
coalescing graph, in which recombination leads to branching
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of ancestral chromosomes and coalescence to segments
rejoining. Coalescence events in an ARG may not lead to
coalescence of gene copies at individual loci. An example
ARG for two linked loci is given below, labeled as ARG(1),
with notation borrowed from Durrett (2002). The labels
a and b refer to the two alleles (types) at loci 1 and 2, re-
spectively. A single chromosome with two linked alleles is
denoted by (ab), while chromosomes carrying ancestral
alleles at only one locus are denoted (a) and (b). When
coalescence occurs at either locus, the number of alleles at
the corresponding locus is reduced by one. The absorbing
state, either (ab) or (a)(b), is reached when alleles at both
loci have coalesced:

ARG(1) : (ab)(ab) > (a)(b)(ab) = (ab)(b)
= (a)(b)(b) = (a)(b)
ARG(2) : (ab)(ab) > (a)(b)(ab) > (a)(b)(a)(b) = (a)(b).

In ARG(1), the first transition is a recombination, denoted
by -, followed by a coalescence (—C>), in which the two
alleles at locus 1 coalesce. Graph ARG(1) serves to illustrate
two important concepts we are concerned with, namely cor-
relation in coalescence times between alleles at different loci
and the restriction to binary mergers of ancestral lineages.

Correlation in coalescence times between types at differ-
ent loci follows from linkage. Alleles at different loci can
become associated due to a variety of factors, including
changes in population size, natural selection, and popula-
tion structure. Within-generation fecundity variance poly-
morphism induces correlation between a neutral locus and
the locus associated with the fecundity variance (Taylor
2009). Sweepstake-style reproduction (Hedgecock et al.
1982; Avise et al. 1988; Palumbi and Wilson 1990; Beckenbach
1994; Hedgecock 1994; Arnason 2004; Hedgecock and
Pudovkin 2011), in which few individuals produce most of
the offspring, has also been shown to induce correlation in
coalescence times between loci (Eldon and Wakeley 2008).
Understanding genome-wide correlations in coalescence
times becomes ever more important as multilocus genetic
data become ubiquitous.

The ARG exemplified by ARG(1) is characterized by
admitting only binary mergers of ancestral lineages; i.e.,
exactly two lineages coalesce in each coalescence event.
The restriction to binary mergers follows from bounds on
the underlying offspring distribution, in which the proba-
bility of large offspring numbers becomes negligible in
a large population (Kingman 1982a,b). Sweepstake-style
reproduction, in which few individuals contribute very
many offspring to the population, has been suggested to
explain the “shallow” gene genealogy observed for many
marine organisms (Hedgecock et al. 1982; Avise et al
1988; Palumbi and Wilson 1990; Beckenbach 1994;
Hedgecock 1994; Arnason 2004; Hedgecock and Pudovkin
2011). Large offspring-number models are models of
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extremely high variance in individual reproductive output.
Namely, individuals can have very many offspring or up
to the order of the population size with nonnegligible
probability (Sagitov 2003; Schweinsberg 2003; Eldon and
Wakeley 2006; Sargsyan and Wakeley 2008; Birkner and
Blath 2009). Such models do predict shallow gene genealogies
and can be shown to give better fit to genetic data obtained
from Atlantic cod (Arnason 2004) than the Kingman
coalescent (Birkner and Blath 2008; Birkner et al. 2011;
Eldon 2011; Steinriicken et al. 2012). Different large
offspring-number models will no doubt be appropriate for
different populations, and the identification of large off-
spring-number population models for each population is
an open problem. For the sake of simplicity and mathemat-
ical tractability, the simple large offspring-number model
considered by Eldon and Wakeley (2006) is adapted to our
situation.

The coalescent processes derived from large offspring-
number models belong to a large class of multiple-merger
coalescent processes introduced by Donnelly and Kurtz
(1999), Pitman (1999), and Sagitov (1999). Multiple-
merger coalescent processes (A-coalescents), as the name
implies, admit multiple mergers of ancestral lineages in each
coalescence event, in which any number of active ancestral
lineages can coalesce, and at most one such merger occurs
each time. In simultaneous multiple-merger coalescent pro-
cesses (Schweinsberg 2000a; Mohle and Sagitov 2001), any
number of multiple mergers can occur each time; i.e., dis-
tinct groups of active ancestral lineages can coalesce each
time. The ancestral recombination graph derived from our
diploid large offspring-number model admits simultaneous
multiple mergers of ancestral lineages, as exemplified in
ARG(2). The last transition in ARG(2) is a simultaneous
multiple merger, in which the two types at each locus co-
alesce to separate ancestral chromosomes.

To investigate correlations in coalescence times among
loci due to skewed offspring distribution, we formally derive
an ancestral recombination graph, or a coalescent process
for many linked loci, from our diploid large offspring-
number model. The key to the proof of convergence to an
ancestral recombination graph from our diploid model lies
in resolving the separation-of-timescales phenomenon we
observe. Following Mendel’s laws, the two chromosomes of
an offspring come from distinct diploid parents. Chromo-
somes can therefore coalesce only when in distinct individu-
als. The ancestral process consists of two phases, a dispersion
phase occurring on a “fast” timescale and a coalescence and
recombination phase occurring on a “slow” timescale. In the
dispersion phase, chromosomes paired together in diploid
individuals disperse into distinct individuals. Coalescence
and recombination occur only on the slow timescale. Similar
separation-of-timescales issues arise in models of popula-
tions structured into infinitely many subpopulations (demes)
(Taylor and Véber 2009). When viewing the diploid individ-
uals in our model as “demes,” our scenario departs from those
describing structured populations by allowing only active



ancestral lineages residing in separate demes to coalesce. A
simple extension of a result of Mohle (1998) yields conver-
gence in our case.

The limiting process we formally obtain is an ancestral
recombination graph for many loci admitting simultaneous
multiple mergers of ancestral chromosomes (lineages). In
simultaneous multiple-merger coalescent processes, so-called
E-coalescents, different groups of active ancestral lineages
can coalesce to different ancestors at the same time. Such
coalescent processes were first studied as more abstract
mathematical objects by Schweinsberg (2000a) and derived
from general single-locus population models by several
authors (Mohle and Sagitov 2001; Sagitov 2003; Sargsyan
and Wakeley 2008; Birkner et al. 2009). A E-coalescent with
necessarily up to quadruple simultaneous multiple mergers
arises at each marginal locus (i.e., considering each locus
separately) in our model, since four parental chromosomes
are involved in each reproduction event. This structure is in-
trinsically owed to our diploidy assumptions.

Formulas for the correlation in coalescence times be-
tween two alleles at two loci are obtained using our ARG. As
predicted by J. E. Taylor (personal communication), these
correlations will not necessarily be small even for loci
separated by a high recombination rate. This is a novel
effect not visible in classical models. The correlation
structure will of course depend on the underlying coalescent
parameters introduced by the large offspring-number model
we adopt. An approximation of the expected value of the
statistics 2, commonly used to quantify linkage disequilib-
rium, is also investigated using our ARG. In addition, we
employ our ARG to investigate correlations in ratios of co-
alescence times between loci for samples larger than two at
each locus, using simulations.

A Diploid Population Model with Multilocus
Recombination and Skewed Offspring Distribution

The forward population model

Consider a population consisting of N € N = {1, 2, ...} diploid
individuals, meaning that each individual contains two chro-
mosomes. Each chromosome is structured into L € N loci. We
assume Moran-type dynamics: At each time step (“genera-
tion”), either a small or a large reproduction event occurs. In
a small reproduction event, a single individual chosen uni-
formly at random from the population dies, and two other
distinct individuals are chosen as parents. A diploid offspring
is then formed by choosing one chromosome from each parent
(see Figure 1). The parents always persist. A small reproduc-
tion event occurs with probability 1 — &y, in which gy € (0, 1)
depends on N. In a large reproduction event, a fraction ¢y €
(0, 1) of the population perishes, meaning that | N individ-
uals die (Lx] for x = 0 denotes the largest integer smaller than
x). Two distinct individuals are then chosen uniformly from
the remaining N — [¢N] individuals to act as parents of | /N
offspring, and each offspring is formed independently by
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Figure 1 lllustration of “small” and “large” reproduction events with-

out recombination. The dotted arrows indicate the copying of parental
chromosomes into offspring chromosomes. The solid arrows indicate
individuals that persist.

choosing one (potentially recombined) chromosome from
each parent (see Figure 1). The population size always stays
constant at N diploid individuals. Individuals that neither
reproduce nor die simply persist.

Given the two parents, genetic types of the offspring
individuals are then obtained as follows. Each parent
generates a large number of potential offspring chromo-
somes, of which a fraction 1 — ry are exact copies of the
original parental chromosomes and a fraction ry are
recombinants. Each chromosome is structured into L loci.
Recombination occurs only between loci and never within.
If recombination between a pair of chromosomes in a parent
occurs between loci ¢ and ¢ + 1 € {1, ..., L} (where we say
that X € {1,...,L — 1} is the crossover point), the two
chromosomes exchange types at all loci from ¢ + 1 to L.
Only one crossover point is allowed in each recombination
event. Let ’”1(\(;) denote the probability of recombination be-
tween loci ¢ and ¢ + 1 (i.e., the probability that the potential
crossover point X equals ¢). An offspring chromosome is
a recombinant with probability ry = rl(\,1> + o+ r]% Y, Given
that recombination happens, we thus have

o
PX=0 =5

AR ¢ S O
vt try

1=¢=L-1.

Each pair of recombined chromosomes is formed indepen-
dently of all other pairs. From this large pool of chromosomes,
each new offspring is randomly assigned (independently of all
other offspring in the case of a large reproduction event), one
potentially recombined chromosome generated by each par-
ent. In addition, the reproduction mechanism in different
generations is assumed to be independent.

Ancestral relationships—notation

Now we switch from the forward population model to its
ancestral process, running backward in time. Our sample
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consists of n € {1,...,2N} chromosomes, each subdivided
into L loci. Hence, we need to keep track of the ancestry of
nL segments (types/alleles). This implies that the different
segments could end up on up to nL distinct chromosomes in
nL distinct ancestral individuals. The required notation is
now introduced, and our discourse will therefore necessarily
become a little bit technical. However, we believe that a pre-
cise description of the objects we are working with is essen-
tial. The key to understanding our notation is that we are
working with enumerated chromosomes and ordered loci on
chromosomes.

At present (that is, time step m = 0), assume that we
consider an even number n of chromosomes carried by
n/2 individuals. The chromosomes are enumerated from 1
to n, attaching consecutive numbers to chromosomes found
in the same individual. Our ancestral process keeps track of
the chromosomal ancestral information, that is, which locus
is ancestral to which set of sampled chromosomes. That is,
in each generation m € Ny (backward in time), we record all
chromosomes that are active in the sense that they carry at
least one locus that is ancestral to the same locus of at least
one chromosome in generation 0. Denote the number of
active chromosomes in generation m € Ny by g(m) € N.
The number B(m) of active chromosomes can both increase,
due to recombination, and decrease, due to coalescence,
going back in time.

Now we explain our notation for the loci. For each
chromosome j € [n] := {1,...,n}, denote by ]L[U) (m) locus
¢ € [L] on chromosome j at time m. The subsets ]Ly)(m) of
[n] contain all the numbers of chromosomes at present
(time-step 0) to which locus ¢ on active chromosome number
j at time step m is ancestral. With this convention, and for
each m € N and ¢ € [L], the collection

{10m),j=1,....6m)}.

which describes the configuration of segments (i.e., which
ones have coalesced and which ones have not) at locus ¢ at
time m, is a partition of [n]; i.e.,

L m) "L (m) = 0 for j #];
and
B(m)
i=1

U LY (m) = [n].

j

Thus, with our notation we can correctly describe the

configuration of segments among chromosomes at any given

time. By C?’(m) we denote chromosome number j at time
m. At time m = 0,

c(0):={LY(0),...,. L ©) }: = {{},. ... it
For m > 0, consider the jth active chromosome at gen-
eration m, where j € [B(m)]. The corresponding ancestral
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information at generation m is encoded via an ordered list of
subsets of [n], setting

ci)(m): = {]L@ (m), ..., LY (m)},

() )
L,/”(m) C[n], ¢<lL].

Chromosomes are carried by diploid individuals. Keeping
track of the grouping of active chromosomes into individuals
is important, since by our diploid reproduction mechanism,
chromosomal lineages can coalesce only when in distinct indi-
viduals (see Example B below). In analogy with our previous
nomenclature for our ancestral process, an active individual will
carry at least one (and at most two) active chromosome(s). Let
b(m) denote the number of active individuals at generation m,
where B(m)/2 = b(m) = B(m) for all m. The ordered list of
active chromosomes and the number of active individuals
(called a “configuration”) at time m = 0 are denoted by

&N (m): = {C(l)(m), .., CBO) (). b(m)}. @

An individual number i at generation m is denoted by I;(m), for
i € [b(m)]. An active individual is single marked, if carrying one
active chromosome, and is double marked, if carrying two active
chromosomes. Specifying the arrangement of chromosomes in
individuals completes our description of the (prelimiting) ances-
tral process. However, since all active individuals are single
marked in the limiting process, our description of the arrange-
ment of chromosomes in individuals is given in section Al.1
in the Appendix. That is, each configuration £&%N(m) begins
with the 2(B8(m) — b(m)) ordered consecutive chromosomes
of the B(m) — b(m) double-marked individuals, followed by
the 2b(m) — B(m) chromosomes contained in single-marked
individuals. With this convention, the set of single- and double-
marked individuals and the grouping of chromosomes into
individuals at generation m are uniquely determined by a con-
figuration &N (m) of form (2). For notational convenience, the
time index m is omitted if there is no ambiguity.

For a given sample size n, the set of all possible ancestral
configurations ¢V is denoted by ./, The subset .&/5™ C &/,
of all configurations &N = {CV, ..., C®; b} with b = B, i.e.,
configurations consisting only of single-marked individuals,
will play an important role later on. Indeed, all configurations
in the limiting model will be confined to the set .«/$", and the
pairing of chromosomes in individuals will become irrelevant.

The mapping “complete dispersion” (cd),

cd: oy — 75"

breaks up the pairing of chromosomes into diploid double-
marked individuals. More precisely, we define

cd({c“), N .,C<B>;b}) = {c<1>7 . .76(5);,8}. 3)

Configurations in ./} describe configurations in which all
active individuals are single marked, i.e., carry only one
active chromosome.



The effects of recombination and coalescence on the
ancestral configurations in the case of two typical situa-
tions are now illustrated. Example A illustrates recombi-
nation, and Example B illustrates coalescence of two
chromosomes.

Example A.

Suppose the most recent previous event in the history of
a given configuration £&%V(m) was a small reproduction event
(at time m + 1), and suppose that the resulting offspring
individual is currently part of our configuration at time m,
but neither of its parents is, and that the offspring individual
is single marked, i.e., carries one active chromosome. We
obtain &%N(m + 1) as follows:

If there is no recombination during the reproduction event,
then the configuration in the previous generation remains
unchanged; i.e., &»N(m + 1) = &»N(m).

If there is recombination, say at a crossover point X €
{1,...,L — 1}, suppose the (single) offspring chromo-
some is

¢ (m) = {]ng)(m)7 o Lgnm)}.

Necessarily, the two parental chromosomes will be part of
the configuration £&*N(m + 1), residing in the same double-
marked individual. More precisely, the two parental chromo-
somes, say CY)(m + 1) and CU™V (m + 1), are determined by
(for ¢ € [L])

]L(]) (m+1)= {Lé”(m) 1 ==X,
‘ D : X+1=e¢=1,
and
IL(}H)( 11)= D: 1=¢=X,
¢ MTITL (m) | 1=¢=1L,

in which @ denotes loci not carrying any ancestral segments.
The offspring chromosome is of course not part of €~N(m + 1).
This transition can be partially trivial (a “silent recombi-
nation” event), if the crossover point is not in an “active”
area, i.e., iflLéJ) =QforX+1=¢=L(orforalll =¢=X).
By way of example, with L = 3, if chromosome C? = {{j},
{j}, {j}} was a recombinant, and the crossover point oc-
curred between loci 2 and 3, the two parental chromosomes

are given by CY) = {{j}, {j}, @} and €UV = {@, @, {j}}.
Example B.

Suppose the most recent previous event in the history of
a given configuration &»¥(m) of chromosomes at generation
m is a small reproduction event at time m + 1, leading to
a coalescence of lineages. This is the case, e.g., if a single-
marked offspring individual with active chromosome C/ (m)
is in our configuration £&%N(m), as well as its single-marked

parent [say with currently active chromosome C/(m)], from
which it actually obtained its active chromosome. Then, to
obtain the configuration &»N(m + 1), the offspring chromo-
some CU)(m) is deleted, and the resulting ancestral chromo-
some CY(m + 1) is given by the family of the union of the
sets ]L‘Ej) and L§j>,

CO(m +1) = {L§’>(m) L m),..., L9 myuLY) (m)}.
“@

All other chromosomes in &N(m + 1) are copied from
&N(m). Again, taking L = 3, if chromosomes CO = {{j},
{3}, {3} and C® = {{k}, {k}, {k}} coalesce, the resulting
ancestral chromosome is given by C? = {{j, k}, {j, k}, {j, k}}.

Scaling and classification of transitions

To obtain a nontrivial scaling limit for {&*N(m)} as N —
o, the limit theorem of Mohle and Sagitov (2001) (cf.
also the special case considered in Erpon and WAKELEY
2006) suggests one should, for some constant ¢ > 0,
choose probability 1 — ¢/N? for the small reproduction
events, choose ¢/N? for the large reproduction events,
i.e., setting

=1z )
and speed up time by N2. For the recombination rate to be
nontrivial in the limit (i.e., neither O nor infinitely large), we
require that all recombination values rl(\’,) scale in units of N;
i.e., for each crossover point ¢ € [LI\{L},

©
= 0<rl< e, (6)

Thus, even though our timescale is in units of N? time steps,
recombination is scaled in units of N time steps. On the level
of single lineages the probability of recombination is of the
order O(N~2). Indeed, after a small reproduction event, the
probability of drawing an offspring is 1/N. The probability
that the offspring carries a recombined chromosome is of
order O(1/N).

Given the cornucopia of possible transitions from &%V (m)
to &N(m + 1), it is important to identify those transitions
that are expected to be visible in the limiting process.

All possible transitions fall into the following three
regimes:

Those transitions that happen at probability of order O(N~2)
per generation, which will be visible in the limit (since
time is scaled by N2): They are called effective transitions
and will appear at a finite positive rate in the limit.

Further, there are transitions that happen less frequently,
typically with probability of order O(N~3) or smaller
per generation, which will thus become negligible as
N — o and hence be invisible in the limit. These are
called negligible transitions.
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Finally, there are transitions that happen much more fre-
quently [with probability of order O(N~1) or even O(1)
per generation]. At first sight, one might think that
their presence might lead to chaotic behavior in the limit.
However, this is not the case. Instead, these transitions
will happen “instantaneously” in the limit and result in
a projection of the states of our process from .27, into the
subspace ./}, which will be the limiting state space. This
is proved below. Such transitions are called projective or
instantaneous transitions. The identity transition is a spe-
cial case of a projective transformation.

In the Appendix (section Al), a full classification of all
transitions into the above groups is provided.

Instantaneous and effective transitions

The most important transitions and their effect for the
limiting process are now described in detail. Consider the
following most recent events in the history of a set of
lineages, i.e., events occurring at time m + 1, from the
perspective of the ancestral process £»V(m) at time m:

Event 1 (silent): A small reproduction event occurs, but the
offspring is not active. This is the most likely event and is
of the order O(1), but does not affect our ancestral con-
figuration process &“N(m); ie., ENim+1) = £N(m).
This event leads to an identity transition (a trivial instan-
taneous transition).

Event 2 (dispersion): A small reproduction event occurs,
the offspring is active in our sample but neither parent
is, and recombination does not occur. This is a relatively
frequent event that occurs with a probability of the or-
der O(N~1) per generation [since the probability that
the offspring is in the sample is b(m)/N]. If the offspring
carries only one active chromosome, we again see
an identity transition; ie., &N(m + 1) = &N(m). If
the offspring carries two active chromosomes, i.e., is
a double-marked individual, the two active chromo-
somes will disperse to two separate individuals, who
will then become single-marked individuals. Formally,
for ¢ = {C,...,CP);b} € .o/, with at least one double-
marked individual (b < ), define the map disp;(-):
o/ n— o7y dispersing the chromosomes paired in individ-
ual i,

disp;(¢) = {C<1>, ..., C2i=2) c@i+) c@it2)
..., C2(B-b) c2i-1) c2) cB-b+1)  (7)

...,CP:b+1}

if 1 =i=pB — b and disp;(§) := ¢ otherwise. Recall
that the ith double-marked individual has chromo-
somes labeled 2i — 1 and 2i. For &%N(m), if the ith
double-marked individual is affected, we have the tran-
sition &%N(m + 1) = disp;(&*N(m)).

The dispersion events will happen instantaneously as
N — = (recall we are speeding time up by N?) and thus
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will, in the limit, lead to an immediate complete dispersion
of all chromosomes paired in double-marked individuals. If
in the course of events, a new double-marked individual
emerges due to pairing of active chromosomes in the same
diploid individual, a dispersion of the chromosomes will
occur immediately. Event 2 will hence result in a permanent
instantaneous transition, mapping our current state ¢ € ./,
into the subspace .%/" by means of the map cd defined in
(3). Our limiting process will thus live, with probability one
for each given t > 0, in /5", even if we start with a config-
uration from .o/, \./3" at time t = 0.

Event 3 (recombination): A small reproduction event occurs,
a single-marked offspring but neither parent is in our
sample, and recombination affecting the active chromo-
some at a crossover point x. This event has probability of
the order O(N~2) per generation and will thus be visible
with finite positive rate in the limit. It is an effective
transition, which can be described formally as follows.
Define the recombination operation recomb acting on
chromosome j and crossover point x for a configuration
Ee /S as

recomb; (&) := {C(l), ..., ¢y, @0’71)’
; (8)
@(1,2)7c(1‘+1)7 ..., CB. B+ 1}7

where

&0 {}’L%””, JLLM}
with

AL {]L(O) l=e=x—-1,
( :
(0] X=(=L,

and

&2 _ {}L‘{‘Z), »TLLOZ)}
with

G2 [D: 1=t=x—1,
L _{]L}"): x=(=L

(if one of C‘O’l), cv? — {9, ..., D}, we define recomb;,(¢)
:= &, giving rise to a silent recombination event).

Event 4 (pairwise coalescence): A small reproduction event
occurs, one single-marked parent and a single-marked
offspring are in the sample, the active chromosome is
inherited from the parent in the sample, and recombina-
tion does not occur. This event occurs with probability of
order O(N—2) and will therefore be visible in the limit



with finite positive rate and hence gives rise to an effec-
tive transition. It will lead to a binary coalescence of
lineages and can formally be described as follows. The
ancestral chromosome CU!) formed by the coalescence of
chromosomes j; and j, is given by

CU {]L(h) ]L(Jz . ’Lgl) U ng)} )

if 1 = j; <j, = B. Define the binary coalescence opera-
tion pairmerge acting on chromosomes j; and j, (1 =<j; <
j2) in a configuration & € /5™ as

pairmerge;, ; (£):= {C(l),...,ﬁ’gl),...,

clz=1) cltl) cB).g— 1}

(10)

if 1 = j; <jo = B (otherwise, we put pairmerge; ;, (§) = &).

Event 5 (multiple-merger coalescence): A large reproduction

event occurs, neither parent but (possibly several) single-
marked offspring are in our sample, and recombination
does not occur. This is again an event with probability of
order O(N~2) per generation and therefore will be visible
in the limit with finite positive rate and hence gives rise to
an effective transition. The offspring chromosomes are
assigned their parental chromosomes independently and
uniformly at random, since due to an immediate complete
dispersion via Event 2 each offspring individual will carry
precisely one active chromosome. Now we formally define
the multiple-coalescence operation groupmerge for
& € /3" and pairwise disjoint subsets Jy, Ja, J3, J4, C [B]
in which either at least one |Jj] = 3 or at least two of the
|J;| = 2. This transition is, thus, really different from a pair-
merge transition. Let J; denote the set of offspring chromo-
somes derived from parental chromosome j. Then

groupmergey, j, j.. J, 3
_ { el &@ &)

W ¢V j e (BN UJs UJs UJ4);B}

(11)

with ((x)* := max(x, 0))

4

B=p->(141-1)"

j=1

and the four parental chromosomes, at least one of which
is involved in a merger, are given by (1 =i = 4),

W= { uL?, ... u w}.
JEJ; jeJ,-

The chromosome(s) C? appearing in groupmerge;, ;, . ;. (€)

denote the chromosomes in £ that are not involved in a

merger.

All other events: These will either not affect our ancestral

process or have a probability of order smaller than N=2 so

that they will be absent in the limit after rescaling. A
complete classification of these events is given in the
Appendix (section Al).

The limiting dynamics and state space

The expected dynamics of the limiting continuous-time Markov
chain {£(6), t = 0}, taking values in .2/, as N — o, is now
briefly discussed:

Complete dispersion (Event 2) of the sampled chromosomes
is the first event to occur (between timest = 0 and t =
07"). By I; we denote individual number i (see section
Al.1 in Appendix). At time t = 0 when &(0) € .o/, we
assume all n sampled chromosomes are paired in dou-
ble-marked individuals (n even):

£(0) = {11 I; —{C(Z‘ ”,cff”}, 1sisg}. (12)

Immediately (at time 0*), the chromosomes disperse into
single-marked individuals,

£07)=cd(§(0))
={u:1={c),0}, 1=i=n} (3

= {cglj, N .,cf{?;n} € o/,

Throughout the evolution of the process, whenever double-
marked individuals appear (e.g., from a coalescence-of-
lineages event), Event 2 will immediately change our
configuration to the corresponding “all dispersed” config-
uration; i.e., for each t > 0,

E(tT) = cd(£(t)) € /3.

Such “flickering” states will not affect any quantities of
interest of our genealogy, so we can assume that they will
be removed from the limit by choosing the cadlag mod-
ification of {£(t), t = 0}, taking only values in .«/;" for
all £ > 0 (this modification does not affect the finite-
dimensional distributions of {£(t), t = 0}).

Recombination (Event 3) appears in the limiting process at
total rate r = rD + ... + &= where a certain recom-
bination involving a given crossover point ¢ appears with
rate r© on any lineage. Indeed, from our scaling consid-
erations, we have that the probability of not seeing a re-
combination at ¢ in a small resampling event for more
than N2t scaled tlrne unlts for a given single-marked in-
dividual satisfies (ry © = r 9/N)

1\t .
e

as N— o [recall (6); the probability for any given in-
dividual to be the child in a small reproduction event is
1/N]; hence the waiting time for this event to happen is
exponential with rate r®©.
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Coalescences appear according to the effective transitions
described by Events 4 and 5. From the point of view of
a given pair of active chromosomes in different individu-
als, a single pairwise coalescence will occur at rate
1+ c(y?/4)Cpap—2 With Cg.a.5-» from (15) (with r = 1,
s = B — 2), where the 1 comes from a pairwise coales-
cence according to a small reproduction event and the
c(¥?/4)Cp.2p—2 from a large merger event (the rates can
be easily derived from considerations similar to the re-
combination rate r above), recalling that both coalescing
chromosomes have to “successfully flip a i-coin” to take
part in the large coalescence event and then are uniformly
distributed into four groups according to the choice of any
of the four potential parental chromosomes.

Given that large coalescence events (involving at least
three individuals or at least two simultaneous pairwise
mergers) happen with overall rate c(y/*/4) times the cor-
responding coalescence rate of a E-coalescent, obtained
from the number of individuals taking part in the merger
independently with probability ¢, the participating indi-
viduals are then distributed uniformly into four groups
according to the chosen parental chromosome. The corre-
sponding rate is given in the third line of (14) [cf. also
(15)1.

The limiting ancestral process

According to the above consideration, it is now plausible to
consider the following limiting Markov chain as the ancestral
limiting process. This fact is proved below, with most
computations provided in the Appendix. The mth falling fac-
torial is given by (@), :=al@a— 1) ... (a —m + 1), (@)o := 1.
The operations pairmerge, recomb, and groupmerge for ele-
ments of .2/} were defined above in the section on scaling.
Now we define the generator of the continuous-time ances-
tral recombination graph derived from our model.
Definition 1.1 (limiting multilocus diploid ancestral
recombination graph). The continuous-time Markov chain
{&(t), t = 0} with values in /3", initial condition £(0) :=
cd(€) for & € o/, and transition matrix G, with entries for
elements &', & € /5", &' # &, is given by (J 1= (Jq, ..., J4))

1+c4Cpop-2 if & = pairmerge;, ,(£)
0 if & =recomb;(é)
C@CB;IJ\ if ¢ = groupmerge;(¢)
0 for all other & # ¢

G(£.¢) =

(14

(where in the penultimate line we consider only cases where
either at least one |J;| = 3 or at least two of the |J;| = 2),
with

Cﬁi\” T CB%Ul [1J2 [ I3 [ Ja [iB= ([ [+]J2 |+[J3 [+]Ja])

and s =b — ky — - — k, = 0, x Ay := min(x, y)),
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4 sA4—1) /¢ 4
Cb;kh...,k,;s =73 Z % :
o=\ (15)
(1—lﬁ)s_l(lﬁ)kl+m+k’+l
For the diagonal elements, one has of course
G(£,§) = - G(£.¢). (16)
EAEE AT

The rates in (15) are the transition rates of the Z-coalescent
(a simultaneous multiple-merger coalescent) with

I

= 8(y/ay/4/4/400..)>

when r distinct groups of ancestral lineages merge. The
number of lineages in each group is given by k4, . . ., k,, given
B active ancestral lineages. The numbers =8 — (k; + ... +
k) = 0 gives the number of lineages (ancestral chromo-
somes) unaffected by the merger (¢f. Schweinsberg 2000a,
Theorem 2). The particular form of Z given above follows from
the fraction  of the population replaced by the offspring of the
two parents in a large reproduction event and our assumption
that each parent contributes exactly one chromosome to each
offspring. We have the following convergence result:

Theorem 1.2. Let {£*N(m), m = 0} be the ancestral pro-
cess of a sample of n chromosomes in a population of size N
and assume the scaling relations (5) and (6). Then, starting
from &N (0) € .«/,,, we have that

{e"N(IN?t))} - {&(t)}, as N— o,

in the sense of the finite-dimensional distributions on the interval
(0, ). The initial value of the limiting process is given by

£(0) = cd(¢"(0)) € /3.

A proof can be found in the Appendix. If ¢ = 0, the classical
ancestral recombination graph for a diploid population with
recombination in the spirit of Griffiths and Marjoram (1997)
results.

General Diploid Moran-Type Models: “Random” s

One of the aims of the present work is to understand the
genome-wide correlations in gene genealogies induced by
sweepstake-style reproduction. So far, we have discussed
this for a very simple example of a sweepstake mechanism
(analog to the one considered in Eldon and Wakeley 2006).
More precisely, the fraction ¢y € (0, 1) of the population
replaced by the offspring of a single pair of individuals in
a large offspring-number event has hitherto been assumed
to be (approximately) constant. Along the lines of the previous
discussion, an ancestral recombination graph with a random-
ized offspring distribution can be derived (a comprehensive
discussion of single-locus haploid Moran models in the domain
of attraction of A-coalescents can be found in a recent article
by Huillet and Mohle 2011). Even though ¢ is now considered



a random variable, the population size stays constant at N
diploid individuals. Allowing ¢/ to be random may be biologi-
cally more realistic than taking ¢ to be a constant. On the other
hand, the problem of identifying suitable classes of probability
distributions for 5, reflecting the specific biology of given nat-
ural populations, is still open and an area of active research.

To explain the convergence arguments when i is random, let
the random variable W, taking values in [N — 2], denote the
random number of diploid offspring contributed by the single
reproducing pair of parents at each time step; a new realization
of Wy is drawn before each reproduction event. Again, we con-
sider the effect of such a reproduction mechanism on coalescence
events in a sample. The probability that two given chromosomes
residing in two single-marked individuals in the sample coalesce
in the previous time step given the value of Wy is

P({pair coalescence} | ¥y =k)

N S P\ 4k | k(k—1)
4" =UNN—T) 4B NN —T) NN-1))
a7

where the first and second terms on the right-hand side
describe the case where one parent and one offspring are
drawn, the third term covers the case where two offspring
are drawn, and the 1/4 accounts for the probability that the
two chromosomes in question must descend from the same
parental chromosome. Define

cn = 4P({pair coalescence}) (18)
N-2
=4 Z P({pair coalescence} | ¥x = k)P(¥y =k)
k=1
[N (TN +3)
=[N | 0

(the factor 4 facilitates comparison with the haploid case).
The sequence of laws £L(Wy), N € N, is assumed to satisfy
the following three conditions,

cn—0 as N— o, (20)
CN _ I/E[‘I’N/N} _ E[‘I’N(\I’N + 3)]
E[Wy/N] 1/en (N = 1)E[Wn] (21)
—0 as N—o o,

and there exists a probability measure F on [0, 1] such that

1 11
ey >N /x 2Pl 22)

CN
for all continuity points x € (0, 1] of F.

Condition (20) is necessary for any limit process of the
genealogies to be a continuous-time Markov chain, condition
(21) ensures that a separation-of-timescales phenomenon occurs,
and (22) fixes the limit dynamics of the large merging events [it

is analogous to Sagrrov 1999, necessary condition (13) in the
haploid case]. In the proof of convergence to a limit process we
recall equivalent conditions to (22) (see Appendix, section A4).
Condition (20) implies (see section A4 in the Appendix)

Yy

E{W] —0 as N— 23)

i.e., the probability for a given individual to be an offspring
in a given reproduction event becomes small. Hence, (23)
and (21) together show that there will be two diverging
timescales: The “short” timescale 1/E[¥y/N] on which
chromosomes paired in double-marked individuals disperse

into single-marked individuals and the “long” timescale 1/cy
over which we observe nontrivial ancestral coalescences.

To obtain a nontrivial genealogical limit process, we then
speed up time by a factor of 4/cy; ie., 4/cy reproduction
events correspond to one coalescent time unit (see Theorem
1.3 below). This time rescaling is chosen for two chromo-
somes to coalesce at rate 1 in the limit. The required scaling
relation for the recombination rates is now

(© N0

o N as N— o
N7 4E[Wy/N]

(24

with 7@ € [0, «) fixed for¢ =1,...,L — 1 [where f(N) ~
g(\) means limy_, »f(N)/g(N) = 1]. An intuitive explana-
tion for the requirement (24) is that since the probability for
a given individual to be an offspring in a given reproduction
event is E[Wy/N], after speeding up time by 4/cy, on any
lineage recombination events between loci ¢ and ¢ + 1 occur
as a Poisson process with rate r©,

A simple sufficient condition for (21) is the following: For
any ¢ > 0,

NP(¥Ny>eN)—0 as N— . (25)

Indeed, we have, by assuming N > ¢N,

LeN] N
E[WZ] = S KP(Un=k+ > K*P(¥y=k)
k=1 k=LeNJ+1
LeN] N
= Y keNP(Wy=k)+ > N?P(¥y=k)
k=1 k=LeN]+1
=¢NE[Wy] + N2P(¥y >eN).

Dividing by NE[Wy] gives

E[¥}]

_,  NE(¥y>eN)
NE[Wy]

E[Wy]

and, since E[Vy] > 1,

E[¥}]

lim sup NE[Wy]

N— o

<e¢+ lim supNP(Wy >¢N) = .

N—

Condition (21) is now obtained since we can choose ¢ to be
as small as we like.
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The limiting genealogical process will then be a continuous-
time Markov chain on .&/$" with generator matrix G whose off-
diagonal elements are given by [for the values on the diagonal
we again have (16)]

Cpa  if ¢ = pairmerge; j, (£)
e if ¢ = recomb;(¢)

ofes)-

Cgy) if ¢ =groupmerge; ;, ;. ;. (¢)
0 for all other ¢ # &,
(26)
where
Ci1d13= CBil a1 s T 8= (1 [+] Jal +]Jal+ [ g | )
k=(ky, ..., k), k| =k + ...+ k., and
SA(4-T) S (4)
C o :4 r+l
1
. [k 1+1(1 —x) L
i o KT (A=) F (d) -

SNA4=T) /¢ (4)
=F({0})81,1 5 o +4 e
({010 (r=1k,=2} l;) <l>4|k\+l
41
. f(oﬁl]x"““(l—X)s lﬁF(dx)

with F from (22). As in the case of constant ¢, the third line
in (26) gives the transition rates for a given merger into r
(=4) groups of sizes ky, ..., k. when B active ancestral lin-
eages are present, with s = B — |k| = 0 lineages unaffected
by a given merger of the E-coalescent with

I

= /[0 1]5(x/4,x/4,x/4,x/4,0,0,...)F(dx)

(¢f. Schweinsberg 2000a, Theorem 2). By way of example,
Ca.2.0 = 1. Now we can state the convergence of our ances-
tral recombination graph process with random ¢. The ana-
log of Theorem 1.2 is the following:

Theorem 1.3. Let {&*N(m), m = 0} be the ancestral pro-
cess of a sample of n chromosomes in a population of size N
with offspring laws L(Wy) that satisfy (20), (21), and (22),
and assume the scaling relation (24) for the recombination
rates. Then, starting from £&»N(0) € .°«7,,, we have that

{€N¢§D}HEML as Noe,

in the sense of the finite-dimensional distributions on the in-
terval (0, o). The process {£(t)} is the Markov chain with
generator matrix (26) and initial value £(0) given by

£(0) = cd(£™M(0)) € 5™,
The proof is given in section A4 in the Appendix.

While ¢y = 1/N? by definition, in principle any decay
behavior of cy that is consistent with lim infy_, .N%cy = 1,
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and hence any there-from—derived scaling relation between
coalescent timescale and model census population size, is
possible via a suitable choice of the family £(Wy), N € N.
For an extreme example, let ¥y = | N”] for some 7y € (0,
1); then ¢y ~ N=2(-7 and (22) is satisfied with F = §,.
The relation with the “fixed-y” model is as follows: For
Theorem 1.2, we used the simple mixture distribution for
¥,
c
P(Uy=LyN]) =1-P(¥y=1)=— (28)
for Wy, in which ¢ € (0, 1) and ¢ > 0 are both constants. Our
choice (28) of law for ¥y gives, using (17),

el

_(1- c 4 ¢ YN(YN + 3)
_( JW) N(N—-1) N2 N(N-1)

1
~ m(“"i‘cgllz)

Define 1(g4y(x) = 1if x € (0, ) and 1(g ) (x) = O otherwise.
Our choice (28) further gives

P(\PN > LNXJ) = 1(0#,) (X)?(\IIN >NX)
= 1(07,1[,) (.)C)C]\T_z7

and therefore

C

1
a}p)(\IrN >[Nx]) - Lo, (X) ]

= .]‘(xyl]yizF(dy)
with

2
F= 4 250+ 4 25¢.
4+ 4+ cify

Furthermore, E[Wy/N] = 1/N + O(1/N?); thus

N 14+cyp?
4wy /N~ N 4

and Theorem 1.2 follows from Theorem 1.3 [after rescal-
ing time in the limit process {£(t)} by a factor of (4 +
cp?)/4].

The constant Cpx:= Cpi,, .k (27) depends on the prob-
ability measure F. The form of F will no doubt be different
for different populations. We reiterate that resolving the
mechanism of sweepstake-style reproduction will require
detailed knowledge of the reproductive behavior and the
ecology of the organism in question, along with comparison
of model predictions to multilocus genetic data. A candidate
for F may be the beta distribution with parameters © > 0 and
v > 0, in which case the constant Cp in (26) takes the form
(kf:= ki + = + k)



|k |+¢
Cpie = 4%: (;) (41 <%>

B(|k| +e¢+3—2,s+y—0)
B(9,7) ’

(29

B(:,-) being the Beta function.

Different Scaling Regimes

The mechanism of sweepstake-style reproduction may be
different for different populations, and the frequency of large
offspring-number events may also be different. The particular
timescale of the large reproduction events (we chose gy =
¢/N?) results in a separation of timescales of the limit process.
Resolving the separation-of-timescales problem results in the
ARG with generator (14). Different scalings of ¢y result in
different limit processes. By way of example, if Ny — 0,
large offspring-number events are negligible in a large pop-
ulation, and we obtain the ARG associated with the usual
Wright-Fisher reproduction, which can be read off Equation
14 by taking ¢ = 0. One other scaling regime may seem
reasonable, namely taking large offspring-number events to
be more frequent than in assumption (5), but not too fre-
quent. In mathematical notation, N2y — o and Ney — O.
The ancestral process in this regime is again characterized
by instantaneous separation of marked chromosomes into
single-marked individuals, followed by coalescence and re-
combination occurring on the slow timescale. The probability
of recombination is proportional to Ney since the slow time-
scale must be in units proportional to 1/¢y. Hence, small re-
production events become negligible in the limit, and the
generator of the limit process is given by

2
%CB;Z;B—Z if ¢’ = pairmerge; ;,(§)

(© i "= 4
G(£, &) = r , /r if & =recombj,(¢) (30)
ZCB;‘ J| if ¢’ =groupmerge;(¢)
0 for all other ¢’ # ¢

in which C..... is given by Equation 15. The requirement Ney
— 0 is needed to prevent an unreasonably high rate of
recombination.

Haploid Analogs

A haploid version of the above model, where only one
parent contributes offspring at each time step, is a specific
example of a A-coalescent, where

A(dx) = 8o(dx) + cy®8y(dx), i € (0,1),

(see, e.g., Eldon and Wakeley 2006 and Birkner and Blath
2009). More precisely, as the population size N tends to in-

ce€ 0, x)

finity, assume probability 1 — ¢/N? for the small reproduc-
tion events and ¢/N? for the large reproduction events (i.e.,
choose ¢y = ¢/N?), and speed up generation time by N2.
Again, by randomizing ¢ and/or switching to different scal-
ing regimes, it is possible to obtain any given A-coalescent as
limiting genealogy.

Two-Sex Extensions

Recent studies of the spawning behavior of Atlantic cod
indicate that cod adopts a lekking behavior, in which males
compete for females, and females exercise mate choice
(Nordeide and Folstad 2000). Direct microsatellite DNA
analysis indicates that although multiple paternity is some-
times detected, the reproductive success is highly skewed
among the males; i.e., most of the successfully fertilized eggs
can be attributed to a single male (Hutchings et al. 1999).
Our model thus seems a good approximation to the actual
reproduction mechanism of cod. Modifications to allow two
distinct genders, and multiple paternity, are in principle
straightforward.

More General Recombination Models

Our model can easily be enriched to allow also more general
recombination events involving more than one crossover
point at a time. Furthermore, by letting the number L of loci
tend to infinity, a continuous model, where [0, 1] represents
a whole chromosome (as in Griffiths and Marjoram 1997),
can be accommodated into our framework.

Correlations in Coalescence Times
The marginal process

Every marginal process (marginal with respect to one fixed
locus under consideration) of our ancestral recombination
graph is a E-coalescent (see Schweinsberg 2000a for nota-
tion and details) with

— >
E=80+ CZ8('”/4"”/4’4’/4’”"/4’0’0’"')'

For r = 0, all marginals are identical (realization-wise), in
particular times to the most recent common ancestor for
different loci have correlation 1. However, in contrast to
the classical setting, for r — o one expects that the loci
will not completely decorrelate, but instead keep positive
correlations, as pointed out to us by J. E. Taylor (personal
communication). In particular, one will not obtain the prod-
uct distribution. This observation is a potential starting point
for designing tests for the presence of large reproduction
events, by comparing correlations for loci at large distance
(hence with high recombination rate) under a Kingman- and
a E-coalescent-based ARG.
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Correlation in coalescence times at two loci

Correlations in coalescence times between two loci have been
considered in the context of quantifying association between
loci (McVean 2002). Eldon and Wakeley (2008) consider cor-
relations in coalescence times for a haploid population model,
admitting large offspring numbers, in which the ancestral pro-
cess admits only asynchronous multiple mergers of ancestral
lineages. To illustrate the effects of the reproduction parame-
ters on the coalescence times, we also consider the probability
that coalescence occurs at the same time at the two loci, as
well as the expected time until coalescence.

The calculations to obtain the correlations for a sample of
size two at two loci (following the approach and notation of
Durrett 2002) are shown in the Appendix, section A5. As we
are now considering the gene genealogy of unlabeled line-
ages, let us briefly state the sample space. Let a and b denote
the types at loci a and b, respectively. The three sample
states before coalescence at either locus has occurred can
be denoted as (ab)(ab), (ab)(a)(d), and (a)(d)(b)(b). By
(ab)(ab) we denote the state of two chromosomes, each
carrying ancestral material at both loci. By (ab)(a)(b) we
denote the state of one (ab) chromosome in addition to
two chromosomes (a) and (b) carrying ancestral types at
loci 1 and 2 only, respectively. The notation (a)(a)()(b)
denotes the state of four chromosomes, each carrying ances-
tral types at only one locus. Let

h(i):=P({Ta = Tp}|i), i€ {0,1,2}

denote the probability that coalescence at the two loci occurs
at the same time, given that the process starts in state i, in
which i refers to the number of double-marked chromosomes
(2, 1, or 0). As we are working with the limiting model, all
marked individuals are effectively single marked. Under the
usual (Kingman-coalescent-based) ARG, lim,_, .h()) = 0 as
one would expect. Our model yields

cpt

"33 8 —a oy

lim h(i)

lim ie{0,1,2},
indicating that even unlinked loci remain correlated due to
sweepstake-style reproduction. Figure 2 shows graphs of h
() as a function of ¢ for different values of ¢ and r. As
expected, h(i) increases with i, at a rate that increases with c.

Under the usual ARG, the expected time E;[T;] until co-
alescence at either locus, starting from state i is given by
E;[T,] = (1 + h(@))/2. The random variable T can be viewed
as the minimum of the time until coalescence occurs at
the two loci. As r — oo, the times T; and T, until coales-
cence at the two loci, respectively, become independent and
identically distributed exponentials (i.i.d.e.) with rate 1,
whose minimum has expected value 1/2. Under our model,
the mean of T is not the minimum of two i.i.d.e. with rate
1+cy?/4, another reflection of the correlation in gene gene-
alogies induced by sweepstake-style reproduction. Indeed,
our model gives

266 M. Birkner, J. Blath, and B. Eldon

A r=c=1 B r=1,¢=10

1.0 — 0O 1.0

0.8 oo A KD 0.8

064 ... O h0) 0.6‘/

04_—9—9—Q—U—U_5’0_’0_’0— 04_ o o o O o o o

0.2 - - 0.2 - I STtrie
EATHEBTEBTEBTE HEBTH BB S 6 6

0.0 - T T T 0.0 - T

T T T
02 04 06 08

[

T
02 04 06 08
[

C r=01,¢c=1 D r=0.1,c=10
1.0 1.0 A
T —e—ﬂ—‘o"ﬁ_’o_m—o_—
0.8 0.8
0.6 0.6
0.4 0.4 -
e A=l A =S A=A AL & A=t ATK ATA A4
024-¢-0-0-0-0-0-'0° 0" 0" 02--e-0-0-0°8°é '8 o o
0.0 0.0 -

T T T T T T T T
02 04 06 08 02 04 06 038
] P

Figure 2 (A and B) The probabilities h(2), h(1), and h(0) as functions of
i (lines) for different values of r and c. Values of h(-) obtained from the
usual Moran model are shown for reference (symbols).

. 1 1 .
rllngo E;[Ts] =3 (m>, ie{0,1,2},
in which y =1 — %/8.

Under our model, E;[T,] decreases with i, and the rate of
decrease increases with ¢ (Figure 3). The same pattern holds
for the expected time E;[T;] until coalescence has occurred
at both loci (Figure 4). Asr — o, E;[T;] associated with the
usual ARG approaches the expected value (3/2) of the max-
imum of two i.i.d.e. with rate 1. Under our model,

S I '
Am Bl =577 c? /41 + cy? /4 — eyt /32
(6 — )

i (cy? + 4) (4 + cy® — cy*/8)

while the maximum of two i.i.d.e. with rate A has expected
value 3/(2A).

The correlation cor;(T;, T,) between T; and T, when
starting from one of the three possible sample states i €
{0, 1, 2} (see Appendix) increases with ¢y and more so if ¢
is large (Figure 5). One obtains the following limit relations
between h(i) and cor;(T,, T>) fori € {0, 1, 2}:

lim cor;(T1,T2) = lim h(i) (see Equation 31);
r— oo r—

ling) cori(T1,To) = lir% h(i) (see Equation A35);
- r—

r

lim cor;(T1,T2) = lim h(i) (see Equation A34).
— ®© cC— x

C

Quantifying the association between alleles at different
loci can give insight into the evolutionary history of populations.
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Let f, and f;, denote the frequencies of alleles a at locus 1 and
b at locus 2, and let f, denote the frequency of chromosome ab
in the total population. The statistic Dy, := fy — fofy, measures
the deviation from independence, since if the two loci were
evolving independently; f; = fify. A related quantity is the r?
statistic, defined as

= D
" fa(1—fa)fs(1 = f)

(Hill and Robertson 1968), assuming f,, f, & {0, 1}. In
applications, one wants to compare observed values of r?
calculated from data to the expected value E[r?], obtained
under an appropriate population model. Calculating the
expected value of r? is not straightforward, since r? is a ratio
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1.3 104
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Figure 4 The expected time E;[T;] as a function of  for different values
of ¢ and r. For explanation of symbols, see Figure 3.
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Figure 5 Correlation of the time to coalescence at two loci as a function
of ¢, for different values of ¢ and r. For explanation of symbols, see
Figure 3.

of correlated random variables. The expected value of 2 is,
instead, approximated by the ratio ® = E[D?]/E[f,(1 — f.)
fp(1 — fp)] (Ohta and Kimura 1971).

A prediction D of linkage disequilibrium in the popula-
tion can be framed in terms of correlations in coalescence
times between two loci for a sample of size two, assuming
a small mutation rate (McVean 2002). The prediction rests
on approximating the expected value E[r?] of the squared
correlation statistic r2 (Hill and Robertson 1968) of asso-
ciation between alleles at two loci by the ratio of expected
values (Ohta and Kimura 1971). Following, e.g., Durrett
(2002) one can obtain expressions for correlations in co-
alescence times between two loci for a sample of size two
(see Appendix). Under our model, one obtains the limit
results

lim © =0,
ro e
3 — 1642 + 564 — 80

lim © = .
> —10y% + 88y — 176

c— ®

When ¢ is small but c large, one obtains

_ 5-7y/2 2

PEC 11y/2 +0().
Under the usual ARG, lim,_,¢® = 5/11. Thus, even in the
presence of a high recombination rate, if large offspring-number
events are frequent enough, one may see only evidence of
low recombination rate in data. Further, the prediction © can be
substantially higher than Kingman-coalescent-based pre-
dictions if ¢ is large and the recombination rate is not too
small (Figure 6).

For particular examples of probability measures F from
Equation 27 associated with the generator derived from our
random offspring distribution model one can compute the
quantities considered above in relation to fixed . One such
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example distribution can be the Beta(J, y) distribution (see 2 K
Figure 7 for ©). One obtains for i € {0, 1, 2}, ™= n(n—1) Z U

_ 4y(1+29 +v)

m A = 5 T+ )+ 10y0 + 790 + 9)

r—

Define h(i) := lim,_, ., h(i). For i € {0, 1, 2} one obtains
4y(1+29 +v)
8y(1+1y)+ 10y + 731 +9)
3y
+ 10y + 79(1 +9))
(32)

lim Eq[Ty] = 4h(i) +

. 3 1
Am BT =5 =200+ 55 a7

The form of the relation shown in (32) between h(i) and
[E;[T;] and E;[T;] resembles the one obtained for the Kingman-
coalescent-based ARG, with the addition of a “correction”
term due to simultaneous multiple mergers.

Variance of pairwise differences

The expected variance of pairwise differences was employed
by Wakeley (1997) to estimate the recombination rate in
low offspring-number (Wright-Fisher) populations, under
the usual ancestral recombination graph. Let the random
variable Kj; denote the number of differences between
sequences i and j, with K; = 0. The average number 7 of
pairwise differences for n sequences is
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i<j

The (empirical) variance 5727 of pairwise differences is de-
fined as

2
§2=_ = _
T nn—-1)

> (Ky—m)™.

i<j

In the Appendix we derive the expected variance of pairwise
differences E[S2] under the ancestral recombination graph
described by the generator G (Equation 14) derived from
our large offspring-number model. Under our model, E[S?]
is a function of the parameters ¢ and ¢, in addition to being
a function of r and # (Figure 8 and Figure 9). In Figure 8,
[E[S2], when only two loci are considered, is graphed as a func-
tion of the recombination rate and in Figure 9 as a function of
sample size. Figures 8 and 9 show that E[S2] is primarily
influenced by the mutation rate (6), when the values of ¢
and ¢ are fairly modest. However, E[S?] can be quite low
when both ¢ and ¢ are large, even when 6 is also large
(Figure 9). When c and ¢ are both large, two sequences are
more likely to coalesce before a mutation separates them.
The variance of pairwise differences alone will not suffice
to yield estimates of r if both ¢ and s are unknown. To jointly
estimate the four parameters (c, i, 1, 8) of our model one
probably needs to employ computationally heavy likelihood
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Figure 7 The prediction @ of linkage disequilibrium obtained from the
ARG associated with the Beta(d, y) distribution. The different lines
represent different values of y (top panels) or 9 (bottom panels). The
broken horizontal line represents the prediction obtained from the
usual ARG.

and importance sampling methods in the spirit of Fearnhead
and Donnelly (2001). However, given knowledge of ¢ and ,
one can, in principle, use the variance of pairwise differences
to quickly obtain estimates of the recombination rate.

Correlations in ratios of coalescence times

The behavior of the correlations in ratios of coalescence
times for sample sizes larger than two is investigated using
Monte Carlo simulations.

Let L; denote the total length of branches ancestral to i
sequences at one locus, let L denote the total length of the
genealogy at the same locus, and define R; := L;/L. Thus, Ry
is the total length of external branches to the total size of the
genealogy. The idea behind estimating the expected value
E[R;] is as follows. Assuming the infinitely many sites mu-
tation model, let S; denote the total number of mutations in i
copies and S denote the total number of segregating sites,
and define V; := S;/S. The key idea behind deriving the co-
alescent was to separate the (nmeutral) mutation process
from the genealogical process. The same principle also
applies to predicting patterns of genetic variation using the
coalescent: First, one constructs the genealogy and then
superimposes mutations on the genealogy. The shape of
the genealogy is thus a deciding factor in the genetic pat-
terns one predicts. The relative lengths R; of the different
types of branches should therefore predict the relative
number V; of mutations of each class. This idea is exploited
by Eldon (2011) to estimate coalescence parameters in the
large offspring-number models introduced by Schweins-
berg (2003) and Eldon and Wakeley (2006). Namely, the
claim is

lim E[R;] =

n—o

lim E[V;]

n—o

=f(w,1), (33)

A =005 B b =0.05
10 [*eessecsssssnscrnnse 124 BEEEEAAEEEERARERRARY
&
1.0 &n"“&ﬁ&m&mmmmmnxaan 1.0 7AAAAAAAAAAAAAAAAAAAA
0.8 O-S_XXXXXxxxxxxxxxx
) (0) Yl
064 o 0,0.1 + 1.0,0.1 067 o 10(; ?1 + 10(5(1)‘2)1
| 4010 % 1.0,1.0 0.4 4 210010 x 1000, 1.0
049 60100 * 10,100 0.2 4,900,100 1000, 100
0.2 ©0000000000000000000 : ??$$$$$$$¥$$$$$$?$3$
0 2 4 6 8 0O 2 4 6 8
recombination rate r recombination rate r
c P =05 D ¢ = 1000
$30000000600000000000
1o [EEEESIE R R RN R nENESY 05
da | (¥,0) (¥,0)
1.0 AAAAAAAAAAAAAAAAAAA 020 0 0.5,0.1 + 0.95, 0.1
0~8_XXXXXXXXXXXXXXXXXXXX 0.15 1 405,10 X 095,10
06 4 ©8) (©0) 0.10 © 0510  * 09510
01,01 + 100,01 . KA K K KKK KK KKK
0.4 A1.10 x 100, 1.0 0.05
0.2 © 1,10 * 100, 10 .
) %$$$$$$$$22$?$$$$2$$ 0.00 ¥EFFIIIIIIIFIIIFEILY
0O 2 4 6 8 0O 2 4 6 8

recombination rate r recombination rate r

Figure 8 (A-D) The expected variance of pairwise differences for sample
size 50 as a function of the recombination rate r for different values of the
parameters c, ¢, and 6 as shown.

where n denotes the sample size, and @ denotes the co-
alescence (reproduction) parameters. Indeed, it follows
from the results of Berestycki et al. (2007, 2008) that
lI<a<?2)

MNi+a—2)(a—-1)2-a)
I'(a)i!

lim E[R;] = lim E[V}] =

n— oo n—oo

when associated with the Beta(2 — «, «) coalescent derived
by Schweinsberg (2003) from a population model in which
the offspring law is stable with index «. A key feature of
expression (33) is the absence of mutation rate in the func-
tion f(w, 1); thus given a large number of DNA sequences
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Figure 9 (A-D) The expected variance of pairwise differences as a function
of sample size for different values of the parameters ¢, i, r, and 6 as shown.
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Table 1 Estimates R; of the expected values E[R]] of the ratios R; := L;/L for 1= i < 4 at one marginal locus, along with estimates R; of the
standard deviations of R;

l/l C n R] Rz R3 R4 R1 f(’z f\’g f\’4
— 0 6 0.466 0.219 0.138 0.100 0.183 0.167 0.198 0.124
10 0.378 0.180 0.117 0.085 0.156 0.132 0.120 0.110
20 0.300 0.146 0.096 0.070 0.119 0.097 0.088 0.081
50 0.235 0.116 0.077 0.057 0.080 0.063 0.058 0.055
0.005 1 6 0.466 0.219 0.138 0.100 0.183 0.167 0.198 0.124
10 0.377 0.181 0.117 0.085 0.156 0.133 0.120 0.111
20 0.299 0.146 0.095 0.071 0.118 0.097 0.088 0.082
50 0.234 0.116 0.076 0.057 0.080 0.064 0.057 0.054
1000 6 0.467 0.219 0.137 0.100 0.182 0.167 0.198 0.124
10 0.377 0.181 0.117 0.085 0.156 0.133 0.120 0.110
20 0.299 0.146 0.095 0.071 0.119 0.097 0.088 0.082
50 0.235 0.116 0.077 0.057 0.080 0.064 0.058 0.054
0.5 1 6 0.468 0.217 0.138 0.099 0.184 0.166 0.199 0.124
10 0.381 0.179 0.115 0.085 0.157 0.132 0.120 0.110
20 0.304 0.145 0.095 0.070 0.120 0.097 0.088 0.081
50 0.242 0.117 0.077 0.056 0.081 0.064 0.058 0.054
1000 6 0.541 0.173 0.116 0.089 0.184 0.152 0.177 0.116
10 0.566 0.117 0.078 0.058 0.159 0.101 0.090 0.082
20 0.743 0.101 0.035 0.022 0.084 0.053 0.033 0.027
50 0.576 0.195 0.089 0.046 0.058 0.051 0.037 0.026

Estimates are obtained from 10° simulated gene genealogies.

(possibly in the thousands), one hopes to be able to obtain
estimates of the coalescence parameters w without having
to jointly estimate the mutation rate. In our model, there
are four parameters to estimate, namely mutation and re-
combination rates, along with the coalescence parameters ¢
and ¢. Even though full-likelihood methods exist (Birkner
and Blath 2008; Birkner et al. 2011), applying them to
large data sets consisting of thousands of sequences may
represent a challenge.

Estimates of E[R;] as functions of the sample size n and
the coalescence parameters ¢ and ¢ are shown in Table 1.
In nearly all cases the estimates of R; decreased as sample
size increased; the exception was R; when (c, ) = (1000,
0.5) (Table 1). When both ¢ and ¢ are large enough, we
observe a nonmonotonic behavior in R; as sample size
increases (results not shown). The nonmonotonic behav-
ior may be related to the property of the marginal haploid
process (the point-mass part obtained as ¢ — ) of a sin-
gle locus of not coming down from infinity (Schweinsberg
2000b); i.e., when one starts with an infinite number of
lineages (sample size), the number of lineages stays infin-
ite. For such processes that do not come down from in-
finity, the ratio R; should go to one; ie., the gene
genealogy should become completely star-shaped (see, e.g.,
Eldon 2011). As both ¢ and ¢ increase, one expects the de-
viation from Kingman-coalescent-based predictions to in-
crease. By way of example, for sample size 50 the vector
(E[R4], ...,E[R,)] is estimated to be ~(0.24, 0.12, 0.08,
0.06) when associated with the Kingman coalescent (c =
0), while being ~(0.58, 0.20, 0.09, 0.05) when (c, ) =
(1000, 0.5). In all cases the estimate R; of the standard de-
viation of R; decreases as sample size increases, indicating
convergence.
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The rationale behind comparing the statistics in Tables
2 and 3 is as follows. As sequencing technologies advance,
and the genomic sequences of more organisms become
available, a case in point being the recently published
genomic sequence of Atlantic cod (Star et al. 2011), ge-
nomic scans of thousands of individuals will become more
common. Given DNA sequence data for many loci, one
could calculate correlations for counts and ratios of
counts of mutations and compare them to predictions
based on different ancestral recombination graphs. Simi-
larly for the single-locus statistics (Table 1), the idea is
that the correlations of the coalescence time statistics (L;
and R;) should reflect correlations of mutation counts (S;).
In particular, under the usual ARG one expects (see Tables
2 and 3)

lim cor <L§1)7L§2)> = lim cor(R.(l),R@)> =0,
r—o0 J r—o L J

where the superscript refers to locus numbers 1 and 2,
respectively, while under an ARG admitting simultaneous
multiple mergers one expects

. 1 2 ..
Jim cor(L§ ),L} )) =f(i, j, @)

rllyngo cor(REl),R;2)> =g(i, j,w),
where f and g are functions of the particular statistics in-
dicated by i and j as well as the vector w of coalescence
(reproduction) parameters.
In general, the results reported in Tables 2 and 3 indicate
that high values of both i and c are required for high corre-
lations when recombination rate is high, when associated



Table 2 Estimates of the correlation cor(X(V, Y®) between X and Y@, where X(" represents a statistic for locus 1 and Y@ that for locus 2,
as follows: the time T until the most recent common ancestor at a locus; L, the total length of the gene genealogy at a locus; and R; := L;/L, in
which L; denotes the total length of branches ancestral to i sequences

c W r cor(T, T@) cor(L™M, L@) cor(L™M, L'?) cor(LM, 1P cor(L, L% cor(L{M, L)
0 — 1 0.311 0.418 0.586 0.501 0.434 0.378
10 0.016 0.058 0.169 0.089 0.047 0.036
1 0.005 1 0.306 0.415 0.588 0.508 0.431 0.380
10 0.015 0.055 0.171 0.090 0.049 0.034
1000 0.005 1 0.308 0.419 0.585 0.509 0.438 0.376
10 0.013 0.051 0.168 0.093 0.052 0.030
1 0.5 1 0.328 0.447 0.601 0.516 0.449 0.389
1 10 0.024 0.085 0.193 0.107 0.064 0.036
1000 1 0.982 0.995 0.976 0.950 0.918 0.879
10 0.924 0.947 0.763 0.623 0.503 0.396
c ¥ r cor(Lg”, Léz)) cor(L(11),L(32)) cor(Lg”, Lflz)) cor(L(;)7 L(32)) cor(L<21>7 ng)) cor(Lé”, Lf))
0 — 1 —0.031 —0.031 —0.021 —0.005 -0.018 0.009
10 0.005 —0.006 —0.001 0.012 0.005 0.013
1 0.005 1 —0.035 —0.025 —0.021 —0.001 —0.019 0.009
10 0.000 —0.002 0.008 0.009 0.005 0.014
1000 0.005 1 —0.036 —0.029 —0.021 —0.006 —-0.018 0.010
10 —0.002 —0.003 0.003 0.014 0.004 0.005
1 0.5 1 —0.022 -0.014 —0.007 0.004 —0.004 0.023
10 0.009 0.006 0.010 0.022 0.014 0.025
1000 1 0.326 0.314 0.305 0.238 0.218 0.176
10 0.311 0.284 0.266 0.289 0.239 0.262

Estimates are based on 10> simulated ancestral recombination graphs each for a sample of size 50.

with our model. In particular, the correlations between A different question concerns the limit behavior as
RED and REZ) (i.e., between corresponding R;’s at different  sample size n increases. Fix the recombination rate and con-
loci) can be quite high, even when recombination is high, sider the limits

when both ¢ and ¢ are large enough, another indicator of

the genon.le—w1de correlations induced by sweepstake-like lim cor (Rgl),R@)), lim cor (V.(l), V(g)) (34)
reproduction. n— oo i 00 n— o L7

Table 3 Estimates of the correlation cor(X(V, Y@) between X" and Y@, where X(" represents a statistic for locus 1 and Y@ that for locus
2, as follows: the time T until most recent common ancestor at a locus; L, the total length of the gene genealogy at a locus; and R; := L;/L,
in which L; denotes the total length of branches ancestral to i sequences

c v r cor(Rﬂ”, R(22>) cor(Rg), R(zz)) cor(R(;), R§2>) cor(RE‘”, Rff))
0 — 1 0.570 0.548 0.486 0.431
10 0.116 0.089 0.052 0.042
1 0.005 1 0.566 0.552 0.487 0.435
10 0.115 0.091 0.054 0.035
1000 0.005 1 0.570 0.551 0.491 0.434
10 0.115 0.095 0.059 0.031
1 0.5 1 0.583 0.557 0.504 0.447
10 0.135 0.102 0.063 0.038
1000 0.5 1 0.955 0.927 0.900 0.866
10 0.679 0.469 0.384 0.304
c Y r cor(Rﬁ”, R(22>) cor(Rﬁ”, Rgz)) cor(Rﬁ”, RE‘Z)) cor(Rg), Réz)) cor(Rg), RS‘Z)) cor(R(;), Rf))
0 — 1 —0.023 —0.040 —0.042 —0.026 —0.042 —0.014
10 —0.022 —0.023 —0.020 0.003 —0.005 0.005
1 0.005 1 —0.024 —0.038 —0.042 —0.023 —0.046 —0.014
10 —0.027 —-0.018 —0.015 0.001 —0.007 0.011
1000 0.005 1 —0.028 —0.038 —0.038 —0.031 —0.043 —0.012
10 —0.030 —0.024 —-0.016 0.003 —0.008 —0.001
1 0.5 1 —0.023 —0.035 —0.035 —0.028 —0.034 —0.007
1 0.5 10 —0.029 —0.023 —0.015 0.004 0.000 0.016
1000 1 —0.622 —0.348 -0.112 —0.100 —0.038 —-0.016
10 —0.330 —0.255 —0.135 0.009 0.004 0.096

Estimates are based on 10° simulated ancestral recombination graphs each for a sample of size 50.
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Under the usual ARG, one expects the limits in (34) to be
only functions of the recombination rate (and i and j). If the
ARG also admits simultaneous multiple mergers, one
expects the limits in (34) also to be functions of w. Consid-
ering unlinked loci, one would be interested in the limits

lim lim cor(le, R§2)>,

r— o n—w J

lim lim cor (Vl.(l)7 V.(z)) .

r—© n— o« J

(35)

Resolving the limits (35) for different ARGs promises not
only to yield insights into genome-wide correlations, but
also to provide tools for inference, e.g., to distinguish be-
tween different population models.

The C program written to perform the simulations was
checked by comparing correlation in coalescence times for
sample size two at two loci to analytical results. The
program is available upon request.

Comparison with Eldon and Wakeley (2008)

Eldon and Wakeley (2008) consider correlations in coales-
cence times and the prediction © of linkage disequilibrium,
under a modified Wright-Fisher sweepstake-style reproduc-
tion model, and observe correlations in coalescence times
between loci despite high recombination rate. Our work
differs from theirs in important ways. To begin with, we
treat diploidy in detail, in which each offspring receives its
two chromosomes from two distinct diploid parents. This
leads to a separation of timescales of the ancestral process.
We formally derive an ancestral recombination graph that
admits simultaneous multiple mergers of ancestral lineages,
which naturally arise in diploid models. Eldon and Wakeley
observed correlations in coalescence times when considering
only sample size two at each locus in a model that contains
diploid individuals only implicitly; it is not a priori obvious
that the correlations would still hold for large sample sizes.
We confirm this using our formally obtained ARG that
allows us also to investigate correlations in coalescence
times and in ratios of coalescence times, for sample sizes
larger than two at each locus. In addition, one can apply
our ARG to inference problems. Indeed, we show how the
variance of pairwise differences can, in principle, be used to
obtain estimates of the recombination rate. Finally, we ob-
tain a large class of ARGs by randomizing the offspring dis-
tribution; thus one is not restricted to the simple case of
fixed .

Furthermore, since the estimate ® of the expected value
of r2 can be expressed in terms of correlations in coales-
cence times, Eldon and Wakeley consider ® under their
modified Wright-Fisher model. However, ® is based on
approximating an expected value of a ratio of correlated
random variables by the ratio of expected values of the
corresponding random variables and is also derived for
a sample of size two at two loci. Thus, ® may not be the
ideal quantity to quantify association between loci for large
sample sizes. A more natural way may be to investigate
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correlations in coalescence times for samples larger than
two the way we do.

Discussion

Understanding the genome-wide effects of sweepstake-like
reproduction on gene genealogies was our main aim. To this
end, we derived ancestral recombination graphs for many
loci arising from population models admitting large off-
spring numbers. High variance in individual reproductive
success, or sweepstake-style reproduction, has been sug-
gested to explain the low genetic diversity observed in many
marine populations (Hedgecock et al. 1982; Avise et al.
1988; Palumbi and Wilson 1990; Beckenbach 1994; Hedgecock
1994; Arnason 2004). Hedgecock and Pudovkin (2011) review
the sweepstake-style reproduction hypothesis and conclude
that it provides the correct framework in which to investigate
many natural marine populations.

Multiple-merger (Donnelly and Kurtz 1999; Pitman
1999; Sagitov 1999) and simultaneous (Schweinsberg
2000a; Mohle and Sagitov 2001) multiple-merger coales-
cent models arise from population models incorporating
sweepstakes reproduction by admitting large offspring num-
bers (Sagitov 2003; Eldon and Wakeley 2006; Sargsyan and
Wakeley 2008). While multiple-merger coalescent processes
describing the ancestral relations of alleles at a single locus
have received the most attention from mathematicians, ances-
tral processes for multiple linked loci have hitherto remained
unexplored. We derive an ancestral recombination graph for
many loci from a diploid biparental population model, in which
one pair of diploid individuals (parents) contributes offspring
to the population at each time step. Thus, each offspring nec-
essarily receives its chromosomes from distinct individuals, as
diploid individuals tend to do. Incorporating diploidy into our
model the way we do leads to a separation-of-timescales prob-
lem. Our limiting object is essentially a “haploid” process, in
which chromosomes either coalesce or recombine. By extend-
ing a result of Mohle (1998), we show that diploidy, a funda-
mental characteristic of many natural populations, can thus be
treated as a “black box,” since the limiting object does not
depend on the location of chromosomes in individuals.

By adopting a Moran-type model, in which only a single
pair of individuals gives rise to offspring at each reproduction
event, we chose mathematical tractability over more biologi-
cally realistic scenarios, in which, for example, many individ-
uals contribute offspring at each time step. It should be
straightforward to extend our model in many ways, for ex-
ample by allowing a random number of parents or introduc-
ing population structure. Indeed, we do extend our model in
one way, by taking a random offspring distribution. These
extensions still leave open the question of distinguishing
among different large offspring-number models. Our work on
ancestral recombination graphs incorporating information
from many loci is a step in this direction.

Sweepstake-style reproduction induces correlation in co-
alescence times even between loci separated by a high rate of



recombination. The correlation follows from the multiple-
merger property of our ancestral recombination graph, since
many chromosomes coalesce at the same time in a multiple-
merger event. The correlation remains a function of the
coalescence parameters (¢ and i) of our population model.
An immediate question is the effects on predictions of linkage
disequilibrium (LD). The approximation ® by McVean
(2002) predicts low LD when the recombination rate is
high. However, when the rate of large reproduction events is
high (¢ — ), © remains a function of the coalescence
parameters. The dependence of © on coalescence parame-
ters has implications for the use of LD in inference for pop-
ulations exhibiting sweepstake-style reproduction. Using
simulations, Davies et al. (2007) found little effect of mul-
tiple mergers on the prediction 2 of linkage disequilibrium,
when comparing the exact Wright-Fisher model with re-
combination to the usual (continuous-time) ARG. However,
by directly incorporating large offspring-number events the
way we do, we can show that large offspring-number events
do induce correlation in coalescence times and hence influ-
ence predictions of linkage disequilibrium.

The genome-wide correlation in coalescence times (Tables
2 and 3) induced by sweepstake-style reproduction offers hints
about how to distinguish between large offspring number and
ordinary Wright-Fisher reproduction. We are unaware of any
published multilocus methods derived to distinguish among
different population models. Full-likelihood methods may be
preferable to the simple moment-based methods we consider.
However, likelihood-based inference tends to be computation-
ally intensive and more so for large samples. For large samples,
one should be able to quickly obtain a good idea of the un-
derlying processes by comparing correlations in ratios of mu-
tation counts with predictions based on different population
models.

In conclusion, ancestral recombination graphs admitting
simultaneous multiple mergers of ancestral lineages are de-
rived from a diploid population model of sweepstake-style
reproduction, suggested to be common in many diverse marine
populations. Our calculations show that sweepstake-style
reproduction results in genome-wide correlation of gene gene-
alogies, even for large sample sizes. Estimates of linkage dis-
equilibrium and of recombination rates are confounded by the
coalescence parameters of our population model. The genome-
wide correlation in gene genealogies induced by sweepstake-
style reproduction implies that examining correlations between
loci should provide a means of distinguishing between ordinary
Wright-Fisher and sweepstake-style reproduction.
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Appendix
A1: Overview of Transitions and Their Probabilities in the Finite Population Model
A1.1: Basic setup and notation

We now classify all transitions and their probabilities of our population model relevant for the ancestral process under the scaling
eéN? = ¢/N?, in which N denotes the population size. Fix a sample size n for this section. Usually we suppress the dependence on the
sample size in the notation below. Recall the state space .¢7;, of our ancestral process (respectively .«/5" for the “effective” limiting model).

Let Iy be the transition matrix of the Markov chain {&™ M(m)},,—o, 1, . on .7, describing the ancestral states of an n
sample in a population of size N. Our aim is to decompose Iy into

IIy =An +]%BN + Ry, (A1)

where the matrix Ay contains all transitions whose probability is O(1) or O(N~1) per generation, so that they will happen
“instantaneously” in the limit and are either identity transitions or projections from .2/, to /5" by means of dispersing
chromosomes paired in double-marked individuals. The matrix By contains all transition probabilities that are positive and
finite after multiplication with N> and N — o, that is, our “effective transitions.” The remainder matrix Ry carries only
transition probabilities that are of order O(N—3) or smaller that will thus vanish after scaling.

Once we have established this decomposition, we can apply Lemma 1.7 below in a suitable way to identify the limit given
in Definition 1.1 and establish the convergence result, i.e., Theorem 1.2.

In Table Al, Table A2, and Table A3 we schematically deal with all possible transitions that can happen to a current
sample over one time step.

Analogous to the notation and convention of Mohle and Sagitov (2003), we assume that in every configuration &%N(m)
from (2), for the order of chromosomes in individuals I; for i € [b(m)] we have

L;(m) = {C=Y(m),c)(m)} if 1=i=<p(m)—b(m);
(A2)
I;(m) = {CBM=bM*)(m) @} if B(m)—b(m)+1=i=b(m).

For ease of presentation, we denote by I' a single-marked individual carrying one active chromosome, by I” a double-
marked individual carrying two active chromosomes, by I" a single-marked individual (parent) whose marked chromosome
is not passed on in the sample during a given reproduction event, and by I” a double-marked individual (parent) where one
marked chromosome is passed on and the other is not during a given reproduction event.

The symbols (A), (B), and (R) in the tables denote whether the corresponding transitions belong to Ay (A), to By (B), or to
the “remainder term” (R) in (A1) according to the decomposition mentioned above. After that, we compute all the important
probabilities explicitly. The order of the probability of each transition is also noted in Tables A1-A3.

A1.2: Transition type 1: Small or large reproduction event, no offspring in the sample

If a reproduction event takes place, say at generation m, which does not affect our sample, this will not affect the state of our
ancestral process at m + 1, and we have &»N(m) = &N(m + 1). Hence, we see an identity transformation. We now compute
the probability that our sample is not affected. Given the current state £ € ./, with b individuals and 8 chromosomes (hence
B — b double-marked and 2b — B single-marked individuals), the probability that no child is in the sample is

Table A1 Transitions of type 2

Parent with marked chromosome(s) (@ means no parent in sample)

Offspring (0] g

I {I, I'}A) {r, 1}, I, 1}
O(N—1) O(N—2), (B)

I {I'}A) Iy, {1}, {r, '}, (B)
O(N—1)p O(N~-2)c

g i

I O(N~2), (B) O(N~2), (B¢

I {1}, U, 13, (B) {r', 17}, {Ir'}, (8)
O(N~2) ON—2)

2 Offspring double-marked, no parent in sample.

b Offspring single marked, no parent in sample.

¢ Offspring single marked, one single-marked parent in sample.

9 Offspring double-marked, one double-marked parent in sample.
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Table A2 Transitions of type 4, neither parent in sample

Offspring Parent: @

o I, 1}, ON-2), (B)
{1”, 17}, OIN3), (R)

v 1", O(N-2), (B)

(H)NNZ,HN%&N?)

A1.3: Transition type 2: Small reproduction event, offspring in the sample, at most one parent in the sample,
no recombination

Here, we need to distinguish only whether the offspring is single or double marked and whether there is a parent in the sample.
For example, it is immediate to see that the probability of a transition from a double-marked (I") offspring to two single-marked
({1',I'}) individuals is of order O(N—1) when no parent is in the sample and no recombination happens. Table A1 lists all
corresponding events. By way of example, the state-labeled {I’, I'} denotes that two single-marked individuals, each carrying
one active chromosome, are reached from the sample configuration. One such configuration is if the sample contains one
offspring, but neither parent (@), and the offspring is carrying two active chromosomes (1").

A1.4: Transition type 3: Small reproduction event, offspring in the sample, both parents in the sample

If both parents and offspring are in the sample in a small event, this immediately gives a transition probability of order
O(N—3) or smaller (depending on the presence of recombination) and hence will be irrelevant and be part of Ry. We omit
a detailed table listing the different single- and double-marked individuals.

A1.5: Transition type 4: Small reproduction event, offspring and at most one parent in the sample,
recombination occurs

Table A2 lists transitions due to recombination and when neither parent is in the sample. The probability of the presence of
both an offspring and at least one parent in a sample, when recombination occurs, is of order O(N~2) and so will vanish in
the limit.

A1.6: Transition type 5: Large reproduction event, offspring in the sample, no parent in the sample, no recombination

Table A3 lists all possible transitions when a large reproduction event occurs, no parent is in the sample, and recombination
does not occur. The probabilities of the events listed in Table 1 in the main text are of order O(N~2) and so will appear as
effective transitions in the limit.

A1.7: Transition type 6: Large reproduction event, offspring in the sample, recombination occurs, and/or at least one
parent is in the sample

The probability that a large reproduction event takes place and at least one child and at least one parent are in the sample is
O(N—3). In addition, the probability that a large reproduction event takes place, at least one child is in the sample, and also
a recombination event happens in the sample is O(N~3). Hence all such events are negligible.

A2: The Convergence Result
A2.1: The limit of the projection matrix Ay
Some care is needed to make sure Ay converges in the right sense to the desired projection matrix. The only

relevant transitions of order O(1) or O(N~1) are transitions of types 1 and 2. The only one that is not an identity

Table A3 Transitions of type 5

Offspring Parent: @
ki, koI” {I”, 1"}, O(N—2), (B)
{1", '}, OIN=2), (B)
{r', '}, OIN=2), (B)
", O(N~=2), (B)
)

oN-2), (8
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transition is the first dispersion event of Table Al. For ¢ € .o/, with b < B (i.e., at least one marked individual is double
marked), that is

& v disp; (£).
This event will become part of Ay and has probability

N-b-1
1 2

An (€, disp;(€)) =(1—8N)NT(1—W)Z, 1=i=B8-b (A3)
2)

(this is the probability of the event a listed in Table Al; event b in Table A1 leads to an identity transition). Otherwise, we
have

N-b-1

AN(§,§):1—(1—8N)'BI;b< Ii >(1—rN)2.
()
Of course, Ay has to leave elements of the subspace .2/$™ invariant; hence we set, for £ with b = 3,
/hv(g,g/):::1{§=§}.
Proposition 1.4. With the above settings, Ay is a stochastic matrix for each N and

clgllo ngnoo S>uCPNHAN -P|= (A4)

or all C > 0 large enough, where P is the canonical projection from o7, to 27°™; i.e.,
f g g proj n

P@fj=1gem@k

Proof of Proposition 1.4. The Markov chain with transition matrix Ay can change state only by dispersing the chromosomes
paired in a double-marked individual. We see from (A3) that

K(n,r,c)

An(€, dispy(€) =

for some suitable constant K(n, r, ¢), uniformly in b and i = 8 — b and N (for all N large enough). Hence, starting from & with
B — b double-marked individuals, the number of Ay steps requ1red until complete dispersion has occurred is dominated by

the sum of B — b independent geometric random variables y )+ . BN »» With success probability K(n, r, c)/N. By
Markov’s inequality,
™) ) A elmy LMW N(B—b)
zlég]?{yl yﬁ_bECN}SCNIE[yl Y- b} CN. K(nrc)_)o as C— .,

The proof can now be completed with a coupling argument, noting that two Markov chains run according to Ay
resp. P, started in £ € .9/, both get stuck in cd(¢), and this happens after at most CN steps with high probability (for C
large).

A2.2: Proof of the convergence result

With the definition of Ay from the previous section, put

*

By := N*(Ily — Ay) (A5)

and let P be the canonical projection from .2/, to .«/;" defined in Proposition 1.4. The following lemma identifies G as the
limit containing all the effective transitions of By, when projecting on the subspace ./5™:
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Lemma 1.5. We have

By :=PByP—G as N—wx (A6)

with G from (14).

Remark 1.6. We do believe that in fact the sequence of (formally larger) matrices By on %/, converges as well, but the
statement about By is sufficient for our purposes below [see (A13) in Lemma 1.7] and simpler to prove since it allows us to restrict
to the “completely dispersed” configurations in <7}".

Proof of Lemma 1.5. We inspect the types of events listed in Tables A1-A3 that are marked with (B). Events that
are marked with (R) have probability of order at most O(N~3); hence their total contribution to any entry of By is
at most O(N~1) (since we are following a finite sample, there are only finitely many possible one-step events alto-
gether). It suffices to consider By(¢,cd(n)) for ¢ = {C),...,C#); B} € &/™ n € .o/, (because P projects to .o/*™).

Regarding ¢’ = pairmerge}, j,(£), this transition can happen in a small reproduction event (these events are listed at ¢ in
Table A1; note that events listed at d in Table A1 lead to a trivial transition once P is applied) or in a large reproduction event
as in Table A3 if the grouping is suitable. Up to four parental chromosomes are involved in any reproduction event. Hence,
a large reproduction event can lead to a given pair merger in the sample if up to five individuals in the sample are children.
Thus

By(£,E) =N*(1—en)(1 _rN)lel (N-b)11

N/N—-1\ 22
)
N-8

5 c B_Z <|J\[¢J—c) 1\°¢ _
+N28NC§2(1—rN) <0—2> <1V>(4)c1<> +O(N71).
[Nyl

For the first term on the right note that either j; or j, can be the child, and the two factors of 3 come from the requirement
that the chromosome in the child we are following is the one from the parent in the sample and is also the one we are
following in the parent. For the second term on the right note that once we decide on ¢ children in the sample
[((B—2)/(c—2)) choices because j; and j, are already chosen], there are (4).—; ways to assign them to the four parental
chromosomes. For comparison with (15) and the first line in (14) observe

(A7)

N-B
(W¢J—c) _ N-pINgh(N-INg) ) N -g))P Fgp
N (INy]—c)! (N = B =Ny + ) IN! NP '

(1)

Regarding ¢’ = recomb; ¢(¢) [assuming that « is such that C? can be nontrivially cut into two by a recombination event
between loci ¢ — 1 and ¢], this transition can happen in a small reproduction event as listed at b in Table Al or in another
event that has probability O(N~3). Hence

N- b)
. ©
Bu(&.¢) =N2(1—3N)><17( 2 i+o(N*1) =rl0 4+ O(N7Y). (A8)

N/N-1\N
2
Regarding ¢’ = groupmerge;, , ;. 5, (€), this can occur only through a large reproduction event as listed in section A1.6. Write
ki:==|J;]; weassume k; = ... =k, = 2forsomea € [4], ki1 =...=ks=0(ifa=1,k; =3),ands:=B — (k; + - + k) is
the number of singletons (nonparticipating chromosomes) in the merger. Note that by the structure of the diploid model,

with a groups merging there can be up to k; + - + k, + (4 — a)* children in the sample [put differently, up to (4 — a)*
“nonmerging children”]. Then
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. (4-a)" (B—k1i— ... —kq ,
By (57 §’) = Nng Z ( ) (1*T‘N)kl+‘“+k“+c
c'= ’

0 C

(1. )
, .tk
y Nyl — (ke +N +kq+c) " G)kl hote o
(LNM)

It remains to check that the diagonal terms behave correctly, i.e., that as N — oo,

By(£,6)—G(EH =~ D G(&E). (A9)

EAEE €S
Because Ily and Ay are both stochastic matrices (as is P), we have
By(&6) =~ > Bn(£¢) (A10)

§#EE e

for each N. By inspection and the discussion above, all terms in Iy with decay rate 1/N are accounted for in Ay, and all
nondiagonal terms in IIy — Ay with decay rate 1/N2 appear after multiplication with N? in By with their correct limits,
namely the corresponding terms in G, while terms with a faster decay rate disappear in the limit. Hence (A10) implies
(A9).

A3: Markov Chains with Two Timescales—A Variation on a Lemma of Mohle

Conceptually, our convergence result rests on a separation-of-timescales phenomenon. It can be established with the help of
a variant of a well-know result; see Lemma 1 from Moéhle (1998).

Let E be a finite set. We equip matrices A = (A(x, ¥))xyeg on E with the matrix norm [|A|| := maxver) x| A(x,y) |. Note
that then ||AB|| = ||A||||B|| and ||A|| = 1 if A is a stochastic matrix.

Lemma 1.7. Assume that for N € N, Ay is a stochastic matrix on E such that

— ®©

lim lim sup ||Ay —P||=0 (A1D)
C—= N r=CN
for some matrix P. Then we have for any 0 < ¢, K, t <o

lim sup ||(ax-+eN~28)™" — (p+av=25) ™| = 0. (A12)
N= 8| =k

Furthermore, if (By)neN is a sequence of matrices on E such that

G:= Nlim PBNP exists, (A13)
then
Nlim (AN+cN72BN)[tN] =peG  forall t>0. (A14)

Remark 1.8. Instead of timescales N and N? one can allow more generally any ay, by — o with by/ay — o, with only
notational modifications in the proof.

Proof of Lemma 1.7. We begin with (A12). Without loss of generality assume K = 1; otherwise replace B by B/K and c by
cK. Fix ¢, t > 0 and a matrix B with ||B|| = 1, and abbreviate m :=[tN2]. Let ¢ > 0 and choose C, < « and N, € N such that

|Ay —P||=¢ for N=No,r=CoN (A15)

[as guaranteed by (A11)]. Note that
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| (An+cN~2B)™ — (P+cN—2B)"||

m
= A —P||+ S (L
= [|lA% - Pl 2() 3

my,...,;Mr+1€Ng

k+1
AY TT (BAY) —P™ [] BP™)).
J J

>
+
—_
+

I’
N
I’

N

my+ .. +mg=m—k

Mimicking the proof in Méhle (1998), we split the second summand into (the ellipses refer to the term inside the large-norm
brackets on the right of the last line of the previous formula)

Sp = g(l\%)k Z ... and Sy := i(%)k Z

my,...,;Mg+1 = CoN k=1 my,...,;Mr+1 €Ny
mp+..+m1 =m—k mp+..+mg=m—k
3j:m; <CoN

As in Mohle (1998, p. 509) we have S; < 2ef(t + 1)¢ for all N large enough, and our estimate for S, is a small variation of the
corresponding estimate in Mohle (1998). Each of the matrix norms appearing in the big sum in S, is at most 2, and hence
(with x Ay := min(x, y))

mp+ ... +mgy=m-—k,
Elj:mj<C0N

k
Sy=2 Z —2) #{(ml,...,mkﬂ) GNlé:

m ,c\k GNAm—k) fm —mq1 — 1
=23 (1) (k+1) 3

k=1 m;=0 k—1
-1 m—1
szé(ﬁ)k(kﬂ)coN(:_l) zcoNsz(N) k+2< ) )
1

[We use in the last estimate that for |x| < 1, n € N, Z::O(Z)xk = (1+x)", and 3% k(" )X = nx(1+x)" 1]

The derivation of (A14) from (A12) is literally the same as in Mohle (1998, pp. 509 fkvll) (read cy = ¢/N? there).

A4: The Convergence Result with General Random W,

In this section we briefly indicate how the proof of Theorem 1.2 can be modified to yield Theorem 1.3. In each reproduction
event, a random number Wy of individuals die and are replaced by the same number of offspring, and we recall assumptions
(20), (22) and (24). By short timescale we refer to the scaling ay given by

an = N
N E[Wy]

and by long timescale the scaling by given by

1 NN-1)
N E[¥n(¥y +3)]

Assumption (20) yields by — « as N — o, and by/ay — « by assumption (21). To check (23), i.e., that indeed ay — o,
observe that Wy/N is a positive random variable, bounded by 1. Condition (20) is equivalent to E[(¥x/N)?] — NO, which
implies ¥5/N — 0 in probability and E[Wx/N] — 0 and hence (23).

For use below, we recall implications of (22) provided that (20) holds (cf. Sagitov 1999):

Py

For all j = 3: —IEKN

) } * 2F(dx). (A16)
[0.1]

Indeed, integration by parts yields
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F)] e e o
—E||— =— x) TP —>x |dx — x’ F(dy)dx
N KN N (0,1]] N N— e <o,1]J (x,l]y (@)
= / ( / 1{x<y}jxf‘1dx>y‘2F(dy) (A17)
0,1\ /(0,1
= [ i)
(0,1]
Furthermore for the case j = 2 one obtains

. 1 xlfN) 2} . E[V]
limsup —E| [ — = limsup =——————=1< . (A18)
N— oop CN |:( N N— OOP E[qu(qu + 3)}

Let ¥ ~ have the following reweighted distribution (relative to Wy):

- k(k +3)
P[Wy=k|==———+—"—PWn=k), k=1,...,N—2 Al19
( N ) E[VN(VN + 3)] (b =4) (A19)
and then
TNiF as N— . (A20)
Indeed, for any ¢ € N
N
pl(¥n) | o NN-1) [(¥y “lyy +3
N ]E[‘I’N(\I’N + 3)] N N-1
(A21)
! Wy +2 N 3 1 Wy +1 .
&) |6 e e
(0,1]

by (A17) and (A18), so (A20) follows because the moments characterize a probability law on [0, 1]. One can check (along
the lines of Sagitov 1999) that under assumption (20), both (A17) and (A18) are in fact equivalent to (22).

The proof of Theorem 1.3 is now a relatively straightforward adaptation of the proof of Theorem 1.2 discussed in sections
Al and A2 above. Scaling by N is throughout replaced by scaling with ay = N/E[Wy] and scaling by N? becomes scaling with
by = N(N — 1)/E[¥y (Iy+ 3)]:

i. When currently following b = 1 individuals, the probability that none of them is an offspring in the previous reproduction
event (and hence the sample configuration remains unchanged) is

T T 0-a) o) 1o

This is analogous to transitions discussed in section Al.2 and happens “all the time” (leading to the projecting transitions

part in the limit).

ii. When currently following b = 1 individuals, say the kth of which is double marked, the probability that the ith individual
is the only offspring in the sample, and that the sample also does not contain a parent, is [we write (x)k = x(x — 1)...
(x —k + 1) for the ith falling factorial]

E

‘I’N(N—‘I’N—Z)b,1:| ~F |:‘I’N (1_&
N

b—1
s N ) } =ay!(1+0(1)).

The projection matrix Ay now becomes
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YN(N—-VN—2),_4
(N)p

and Ay (¢,€) = 1— (B — b)E[Wy(N—Wx—2),_,/(N),](1—r)?; the analogue of Proposition 1.4 is then

An (¢, disp;(é)) =E (1-r)?, 1=i=g-b (A22)

lim lim sup |Ay—P|=0. (A23)

Cow N=w p=(Cay

ili. From now on we can work on the “projected” space ./7". The distinction between small and large reproduction events is
irrelevant in the general case. Hence, it is more suitable to distinguish whether a parent and an offspring are in the
sample or whether several offspring (but no parent) are in the sample. In analogy with (A5) and (A6), we split ITy into
fast and slow parts and define

By :=by(Ily —Ay), By :=PByP. (A24)
It then remains to check that
By—G with G defined in (26), (A25)

whence Theorem 1.3 follows from Lemma 1.7 together with Remark 1.8.

We now verify (A25):

iv. Recombination events give the correct limit; see the discussion below (24).

v. “Large” is the probability that exactly k = 2 individuals among b (excluding the parents) is, using (A19),

E{(WN)k(N(;V\;fN—z)b_k} B[y (T + 3)E (@If)kQN—z—ifN)b_k | w2
b LN (\IIN + 3> Ny

thus 1/cy times this probability is

o U () o), of)

Wy <xifN + 3) (N), (N-2 N (A27)

. / Y2 (1)t *E(dy)
(0,1]

N—w

by (A20). Furthermore, the probability that at least two offspring and at least one parent are in the sample is at most

o

hence such events become negligible in the limit.
vi. “Small” is a merger of a single pair, which can result either from one offspring and one parent in the sample or from two
offspring but no parent in the sample: Here, the weight of F({0}) plays a role.

The probability that exactly two given single-marked individuals in a sample of size b are offspring (and none are
parents) is

E[(WN)Z(N_Z_\PN)b72:| : (A29)

(N)p

and the probability that among a pair of two given single-marked individuals, one is a parent, the other is an offspring, and
no other element of the sample is affected by the reproduction event is

& {2<2>1<\PN>1<N—\I'N—2>b-z} ;
(N)p

(A30)
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thus, 1/cy times the probability that exactly one given pair (of single-marked individuals) is involved in a reproduction event
is

1. {\PN(\PN + 3)(N7\PN72)b_2}

N (N)y

_E (N_Z_WN)“ (a31)
(N=2)p5

= S0y @@ =R + [ o (10" 2 y)

N—

by (A20).

vii. (Combinatorial connections between participation in reproduction events and merging of ancestral chromosomes)
The rest of the argument to replace (15) by (27) is purely combinatorial; it is concerned only with possible groupings
of the k single-marked offspring into up to four groups depending on which of the four parental chromosomes they
descend from.

In both cases considered in (6) the probability that the chromosomes actually coalesce is % because they must descend
from the same chromosome in the same parent or from the particular chromosome in the particular parent we are following,
respectively.

A5: Correlation in Coalescence Times

In this section we outline the calculations to obtain the correlation in coalescence times T; and T, of types at two loci (1 and
2). As our sample consists of two unlabeled chromosomes typed at two loci, we sometimes find it convenient to denote an
unlabeled chromosome carrying ancestral segments at both loci with the symbol  and chromosomes carrying ancestral
segments at only one locus with the symbols + and . Loci at which types have coalesced are denoted by «— or *-. The states
S of the unlabeled process for a sample of size two at two loci are also numbered as

S In symbols
2 (GG
1 CIIRIC)
0 EHEEE)
-1 SIS
-2 =E)

in which states {0, 1, 2} denote the three possible sample states, before coalescence at either loci has occurred. States {—1,
—2} will be needed when deriving the variance of pairwise differences.

Let h(i): = P({T, = T.} | i) denote the probability of the event T; = T, when B is in state i. Excluding large offspring
numbers, one readily obtains (h(i) = 0 fori # {0, 1, 2, })

r+9
N=__"7
h(2) 2r2 +13r+9
3
= - A32
h(1) 2r2 +13r+9 (432)
2

hO) =52 13,59

For eachi € {0, 1, 2}, the expression for h(i) is the same as the one for the correlation between T; and T, when in state i, excluding
large offspring numbers. The expected value w(i) = E[T] of the time T, until a coalescence event at either locus starting
from state i € {0, 1, 2} is, again excluding large offspring numbers,
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V) =39 2 21T
3 1 1
v s e 2z )

1 1 1
MO =g iarre a3 MO

obtained by solving the recursions.

=0
=L
w(l) = 1+ w(er)rJ; rw(0)

w(0) = %W(l)

Let v(i) := [E;[T?] denote the expected value of T? when starting from state i € {0, 1, 2}. One can follow Durrett (2002) to
obtain the recursions

Dikyy k) + 5 Ly k) (A33)
ql k;él' qi k;él' qi

in which q; = >, _;qik is the sum of the transition rates out of state i. To obtain (A33) let J denote the exponential waiting
time until the first transition and X; be the state of the process immediately after the first transition. The random variables J
and X; are independent. One can write

B[T2|J.X)] = E[(Ty = +J)(Ts = +J) |.%)]
E [(TS —J)2 + 2J(T; = J) +J2 |J,XJ}
=E [(TS—J)Z |J,XJ} + 2JE[T, — J | X)] + E[J2].

Taking expectations gives (A33).
The variance V;[T,] of T, when starting in state i is given by

2 +31r2/2+153r/2+81 1 1

ValTi] = 2t D)+ 6)22+13r+9) 2 Z(Hh(z»z
r+9 1 1

VilT) = (r+6)(2r2+13r+9) * 2 Z(1+h(1))2
r+8

+ 2 Latmo)2.

VolTs] = (r+6)(2r2+13r+9) 2 4

Hence, lim, _, ., V;[T,] = 1/4 fori € {2, 1, 0}, and

lim V[T = 1
r—0

. 2
lim Va1 =3

. 89
Yim VolTs] = 354

Denote by T; the time until coalescence has occurred at both loci. The marginal coalescence times are exponential with rate
1, when excluding large offspring numbers. Solving the recursions
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By[T) = — -,
E1[T] = 1+E [Tl]r: ;Eo [T}] +2
Eol[Ti] =%
yields
o[- smrr e 2O @)
S e S )
©fri°] -3 e agrrs 3O

Applying the recursions (A33) yields the variances V;[T;],

2r3 +111r2 /4 + 171r/2 — 81/4 L5
(2r2+13r+9) 4
_ 4+ 17r—45/4 5
(2r2+13r+9)*> 4
_2r’+7r—10 |5

Vo)=L T2 42
ol (2r2+13r+9)* 4

Vo[l =

V1[T]

with lim,_, ., V;[T;] = 5/4 fori € {0, 1, 2}, and

lim Vz [Tl] = 1,
r—0

10
lim V, (T} = —
lim V1 [Ti] = 5

365
lim Vo[T}] = =,
fimy VolTi) = 554

Now we admit large offspring numbers, taking &y = ¢/N? and ry = r/N. Ignoring the labeling of the chromosomes, the limit
process has three effective sample states, depending on the number of double-marked chromosomes (+-). Denote the three
sample states by

and
b

in which + and - denote single-marked chromosomes. The states of the limit process are composed of single-marked
individuals only and are therefore the same as those of the haploid Wright-Fisher process. By *— denote a chromosome
carrying a common ancestor at one locus, and (¢—¢) denotes the absorbing states. The transition rates are summarized in the
following table:
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Boel g8 e e e
s zr s
(H)E:g 1+c§(1—%) r 2+c%2(1—%> c‘f—z
I R = = I
(F)Ejg 2+c(/§(lﬁ> 1+c%2
- r Ll

By way of example, the rate of the transition from 1 to 2 by coalescence of the chromosomes - and 4 is 1 + ¢Cs.5,1, the
transition rate from O to 1 is 4(1 + ¢Cy.2.5), and the transition rate from 0 to the absorbing state [(*—¢ or (¢—)(—*)]is c(C4;4.0 +
C4;2;2;0)-

As before, let h(i) denote the probability the two loci coalesce at the same time. One obtains limit results

lim h(i) = o i€ {0,1,2
A h() = o g e 1€ 1012}
lim h(2) = 1
, 2
clinf}oh(l)_6—¢l

2 —
lim h(o) = SOW/3=2720+544 5
c—e (¥ —6)(3¢* + 164 —48) 3

The first equation in (A34) tells us that the loci remain correlated due to multiple mergers even when they are far apart on
a chromosome. When the recombination rate r is quite small, one obtains

limh(2) =1
r—0

2(cy? +
lim (1) = — 24
r=0 — % + 6cy? + 24
2+ — 3+ 2+
lim h(O):1< St +32 . —80c + 2080/ +832 )
r—0 3\ —cp® +6cp?+24 —3cp* — 16¢y° + 48cy? + 192

Let E;[T;], as before, denote the time until coalescence at either locus, starting from state i. Admitting large offspring
numbers, one obtains

16
32+ 8cy? — ey’
lim E;[T;]=0, ic{0,1,2},
cC— ®©

lim B[T,] = ic{0,1,2},
r— o

4
P4
c(16y? — 2¢y°) + 64
— c2° + 62yt — 4cy® + 48cy? + 96
16 4 —8) 32(39y — 32)

P TS ) 124 BI04 30 168~ 4807) - 192)30 7 16)

lim Ez [Ts] =
r—0

lim B4 [Ty] =
r—0

Let E;[T;], as before, denote the expected value of the time T; until coalescence has occurred at both loci, when starting from
state i. Admitting large offspring numbers, one obtains the limits
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S VU RRT
A= (g s g (— e+ 8es? + 32)

lim Ei[Tl] =0, i€ {0, 1,2}7
c— ©

ie{0,1,2},

. 4
B =

c(32¢2 — 6y°) + 128

lim [, [T;] =

AT = =g 6y~ aci + 480 + 96

lim Eo 1y = (287 = 56° ~ 800y° + 1600y*)c? + ( — 608" — 32004 +12, 800¢%)c + 25,600
ol —

r—0 a

in which

a=3c3y? — 2c3y8 — 144c3y7 + 288c3yY° + 12c%7 — 80c2y® — 1152c2y°
+ 3456c%y* — 288cyy* — 2304cy® + 13, 824cy® + 18, 432.

Considering the variance V;[T;] of the time T, when starting from state i € {0, 1, 2}, and admitting large offspring numbers,
one obtains

256
(c(8y2—y*)+32)*
lim V,[T]=0, i€ {0,1,2},
C—

lim V;[T,] = i€{0,1,2},
r—

16

(cu?+4)*

(1295 — 128y° + 384y*)c? + (3072¢2 — 512¢%)c + 6144
(cy?+4)? (—cy? +6cy?+24)> '

lim V5 [T;] =
r—0

lim V] [TS} =
r—0

Correlations in coalescence times have been employed to quantify LD (McVean 2002), in which LD is quantified as the
square of the correlation coefficient of types at two loci (Hill and Robertson 1968). A description of how one can
quantify linkage disequilibrium as the square of the correlation coefficient of types at two loci can be found in Hartl
and Clark (1989). Assuming a very small mutation rate, McVean (2002) related ® to covariances in coalescence
times. Writing Cov;(Tq, T,) as the covariance of T; and T, when starting from state i € {0, 1, 2}, McVean (2002)
obtained

_ Covy[T1, To] — 2Covy [Ty, T2] + Covo[T1, To]
(E[T1])* + Cov|[Ty, Ts]
Eo[T1T2] — 21 [T1 To]

—1+
Eo[T1T>]

in which T; and T, denote the times until coalescence at the two loci, respectively, and the covariances are conditional on the
sample configurations, as indicated. Following, e.g., Durrett (2002) one can obtain the covariances under any population
model. Under our population model, ® = ©;/®,, in which

D1 = 640cy? — 224cy® + 32cp* + 80c2y* — 56¢2y° + 16c24° — 27
+r(16cy* — 32cy® + 64cy® + 256) + 1280,

Dy = 1408cy)® — 352cy® + 8cyp* + 512r2 + 176c%y* — 88c2y® + 10c2y® — 27
+1(8cy* — 288cy® + 832cy? + 3328) + 2816.

One obtains the limit results
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lim ©® =0,

r— o

31602 + _
limgzlps 16¢2 56y~ 80
c—w " Y3 — 1042 + 88y — 176

A6: Correlations in Coalescence Times for Random s

In this section we consider the simple example of the probability measure F, evoked in relation to a random offspring
distribution, taking the beta distribution with parameters 9 and y. The following transition rates for a sample of size two at
two loci are obtained:

(=) (=)

) ) () (4 )
) e =)y

- (F) () )
(F)
(—) 2r 1
(F) y+39/4 y+39/4 o
=) Ity ' iy 40+ )
) (=) 3 1+9)9 41+ y)y+ 33y +(3/2)(1+ )Y 2(1+y)y+(3/2)0y+ (3/4)(1+9)9 Iy + (3/4)(1 +3)9 (I +1)9
(F) () §(1+ﬁ+y)(ﬁ+y) 1+9+y)(I+y) 1+3+y)(I9+y) 1+9+y)(I+y) 4@ +y+1)(O+y)
<7>(4) 27+31‘)/4 1
9 I+y
() r L

As before, the transition rates given above can be employed to derive correlations in coalescence times. Here we consider
only the probability h(i). One obtains limg _, oh(i) = lim, _, k(i) and the limit results are those obtained from the usual ARG
(A32).

A7: Variance of Pairwise Differences

The variance of pairwise differences between DNA sequences has been employed to estimate recombination rates in low
offspring number populations (Wakeley, 1997). Let the random variable K;; denote the number of differences between
sequences i and j, with K; = 0. The average number 7 of pairwise differences for n sequences is

2
7T=m ZKU

i<j

Under the infinitely many sites mutation model, E[7] = 6E[T], in which T is the time until coalescence of two sequences.
Under our model, E[T] = 1/(1 + ci?>/4). Define the variance S2 of pairwise differences as

2 2
§2=— " _ Kij—)~.
™ n(n _ 1) ;( J )
To obtain an estimate of the recombination rate, one needs to compute the expected value E[S2],
2 2 2
E[S2] === > E|(Ky~m)°| =E[(Kiz—m)’].
[ 77] n(n_ 1) ; ( ij 77) ( 12 77')

Thus, it suffices to consider E[(K;, — )2]. Expanding, one obtains

E [(Klz—ﬂ)z} =k [ (ﬁ > (K —Kij))

i<j

e -

i<J i<
Define the event Al(jo by

Ag) := {sequences i and j differ at locus ¢}.

Assuming each sequence consists of L loci, and 1,(, are indicator functions,
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L

K=Ky~ 3 (1 1)

=1 v

yielding, in case i = i' =1, and j = j = 3,

1 12 13
L ¢ 0 ¢ ¢
L o)) ().

=1 =1

E[(Klz—Klg)z} = i Z]E (1 © -1 (f)) 1 —-14
Pl A A T 0 T 0

In general,

E[ (K12 ~ Ky) (Ki2 ~ Kj)|

I
L=
L=

&=
| — |
~

—_
>
—_
Y
~_
—

1g-1¢
o)

<A§2 ﬂA(E)> - P(A@ nay) + p(A}jJ ﬂAg)>.

ij

(A36)

1
M
Mh
la=]
—
b
s
N —
D
>
—_
.

~
Il
-
~
I
—

Now consider the probability ]P’(Agg ﬁA(lg) of the event that sequences 1 and 2 differ at both loci ¢ and ¢. Admitting mutation
introduces two new states, namely the states

()

(+)
and

() .

()
Define

g(6) :=P(both loci separated by mutation, starting fromstate &)
Thus, P(A{} NAf}) = g(2), PAY) NAY) = g(1), and P(AY) NAY}) = g(0), for ¢ # L Now,

_6018(— 1) +62g(—2) + 2rg(1)

8(2) 3
61 +92+1+C¢,—+2F
4
f-n=—=2
0y +1+c—
g(—-2)= o 7
6, +1+ CZ
(1) = 018( — 1) + 02g( — 2) +1g(0) + (1 + cy?/4)g(2)
§ 01+ 02 +1+3+3c(y?/4)(1 —y/4) +c(4°/16)
<(0) 018( — 1) + 62g( — 2) +¢(3¢4/32)g(2) + (c(y* — /2 — ¢*/8) + 4)g(1)

N c(3y*/32) +c(y? — /2 — ¢*/8) + c(y?/2 — Y3 /4 — ¢*/16) + 6 + c(¥3/4) (1 — ¢/4) + c(¥*/16) + 61 + 0

In view of expression (A36), one obtains
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(A nal) ~P(a) — oty

0 A2 B¢
p(alinaly) = +
127143 ) =36, 75 ks ' 30,/2 + A3 6+ Ay (A37)

2
) o\ _ 26 0, Ag2 0¢/2 0c/2
p(Af) NAS,) = + + ,
( b 34) 200 24200 +Ag 200+ A4 \30/2 +A3  \360,/2+A3

The event A(lg ﬁAgZ)1 (Equation A37) occurs if the first two events in the history of the four sequences are mutations on
appropriate ancestral lineages or if lineages labeled 2 and 3 coalesce, followed by appropriately placed mutations.
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