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Abstract
It is widely recognized that ADMET (Adsorption, Distribution, Metabolism, Excretion -
Toxicology) liabilities kill the majority of drug candidates that progress to clinical trials. The
development of computational models to predict small molecule membrane permeability is
therefore of considerable scientific and public health interest. Empirical qualitative structure
permeability relationship (QSPR) models of permeability have been a mainstay in industrial
applications, but lack a deep understanding of the underlying biological physics. Others and we
have shown that implicit solvent models to predict passive permeability for small molecules
exhibit mediocre predictive performance when validated across experimental test sets. Given the
vast increase in computer power, more efficient parallelization schemes, and extension of current
atomistic simulation codes to general use graphical processing units (GPUs), the development and
application of physical models based on all-atom simulations may now be feasible. Preliminary
results from rigorous free energy calculations using all-atom simulations indicate that performance
relative to implicit solvent models may be improved, but many outstanding questions remain. Here
we review the current state of the art physical models for passive membrane permeability
prediction, and present a prospective look at promising new directions for all-atom approaches.
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1. Introduction
A major challenge facing the drug discovery community is the high rate of attrition of
potential small molecule drug candidates due to poor adsorption, distribution, metabolism,
excretion, and toxicology (ADME-Tox, or ADMET) properties (1). Bioavailability and
pharmacokinetics are two components of ADMET that have received increased attention
since the 1990s, when failures in the clinic were predominantly due to these two factors (2).
Subsequently, the pharmaceutical industry has committed significant efforts to understand
the molecular basis of bioavailability and pharmacokinetics; and, as a result, the rate of
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clinical compound failure attributed to these two factors has decreased substantially (2). Yet,
the persistence of candidate compound attrition is representative of a larger inability, as a
field, to understand the many components controlling ADMET properties.

Successful models describing ADMET properties hold the promise to: i) identify compound
liabilities early-on in the development phase, before hundreds of millions of dollars have
been invested in clinical trials (3), ii) identify liabilities to be “designed out” of the candidate
compounds, iii) identify where, and through which mechanism, these liabilities are operating
in the host, iv) flag the liabilities for close monitoring using in vivo assays, and v) allow
practitioners to manipulate and control these properties to their advantage. The ultimate goal
is to not only identify the liability, but to also understand their causative physical and
chemical processes.

Achieving a more comprehensive understanding of ADMET processes in vivo presents a
substantial challenge, and certain pharmacokinetic properties are relevant to multiple aspects
of attrition due to poor ADMET profiles. In particular, passive membrane permeability plays
an essential role in the rational design of a drug from a small molecule candidate compound.
For example, while a compound may be delivered orally, topically, by inhalation, or by
injection, once it is in the body, it must pass an epithelial membrane barrier to exit
systematic circulation and gain access to its target; passively diffusing through a membrane
is, perhaps, the most common way this occurs. Moreover, diffusion of metabolites, produced
largely by cytochrome P450 enzymes in the liver, must pass through renal membranes
before clearing the body (4). Therefore, passive membrane permeability of small molecules
is a critical component of overall ADMET issues, and correspondingly, it remains an area
with significant ramifications to rational drug design and, by extension, to public health.

Experimentally, permeability can be measured using a number of different assays. In the
drug discovery community, the most popular approaches have been parallel artificial
membrane (PAMPA) (5, 6) and carcinoma colorectal cell based (CaCo-2) assays (7, 8).
PAMPA assays are an economical high-throughput passive permeability construct that uses
an artificial membrane of lipids (typically egg lecithin), dissolved in an organic solvent, to
monitor the transport of solutes between wells. CaCo-2 assays, on the other hand, are
biochemically more similar to in vivo intestinal absorption processes because they have
intracellular junctions, hydrolase activity, and transport proteins. Thus, CaCo-2
measurements account for active and passive permeability, but they suffer from being less
amenable to a high-throughput approach.

Varying degrees of complexity have been incorporated in models aimed to predict
membrane permeation. In this perspective, we summarize the current state-of-the-art in
terms of permeability prediction methods, with an emphasis on physics-based models. In
particular, we revisit the all-atom approaches first developed in the early 1990s, and take a
fresh look at their unique potential to combine the thermodynamic and kinetic components
of passive membrane permeability in a comprehensive in silico framework.

2. Quantitative Structure-Permeability Relationship Models
The simplest and most utilized models are quantitative structure-permeability relationship
(QSPR) methods. These models are built upon theories and ideas established in the seminal
quantitative structure-activity relationship studies pioneered by Hansch in the early 1970s
(9, 10). QSPR models are economical methods that utilize a set of molecular descriptors,
such as molecular weight, hydrogen bond donors/acceptors, and polar surface area, in order
to predict permeability constants based on statistical relationships among a set of
compounds (11). Other considerations, such as molecular topology, may also make
important contributions (12). These methods rely on training sets of molecules, which may
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vary widely depending on the practitioner’s environment or needs. For example, QSPR
models have been developed to predict drug absorption (13), Caco-2 permeability (14),
blood-brain barrier penetration (15), among others (for comprehensive methodological
reviews, see (16, 17). It is widely recognized that the success or failure of these models is
highly dependent on the training set, and therefore, the universality of the approach is
limited, and transferability is a major issue (18). Even successful, predictive QSPR models
are limited, as they provide essentially no insight to the actual atomic level mechanisms
governing the assessed properties.

3. Physical Models of Passive Membrane Permeability
A fairly sophisticated understanding of the membrane diffusion process has been achieved
for simple membrane bilayers. The permeation of small molecules through a membrane can
be most simply understood in terms of the solubility-diffusion model of permeation. This
model is represented by a three-step process, which includes the partitioning of the small
molecule from the aqueous phase (bulk solvent, or cytoplasm) into the lipid bilayer,
diffusion of the small molecule across the lipid bilayer, and the partitioning of the solute out
of the bilayer and into the aqueous solvent (again, bulk solvent, or periplasm) (19, 20). The
resistance, R, of solute permeation to a depth, z, is inversely related to its permeability, P,
which can be defined in terms of the “local” solute partition coefficient between bulk water
and the membrane at depth z, K(z), and the local diffusion constant, D(z), as:

1

The membrane itself is comprised of a bilayer of lipid molecules, each with a polar
headgroup and an aliphatic tail. As one would expect, the polar headgroups form a different
physiochemical environment than the greasy, hydrophobic tails that constitute the interior
region of the membrane. Moreover, the center of the bilayer itself is expected to contain
voids that promote a physiochemical phenomena known as solute hopping (21, 22).
Pioneering theoretical (23) work by Marrink and Berendsen described the spatial
heterogeneity of biological lipid bilayers in terms of a so-called 4-region model (Figure 1).
These physical underpinnings clearly indicate that small molecule transport through the
biological membrane is anisotropic in nature.

3.1 Implicit solvent models
Implicit solvent models assume that a single low-dielectric slab can represent the anisotropic
complexity illustrated in figure 1. This removes the position dependence of the solute
partition function and diffusion coefficient in equation 1, which may be simplified and
solved for the permeability coefficient, P:

2

In equation 2, Kp is the solute partition coefficient between bulk water and the low-dielectric
membrane slab, D is the solute diffusion coefficient through the membrane, and d is the
membrane thickness. As it follows from a model in which the membrane is treated as a
homogenous slab, equation 2 is consistent with the homogenous solubility diffusion model,
which itself is closely linked to the barrier domain model (24). The barrier domain model
posits that the rate of polar-compound membrane passage is limited by the highly ordered
region of the membrane immediately behind the acyl-chain headgroup linkages, or region 3
in figure 1. Two factors contribute to reduced transport through this region. The ordered side
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chain structure in this region results in low diffusivity, while the apolar quality of the region
disfavors solubility. The solute partition coefficient in equation 2 can be expressed in terms
of the free energy difference of the solute dissolved in bulk water and in the low-dielectric
membrane slab, or ΔG. Assuming that the membrane slab is a good approximation of the
rate-limiting region of the membrane, or the barrier domain, then this leads to a permeability

estimate analogous to transition state theory or,  with R the universal gas
constant and T the temperature. Moreover, if the differences in diffusion coefficients are
negligible across similar sets of compounds, then the logged permeability of one compound
relative to another is,

3

Jacobson et al. developed an implicit solvent model, based on equation 3, in which the
global minimum conformation for a set of small molecules and cyclic peptides was
determined in a Generalized Born (GB) implicit chloroform solvent, which replaced the
non-uniform interactions between the solute and bilayer with an averaged, uniform
interaction potential (25). The energy of this global minimum was then evaluated in GB
implicit water and chloroform solvent models, and the difference was considered to be the
free energy change of barrier crossing, or ΔG in equation 3 (26–28). They performed their
initial experiments on a set of cyclic peptides, as well as a set of fluoroquinolines and a set
of FDA-approved drugs, depicted in Figure 2. Our work in this area extended this approach
by determining the global minimum conformation in each solvent environment and using
those conformations in the evaluation of the free energy difference (29). Furthermore, we
addressed the question of whether more exhaustive conformational sampling (performed
through mode integration, or MINTA, importance sampling (30, 31), and the incorporation
of multiple predominant states into the configuration integrals, would improve accuracy.
Moreover, we extended the compound set to include the compounds in Figure 2 as well as a
set of thirteen benzene congeners, intended to mimic more subtle structural differences. Our
permeability estimates were compared to available PAMPA assay data (6). This work
indicated that more rigorous treatments of the conformational distributions did not
significantly improve correlation with experiment; R2 values never exceeded more than 0.75
(29), a limitation we attributed to a global minimum dominated free energy landscape and
the severe simplifications of the model.

Recently, Jacobson and colleagues presented a more extensive performance evaluation of
the ability of these implicit solvent models to reproduce relative permeability rates using 9
different small molecule datasets against a variety of experimental assays (including
PAMPA and cell-based assays) and QSPR predictions (32). The average R2 performance for
log Pm against the PAMPA data was 0.71, whereas against the cell-based assays it was 0.64.
This performance seems reasonable, given that no training data sets are required, and at the
same time mediocre, both because the R2 values are not higher, and because the absolute
permeabilities of the models underestimate experimental values by at least 5 orders of
magnitude. Shortcomings could be attributed to many aspects of the simplified model, the
most likely being the omission of entropic contributions and membrane anisotropy.

3.2 Explicit solvent models
In contrast to implicit solvent models, explicit-solvent, all-atom molecular dynamics (MD)
simulations do not rely on extreme, simplifying assumptions and so, in principal, provide the
level of detail necessary to describe membrane anisotropy (Figure 1). The development of
MD-based models of small molecule membrane permeability through explicit biological
lipid bilayers was initiated with the pioneering work of Bassolino-Klimas, Alper, and Stouch
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(33), who simulated benzene diffusion through a dimyristoylphosphatidylcholine (DMPC)
lipid bilayer. Complementary efforts by Bemporad and Essex showed that these methods
were able to correctly rank order the permeability rates for a set of eight organic solute
molecules, but that the absolute permeabilities were an order of magnitude larger than
experiment, which the authors attributed to insufficient sampling, ligand parameters
inappropriately suited to the bilayer, and subtle issues surrounding ensemble choice (34).
Since then, a number of studies have been carried out utilizing similar approaches, most
recently see refs (34–39), and we explore these methods in more methodological detail
below.

To determine whether the more detailed models are sufficiently accurate to capture the
origins underlying permeability differences among a diverse small molecule set, exploratory
molecular dynamics umbrella sampling simulations (40) were used to estimate the passive-
permeability of the 11 small molecules shown in figure 2. To carry out the MD simulations,
DMPC bilayers were modeled with 36 lipids per leaflet and a 20Å pad of water was
positioned on either side of the membrane. TIP3P water (41) and CHARMM 36 parameters
(42) were used. Following minimization, 10 ns of NPT equilibration, with an anisotropic
barostat at 1 atm and a Langevin thermostat at 310.15 K, were performed in the NAMD
molecular dynamics program (43). A more detailed description of the simulation protocol
can be found in the supporting information. The “health” of the lipid bilayer models was
determined by comparison to available experimental parameters, such as area per lipid
headgroup, tail order parameters, and surface tension (data not shown).

3.2.a Thermodynamic influences: constructing potentials of mean force—
Formally, the potential of mean force at z, or W(z), is the free energy at z relative to some
arbitrary reference state, and it is directly connected to the local probability density, or ρ(z),
through equation 4. The PMF gives rise to a mean force that causes the basins of the PMF to
be more populated than other regions. It is this mean force, and the underlying PMF, that
result in the equilibrium tendency of a molecule to partition to various depths within the
lipid bilayer, facilitating the transport process. Additionally, coupling the PMF with an
atomic-level description of the entire system entails the spatial entropic dependence that is
neglected in the implicit solvent models, resulting in a more physically accurate model of
the passive transport process.

4

Umbrella sampling simulations are the most established technique to determine PMF values,
along a reaction coordination, in a biased fashion. Umbrella sampling is a straightforward
approach that confines the solute of interest to discretized sections along the reaction
coordinate, a.k.a. “windows”, using a harmonic biasing potential. Done properly, this
stratification procedure enables effective and sufficient sampling over every region along the
reaction coordinate and results in a set of overlapping, biased probability distributions.
Using either the weighted histogram analysis method (WHAM) (44), or the multistate
Bennett acceptance ratio (MBAR) method (45), these distributions can be unweighted and
combined to minimize statistical error, resulting in unbiased probability distribution, which
gives the PMF according to equation 4.

Following membrane equilibration, umbrella simulations for each of the molecules shown in
figure 2 were prepared. Small molecule parameters were assigned using the CHARMM
general force field (CGenFF) (46) using the MATCH program (47). Small molecules were
oriented along each of their 3 principal axes and displaced in 32 1 Å increments from the
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bilayer center to the bulk solvent, along 1 leaflet, resulting in a total of 96 umbrella
windows. Umbrella simulations were carried out for 3 ns in each window; simulations of
propranolol, terbutaline, and verapamil were extended to 10 ns in each window to test
convergence properties. The PMF along the membrane normal were estimated
independently using the WHAM equations (44) for each of the 3 small molecule
orientations. Averages were calculated across the 3 simulations, and standard errors were
estimated using the standard deviations determined across the 3 simulations. A more
detailed description of the umbrella simulation protocol and standard error calculation can
be found in the supporting information.

Results for propanolol, terbutaline and verapamil, are shown for 3 ns and 10 ns of sampling
per window (Figure 3). While the general shapes of the PMFs are reasonably converged
after 3ns of sampling per window, additional simulation time makes basins more
pronounced and changes barrier heights, indicating that more than 10 ns of sampling per
window may be necessary to properly average over the long-time conformational relaxation
of the lipid tails and other slow system reorganization. To gain a better understanding of the
accuracy of the PMF curves, we used them to estimate each small molecule’s water-DMPC
membrane partition coefficient (38) and compared them to the experimental water-octanol
partition coefficients. This comparison gave a correlation coefficient of 0.59, and both the
experimental and predicted values spanned roughly the same orders of magnitude. Octanol
has long been taken as an experimental proxy for lipid bilayers, however, as it is not an
exact surrogate for a DMPC bilayer, perfect correlation can’t be expected due to
fundamental structural and physicochemical differences between the environments (48). A
correlation of 0.59 suggests that the estimated PMF curves reasonably describe the
fundamental thermodynamics of small-molecule membrane partitioning. Nevertheless, lack
of stronger correlation may hint at deeper force field deficiencies.

Traditionally, biophysical simulations are carried out in aqueous solutions. Consistent with
this, current state-of-the-art fixed charge force fields are parameterized to implicitly capture
the polarization induced by a high dielectric solvent (49, 50). Such a parameterization
strategy may lead to inappropriate interactions with apolar solvents such as the greasy region
of the membrane bilayer. A strategy to optimize atomic partial charges to better reproduce
experimental free energy differences between octanol and water may improve permeability
accuracy estimates. Alternatively, polarizable force fields (51) may better capture multibody
interactions whose description might be fundamentally important to model the
thermodynamics and kinetics governing the passive transport process.

While umbrella simulations are the most widely used technique to estimate PMF curves,
other, more contemporary, methods have also been advanced and may prove more efficient.
For example, in the adaptive biasing force (ABF) method (52–55), an instantaneous biasing
force that opposes the force acting on the solute along the reaction coordinate is estimated
and applied. The estimate of this force improves with simulation length, and its application
allows the system to diffuse along the reaction coordinate. Averaging the applied forces
gives an estimate of the mean force, which can then be integrated along the reaction
coordinate to yield the PMF. Other promising methods have also been developed (56) and
may be applied. However, the most efficient methods for permeability estimates will yield
not only a PMF, but also a local diffusion coefficient, which is discussed in the next section.

3.2.b Enter kinetics: estimating the local diffusion coefficient—While the PMF
describes the propensity for a compound to partition from water into the membrane at a
given depth, it is purely a thermodynamic quantity and says nothing about the rate of the
process. Permeability is a transport process, and equilibrium thermodynamics must be
integrated with a kinetic rate description. For example, if the diffusion constant is known

Swift and Amaro Page 6

Chem Biol Drug Des. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



along the reaction coordinate, then the mean first passage time can be estimated as a
diffusive barrier crossing process (57). While monitoring the mean-square displacement
(MSD) of a compound readily yields diffusion coefficients in the absence of substantial free
energy barriers, it is impractical to estimate diffusion profiles along a rough free energy
landscape. Instead, a variety of contemporary biased simulations can be paired with different
diffusion estimators to arrive at a position dependent diffusion profile when substantial free
energy barriers exist along a reaction coordinate, as for a compound moving through a lipid
bilayer. For example, Marrink and Berendsen carried out equilibrium constrained
simulations and a diffusion estimator that relates the autocorrelation of the constraint force
to the local diffusion coefficient through the fluctuation-dissipation theorem (23). Extending
work by Straub and Berne (58), Wolfe and Roux have applied an estimator that calculates a
local diffusion coefficient from the velocity autocorrelation function extracted from a
harmonically biased simulation (59), although it has not been applied to permeability
predictions. More recently, Hummer extended the work of Wolfe and Roux to derive an
estimator based on positional autocorrelation (60), whose use is reported here and described
in greater detail below. Within non-equilibrium regimes, such as in steered molecular
dynamics (SMD), Kosztin et al. have posited that one can use the slope of the mean
dissipative work curve to estimate the local diffusion constant (61). Yet, this last method has
been largely untested. Despite the variety of diffusion estimators, to the best of the authors’
knowledge, a detailed comparison of their performance has not been carried out, and
selecting one estimator over another is still, unfortunately, driven by convenience. For
example, when using a constrained simulation to calculate the PMF, the most convenient
way to estimate the diffusion profile is through the autocorrelation of the constraint force,
following the work of Marrink and Berendsen.

During harmonically restrained simulations, as for umbrella sampling PMF reconstruction,
position dependent diffusion coefficients can be estimated within each window using theory
formally derived by Hummer (60). If Di(z) is the local diffusion constant at the position of
the harmonic potential minimum used to construct the ithwindow, its value can be estimated
using equation 5:

5

where 〈δz2〉i is the mean square-fluctuation of the center of mass of the small molecule
along the membrane normal from the ith umbrella window. Similarly, the autocorrelation
time of the mean-square fluctuation of the center of mass of the small molecule from the ith

umbrella window is given τi. The autocorrelation time is calculated by integrating the
autocorrelation function of the mean fluctuations of the center of mass of the molecule along
the membrane normal according to equation 6:

6

Unlike the PMF estimates, the diffusion profiles determined are noisy (Figure 4). Extending
the simulation time modestly improves the results, as indicated by the position-dependent
diffusion profiles for 3 ns and 10 ns of sampling per window for propranolol, terbutaline,
and verapamil (Figure 4). All of the diffusion profiles are similarly shaped with slightly
higher diffusivity at the bilayer center and lower diffusivity in hydrophobic tail region of the
leaflets. While the estimated order of magnitude for the local diffusion profile agrees with

Swift and Amaro Page 7

Chem Biol Drug Des. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



values others have estimated for similarly sized molecules (37), the similarity and noisiness
of the profiles may be insufficient to discriminate among structurally related small
molecules as would be important in a lead optimization setting.

Looking forward prospectively, the validity of the estimators, as well as the affects of the
biased simulation, need to be considered. For example, equation 5 assumes over-damped
Langevin solute dynamics (23, 34, 59), which implies the solute undergoes Brownian
motion (62). The extent to which this assumption holds at various points throughout the
transport process has not been probed in detail. Additionally, simple unbiased positive
controls have yet to be compared to estimates from biased simulations in regions where
these comparisons are practical; e.g. at the membrane interface and in bulk water. While
there are likely other outstanding issues that haven’t been mentioned here, careful study of
the two issues raised may lead to long-term improvements in the accuracy of position
dependent diffusion estimation. Such improvement will positively impact the reliability of
transport process rate estimates.

3.2.c Uniting thermodynamics and kinetics to estimate passive-membrane
permeability—The potentials of mean force and diffusion profiles described and reported
in sections 3.2a and 3.2b can be incorporated to yield a permeability estimate. The local
partition function, K(z), in equation 1, can be re-expressed in terms of the local solute
concentration, at a depth z in the membrane, relative to the solute concentration in bulk
water. Likewise, this can be related to the PMF given by equation 4, which allows equation
1 to be re-written as follows, in equation 7:

7

Equation 7 is then integrated across the bilayer and inverted to yield a permeability estimate.
Regions where the PMF is much larger than RT, or the average thermal energy available to
move the solute over the barrier, contribute exponentially to transport resistivity, while
resistivity falls inversely with increasing diffusivity. Consequently, a solute is more likely to
get “stuck” in a region bounded by large PMF barriers than a region bounded by low
diffusivity. Figure 5 shows the predicted resistivity profiles for propranolol, terbutaline, and
verapamil after 3 ns and 10ns of sampling per window. Standard errors are reported and
were calculated across the 3 simulations corresponding to each solute starting orientation.
Similar to the PMF estimates, the general shape of the resistivity curves are roughly
converged after only 3 ns/window. While additional sampling decreases resistivity barrier
heights and standard error, it has a modest affect on the estimated permeability (table 1)

The transport of propranolol and verapamil are most hindered at the membrane water
interface, whereas terbutaline passage is significantly slowed at the center of the bilayer.
This may be partly explained by considering the fraction of hydrophilic surface area for each
compound (63). At roughly 31 percent, the hydrophilic component of the surface area of
terbutaline is much larger than that of propranol (8 percent) and verapamil (5 percent). The
larger hydrophilic surface area reduces the equilibrium tendency to partition into the
hydrophobic center of the bilayer, as indicated by the roughly 5 kcal/mol PMF barrier for
terbutaline (Figure 3B). The diffusion profile of terbutaline, on the other hand, is reasonably
flat (Figure 4B). Consequently, the terbutaline resistivity barrier is largely a thermodynamic
effect. This brief analysis speaks to the potential power of all atom permeability estimates.
Macroscopically observable transport properties can be explained using a microscopic
statistical mechanical description, which can be tied to physical molecular descriptors, like
solvent accessible surface area. As physical molecular descriptors are systematically varied
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during lead optimization, QSPR can be mechanistically rationalized on a microscopic basis
using accurate all atom permeability estimates, information that may prove invaluable
during rational drug design efforts. A similar strategy was recently proposed to integrate
information from implicit solvent models in ref (32).

How accurate are all-atom permeability estimates? To answer this, in figure 6, the
computationally predicted permeability, determined with 3 ns of sampling per window, is
plotted as a function of the experimental permeability for the set of small molecules shown
in figure 2. Using error propagation techniques, standard errors of the logged permeability
estimates were calculated across the 3 simulations (see supporting information),
corresponding to each solute starting orientation, and are shown as vertical error bars.
Standard errors of the experimental permeabilities are shown as horizontal error bars and
were calculated from (64). The experimental and computational values used to create the
plot are provided in supporting information table S1. While the trend is promising, the
coefficient of determination is 0.45, and the predicted values span only 1.5 orders of
magnitude, while the experimental values range over 8 orders of magnitude. Although this is
a modest improvement over a simple “null” model, which plots experimental permeability
estimates versus molecular weight and gives a coefficient of determination of 0.33, stronger
correlation is desirable. Table 1 shows that while increasing simulation time by more than
300 percent increases the estimated permeability rate by nearly an order of magnitude,
estimates are still confined to a narrow range, relative to experiment. It may be that still
more sampling is required. For example, when umbrella sampling with membrane-
embedded leucine and arginine side chain analogs was carried out for over 200ns/window,
the bilayer surface depressed or protruded to accommodate the side chain analog, leading to
improved accuracy of the estimated water-membrane partition coefficient (38). However,
because bilayer reorganization properties were different in harmonically restrained and
unrestrained simulations, the relevance of the membrane structural reorganization observed
during the restrained simulations is questionable (38). It may prove that non-equilibrium
methods, such as SMD, carried out with a stiff spring and slow pulling speed (65–67),
provide a better model of the naturally occurring transport process. Alternatively, promising
emerging new methods, such as ABF, discussed in section 3.1, which would allow the solute
to freely diffuse along the membrane normal, may prove more suitable.

Neglect of alternative ligand protonation and tautomerization states are additional
simplifying assumptions that may significantly impact the accuracy of passive membrane
permeability estimates. For example, different tautomerization states may be
thermodynamically favored, and can have higher or lower diffusivity, at different depths in
the membrane, appreciably contributing to the experimental permeability measurement.
Alternative protonation states, on the other hand, while seemingly more impactful because
of larger columbic effects, may be less problematic, in some cases, than alternative
tautomers. In part, this is because experimental permeability is often reported as an
“intrinsic” permeability, or the permeability of the uncharged species alone (64), which was
the case of the 11 compounds considered in this work. Additionally, charged species are less
likely to dissolve to a significant extent in the greasy bilayer, so considering only electrically
neutral compounds may be sufficient. However, charged compounds can be partially
hydrated in the bilayer (68), and simply discounting their contribution might result in
inaccurate permeability estimates.

4. Conclusions and future prospects
The limited accuracy of the exploratory explicit-solvent, all atom work presented here
suggests that the answer to the question posed in this paper’s title (can physical models of
passive membrane permeability help reduce drug candidate attrition and move us beyond
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QSPR?) is “no, at least not yet.” However, systematic exploration of PMF and diffusion
estimators, refinement of ligand atomic partial charges to better match both the bilayer and
aqueous environments, and inclusion of alternative tautomerization and protonation states,
may facilitate more accurate permeability estimates. But does the promise of improved
results justify the intellectual and computational investment that will be required to improve
prediction accuracy? Critics will argue that the ends don’t justify the means. They will
support their view by citing the strong experimental correlation that can be produced by
carefully developed QSPR models (or even the implicit solvent models discussed here),
which provide a satisfying connection between small molecule structure and experimentally
observed membrane transport rates. While this is true, reliable QSPR models require a
substantial front-end investment. Large sets of training molecules are necessary to elucidate
the proper functional relationship between molecular descriptor values and experimentally
determined membrane permeability rates. Additionally, for the best performance, QSPR
models require that training molecules be closely related to test molecules, those whose
permeability values will be predicted. Test molecules that are substantially different from
training molecules may result in grossly inaccurate predictions. As a result, if a structurally
homologous lead series is not available commercially or in-house, developing a successful
QSPR model minimally requires the synthesis and testing of a series of related compounds,
which may be impractical under budget and time constraints.

On the other hand, both the implicit solvent and explicit solvent models discussed rely on a
molecular mechanics-based description of the system to estimate experimental permeability
values, and so neither requires training sets. In addition to potentially significant
experimental cost savings, the absence of training set requirements implies that these
physical models won’t “break,” provided the underlying theory is correct, when molecules
with very different structures are considered. However, because the implicit solvent models
discard membrane anisotropy in favor of a highly simplified, homogenous low-dielectric
slab, the level of mechanistic detail that can be extracted, even from a perfectly accurate
calculation, is fundamentally limited. In contrast, because all-atom, physics-based models
entail an atomistic description of the entire system, the relationship between small molecule
structure and experimental measurements can be spatially resolved in terms of characteristic
small molecule interactions with different parts of the system; e.g. interactions at the
membrane water interface, with headgroups, or at the bilayer center. Such spatial resolution
may be extremely valuable when rationalizing the permeability rates of a lead series or when
developing a compound with desirable ADMET properties. Neither QSPR models, nor
implicit solvent models, even with perfect accuracy, will ever yield such mechanistic detail,
and are limited by comparison.

Still, critics will claim that despite the greater detail provided by explicit-solvent all-atom
physics-based models, their computational requirements make them impractical. Their claim
has (some) merit. For example, the exploratory work considered here required nearly
212,000 CPU hours. Assuming a devoted cluster of 560 processors running continuously, it
would take nearly 16 days to complete these simulations. If two to four days are required for
set up and analysis, a total of up to 20 days would elapse before the results were available.
Even if the predictions were perfectly accurate, this may be too long to be practical (69) This
may explain why a number of studies have investigated the transport of one or several
molecules using one particular method (for examples, see refs (35–37), while systematic
investigations comparing different methods (and their associated statistical and systematic
errors) across larger sets of small molecules have not been reported. While the number of
calculations that must be performed may seem limiting, contemporary software and
hardware advances have enabled long MD simulations to be carried out on graphics
processing units (GPUs), which has reduced the real-time requirement relative to that of a
conventional CPU. Our own single-GPU MD benchmark calculations on so-called “gaming
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cards” indicate that standard codes routinely achieve benchmarks of ~30–50 ns / day for
systems of appreciable size. With the promise of massively parallel GPU computing on the
horizon (70, 71), in the very near future, the real-time requirements of these simulations will
be routinely met under practical, fast-paced time constraints. Thus, despite the substantial
intellectual and computational investment required to improve the accuracy and utility of
all-atom, physics-based models, the return on investment to be significant and justifiable.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Anisotropy of membrane permeation can be understood in terms of the 4-region model.
Carbon atoms are grey, oxygen atoms are red, phosphorous atoms are orange, and nitrogen
atoms are blue. Hydrogen atoms have been omitted for the sake of clarity.
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Figure 2.
11 small molecule, FDA approved, test compounds used to explore the accuracy of the
implicit solvent and all-atom simulations. Three letter abbreviations, which appear in figure
6, are included.
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Figure 3.
Influence of sampling on PMF curves. A) through C), 3 ns of sampling per window is
shown on the left, while 10 ns per window is on the right. The membrane center is
positioned at 0 Å and the standard error is reported. A) Propranolol. B) Terbutaline. C)
Verapamil.

Swift and Amaro Page 17

Chem Biol Drug Des. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Diffusion profiles at 3 ns and 10 ns of sampling per window. A) through C): 3 ns of
sampling per window is shown on the left, while 10 ns per window is on the right. The
membrane center is positioned at 0 Å and the standard error is reported. A) Propranolol. B)
Terbutaline. C) Verapamil.
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Figure 5.
Resistivity profiles at 3 and 10ns of sampling per window. In figures A) through C), 3ns of
sampling per window is shown on the left, while 10ns per window is on the right. The
membrane center is positioned at 0 Å and the standard error is reported. A) Propranolol. B)
Terbutaline. C) Verapamil.
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Figure 6.
Computationally predicted vs. experimentally measured permeability values. Experimental
values were measured in a PAMPA assay (63) and are shown along the horizontal axis.
Computationally predicted values were calculated using equation 7 and are shown along the
vertical axis. Reported estimates used 3 ns of sampling per window. Standard errors of the
computed estimates are shown as vertical error bars, while standard errors of the
experimental values are shown as horizontal error bars. Reported experimental standard
errors were scaled by a factor of three to enhance their visibility. Data points are labeled
with the corresponding three letter compound name abbreviations included in figure 2. The
coefficient of determination, R2, is reported.
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Table 1

The effect of simulation length on permeability estimates.

Compound log(P): 3 ns/window Log(P): 10 ns/window Log(P): experiment

Propanolol −6.72 −5.98 0.43

Terbutaline −7.94 −6.96 −7.25

Verapamil −7.57 −7.01 0.26
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