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Heparan sulfate proteoglycans (HSPGs) are indispensible 
during embryonic development and have important regula-
tory functions in adulthood as well as affect several common 
pathophysiological conditions (Hacker et al. 2005; Lindahl 
and Li 2009; Iozzo and Sanderson 2011). The structurally 
complex HSPGs modulate signaling, turnover, and tissue 
distribution of many secreted signaling molecules such as 
growth factors and morphogens. In addition, they participate 
in uptake of triglyceride-rich lipoproteins (Foley and Esko 
2010) and interact with cell adhesion molecules (Xian et al. 
2010). After shedding into the extracellular matrix, their 
function as co-receptors can be lost, and they may then 
instead work as secreted antagonists to inhibit signaling 
events at the cell surface (Kreuger et al. 2004).

One well-studied and important function of HSPGs is to 
modulate signaling by shaping and conferring robustness to 
secreted protein gradients (Hufnagel et al. 2006) and by 
mediating the formation of ligand-receptor complexes, for 
example, the ternary FGF-HS-FGFR complexes (Schlessinger 
et al. 2000). However, due to the complex nature of proteo-
glycans and the heterogeneity of the HS glycosaminoglycan 
(GAG) chains and their large interactome, HSPGs may at 
the same time modulate the functions of multiple protein 
ligands. Despite this complexity, characterization of the 

phenotypes of knockout mice, where the expression of HS 
biosynthetic enzymes has been perturbed, points to some 
distinct processes that seem to be particularly sensitive to 
reduced HS biosynthesis. These include cartilage and bone 
formation, as well as lung, kidney, eye, brain, lacrimal 
gland, and mammary gland development (Merry and 
Wilson 2002; Inatani et al. 2003; Crawford et al. 2010; 
Habuchi and Kimata 2010; Li 2010; Ringvall and Kjellen 
2010; Qu et al. 2011).

Evidence for Regulated HS Biosynthesis
Investigations of the HS biosynthetic machinery have been 
and still are hampered by the lack of analytical methods for 
high-capacity, high-resolution sequence analysis of full-
length HS chains. Partial sequence analysis has successfully 
been performed of purified, shorter HS oligosaccharides 
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Summary

Nearly all vertebrate cells have been shown to express heparan sulfate proteoglycans (HSPGs) at the cell surface. The 
HSPGs bind to many secreted signaling proteins, including numerous growth factors, cytokines, and morphogens, to affect 
their tissue distribution and signaling. The heparan sulfate (HS) chains may have variable length and may differ with regard 
to both degree and pattern of sulfation. As the sulfation pattern of HS chains in most cases will determine if an interaction 
with a potential ligand will take place, as well as the affinity of the interaction, a key to understanding the function of HSPGs 
is to clarify how HS biosynthesis is regulated in different biological contexts. This review provides an introduction to the 
current understanding of HS biosynthesis and its regulation, and identifies research areas where more knowledge is needed 
to better understand how the HS biosynthetic machinery works. (J Histochem Cytochem 60:898–907, 2012)
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and heparin derivatives using different techniques (Turnbull 
et al. 1999; Venkataraman et al. 1999; Kreuger et al. 2001; 
Yang et al. 2011). A promising mass spectrometry method-
ology was also recently used to determine the predominant 
sequence of the single chondroitin sulfate chain of bikunin 
(Ly et al. 2011). However, it is not presently possible to 
identify all the structurally different HS chains expressed at 
the surface of a single cell.

Still, some very important information on HS structure 
and biosynthesis has indeed been obtained using global HS 
disaccharide analysis, a variety of chromatographic meth-
ods, and enzymatic assays with defined substrates. Although 
the expression of HS as judged by global disaccharide com-
position analysis seems to be highly conserved between 
organs and different cell types (Ledin et al. 2004), the vari-
ability at the level of single chains may be such that very 
few, if any, HS chains have the same structure. The fine 
structure of HS could in theory accommodate an infinite 
number of (protein-binding) epitopes. For example, it has 
been calculated that over 1,000,000 structurally different 
epitopes are possible in only an octasaccharide fragment 
(Sasisekharan and Venkataraman 2000). However, the regu-
lation of enzyme expression and substrate specificities of 
the HS biosynthetic enzymes will greatly restrict the num-
ber of HS epitopes expressed (Rudd and Yates 2012). All 
available data indicate that the expression of HS (as well as 
proteoglycan core proteins) is tightly regulated during 
development. Structural analyses of HS isolated from dif-
ferent mammalian tissues have pointed to the existence of 
tissue-specific HS composition in support of the stringent 
regulation of HS biosynthesis (Maccarana et al. 1996; Ledin 
et al. 2004; Lawrence et al. 2008). Furthermore, immuno-
histochemical analyses using antibodies selectively recog-
nizing different HS epitopes have revealed reproducible 
patterns of individual HS motifs within tissues (van 
Kuppevelt et al. 1998). At which different levels might then 
HS biosynthesis be regulated?

Core Protein Formation and 
Processing
It is possible that the amount of core protein in some situa-
tions may be the limiting factor for HS biosynthesis or that 
core proteins could compete for enzymes involved in HS 
biosynthesis in the Golgi compartment. In this way, differ-
ent types and amounts of HS may be presented at the cell 
surface (e.g., attached to syndecans and glypicans) and/or 
in the extracellular matrix (e.g., attached to agrin, perlecan, 
and collagen XVIII). Furthermore, it has been shown that 
domains in the core protein other than the GAG attachment 
site can have regulatory functions. For example, in glypi-
cans, removal of the globular domain resulted in decreased 
HS decoration and increased chondroitin sulfate (CS) sub-
stitution of the core protein (Chen and Lander 2001).

Formation of the Linkage Region

It should be noted that all biosynthetic enzymes (in humans 
and mice) directly involved in the making of HS chains, 
with the exception of a 3-O-sulfotransferase, have been 
reported to be transmembrane proteins exerting their cata-
lytical activities inside the Golgi compartment. In zebraf-
ish, however, three of the eight 3-O-sulfotransferases lack 
transmembrane domains (Cadwallader and Yost 2006). 
Initiation of HS biosynthesis starts with the formation of a 
glucuronic acid-galactose-galactose-xylose tetrasaccharide 
linkage region (Fig. 1). The xylose (Xyl) residue is attached 
to a serine next to a glycine residue flanked by acidic and 
hydrophobic amino acids (Zhang et al. 1995; Esko and 
Zhang 1996) in the core protein by the action of one of the 
two xylosyltransferases XYLT1 or XYLT2. Two galactose 
(Gal) residues are thereafter added in sequence by the 
galactosyltransferases GalT-1 and GalT-2, respectively. The 
formation of the linkage region is finally completed by the 
addition of a glucuronic acid (GlcA) unit by the GlcAT-1 
transferase.

The linkage region saccharides may be modified by 
phosphorylation of the Xyl unit and by sulfation of the two 
Gal units. These modifications have been shown to affect 
downstream enzymatic polymerization activities, such that 
multiple modifications mainly inhibit or restrict enzymes 
involved in the formation of the linkage region (Gulberti 
et al. 2005; Tone et al. 2008). It has further been suggested 
that 4-O-sulfation of the second Gal residue in the link 
region is associated with CS biosynthesis (Ueno et al. 
2001). Thus, phosphorylation and sulfation of the linkage 
region may affect both HS and CS biosynthesis.

HS Polymer Formation
The members of the EXTL family of glycosyltransferases 
initiate HS chain formation by attaching an 
N-acetylglucosamine (GlcNAc) residue to the non-reduc-
ing end of the acceptor linkage tetrasaccharide region. 
Importantly, the linkage region may also serve as a primer 
for biosynthesis of the closely related polysaccharide CS. 
In the case of CS biosynthesis, a β-N-acetylgalactosamine 
(β-GalNAc) residue is transferred to the linkage region by 
a CSGALNAC-transferase.

EXTL1, EXTL2, and EXTL3 have all been shown to 
possess α-GlcNAc transferase activity, thus being capable 
of assisting in HS polymerization (Kim et al. 2001). 
Although EXTL3 seems to be the main enzyme catalyzing 
the initiation of HS biosynthesis in vivo (Han et al. 2004; 
Holmborn et al. 2012), suppression of both EXTL2 and 
EXTL3 leads to reduced HS biosynthesis (Kaidonis et al. 
2010). It has also been demonstrated that lowered levels of 
EXTL3 lead to increased HS chain length (Busse et al. 
2007), pointing to a complex regulation. Notably, EXTL2 
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has been shown to transfer either GlcNAc or GalNAc to the 
link region. When GlcNAc is added, it will serve as a start-
ing point for HS biosynthesis, whereas transfer of α-GalNAc 

by EXTL2 has been suggested to block CS biosynthesis, as 
this residue does not serve as an acceptor for further CS 
polymerization (Kitagawa et al. 1999). Accordingly, there 

Figure 1. Heparan sulfate (HS) structure and biosynthesis scheme. Shown is a simplified scheme outlining the different steps of HS 
biosynthesis involving specific enzymes or enzyme families. The structure of HS is variable, and a hypothetical example is shown. The 
saccharide units corresponding to symbols used are defined below the scheme. The abbreviations related to structure are as follows: NS, 
N-sulfated GlcN; 6S, 6-O-sulfated GlcN; 2S, 2-O-sulfated IdoA; 3S, 3-O-sulfated GlcN; Ser, serine. For additional information, see Figure 2 
and the main text.
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may be competition or regulation of the balance between HS 
and CS biosynthesis at the level of HS/CS initiation; how-
ever, the relevance of this concept remains to be investigated 
in vivo. Because the HS biosynthetic enzymes seem to reside 
in the proximal parts of the Golgi compartment while the CS 
enzymes locate more to the distal stacks (Presto et al. 2008), 
it is possible that CS in some situations will be synthesized 
onto HSPG core proteins carrying linkage regions that, for 
some reason, escaped HS biosynthesis.

After the EXTL-mediated initiation, the HS chain is 
extended by the action of the functional HS-polymerase com-
plex, consisting of the EXT1 and EXT2 enzymes, which trans-
fers alternating GlcA and GlcNAc residues to the growing 
polymer. In vitro results suggest that sulfation of the growing 
HS backbone stimulates polymerization and leads to increased 
chain length (Lidholt and Lindahl 1992). In this context, the 
finding of an interaction between EXT2 and N-deacetylase/N-
sulfotransferase-1 (NDST1; see below) is interesting. Finally, 
EXT-mutant cells that do not synthesize HS instead produce 
increased amounts of CS (Lidholt et al. 1992; Stickens et al. 
2005; Le Jan et al. 2012). This interplay between HS and CS 
biosynthesis will be discussed further below.

HS Chain Modification
NS-Domain Formation

The modification of the HS backbone is thought to most 
often start with N-deacetylation/N-sulfation of GlcNAc 
residues by the NDST enzymes. This process is incomplete, 
such that the final HS products display a highly variable 
domain-type arrangement with N-sulfated regions sepa-
rated by N-acetylated regions (Esko and Lindahl 2001). 
Both the N-sulfated and N-acetylated regions may be of 
different lengths, but it is not understood how and to what 
extent the N-sulfation pattern is regulated. However, it has 
been shown in vitro that the presence of the sulfate donor 
3′-phosphoadenosine-5′-phosphosulfate (PAPS) makes the 
NDST enzymes work in a processive manner, so that the 
lengths of the N-sulfated domains correlate to the concen-
tration of PAPS (Carlsson et al. 2008). Recently, it was 
suggested that the direction of NDST enzyme action is 
opposite to that of the EXT1/EXT2 polymerase complex 
(Sheng et al. 2011) (Fig. 2). NDST1 has the capacity to 
bind to EXT2, and the N-sulfation degree is affected by the 
level of EXT1 and EXT2 expression (Presto et al. 2008).

The NDSTs clearly play a key role in the formation of 
ligand-binding domains because many of the other modifi-
cation reactions occur at the sites of N-sulfation (Esko and 
Lindahl 2001). Protein ligands may interact with single 
N-sulfated (NS) domains rich in O-sulfate groups (e.g., 
growth factors of the fibroblast growth factor [FGF] family) 
or with two NS-domains separated by N-acetylated (NA) 
disaccharide residues, so-called SAS domains (Kreuger  

et al. 2002), as has been shown for the angiogenic growth 
factor VEGFA165 (Robinson et al. 2006), interleukin-8 
(Spillmann et al. 1998), interferon-γ (Lortat-Jacob et al. 
1995), and platelet factor 4 (Stringer and Gallagher 1997).

Heparin, produced exclusively by connective tissue–
type mast cells attached to serglycin core proteins, contains 
the same polysaccharide backbone as HS but exhibits a 
much higher degree of modification (i.e., epimerization and 
sulfation). Although no heparin is produced in mast cells of 
the NDST2 knockout mice (Forsberg et al. 1999; Humphries 
et al. 1999), the structure of HS isolated from different tis-
sues of the same mice appears to be normal (Ledin et al. 
2004). Thus, although NDST2, just like NDST1, is 
expressed by most cells in the body, it is apparently only 
essential for heparin biosynthesis.

Epimerization and 2-O-Sulfation
A single C5-epimerase converts many but not all GlcA 
units positioned next to glucosamine units into IdoA (Li et al. 
1997). Epimerization is followed by 2-O-sulfation of a 
majority of the IdoA units by a 2-O-sulfotransferase 
(2OST). Thus, the pattern of N-sulfation will dictate the 
position of the highly modified NS-domains. The 
C5-epimerase and the 2OST co-localize in the Golgi appa-
ratus and may interact (Pinhal et al. 2001). However, 
although some overlap occurs, the expression of the 2OST 
and the C5-epimerase is not always coordinately regulated 
(Cadwallader and Yost 2007).

6-O- and 3-O-Sulfation
As the capacity of HS to interact with protein ligands is 
dependent on the occurrence of O-sulfate groups, it is strik-
ing to note that, although there is only a single 
2-O-sulfotransferase, there are three 6-O-sulfotransferases 
(6OST1-3) and seven 3-O-sulfotransferases. A lot of the 
functionally relevant regulation of HS biosynthesis resulting 
in the generation of protein binding sites may thus lie at the 
level of 6-O and 3-O sulfation, given the evolution and pres-
ervation of the corresponding ten O-sulfotransferases. The 
substrate specificities of the 6-O-sulfotranferases differ 
slightly, and although all three enzymes may act on both 
GlcNAc and GlcNS residues (Smeds et al. 2003), 6-O sulfa-
tion has been reported to preferentially occur on GlcNS resi-
dues flanked by 2-O-sulfated IdoA units (Jemth et al. 2003).

Special attention should be given to the seven 
3-O-sulfotransferases. They do have distinct temporal and 
spatial expression patterns (Cadwallader and Yost 2006) 
and have been shown to be involved in the formation of the 
still relatively few HS motifs that interact in a selective 
manner with protein ligands. Examples of such motifs 
include the antithrombin-binding pentasaccharide motif in 
heparin/HS (Petitou et al. 2003), the gD herpes simplex 
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virus type 1–binding octasaccharide motif (Shukla et al. 
1999), and the chemokine cyclophilin B–binding epitope 
(Vanpouille et al. 2007). Interestingly, mouse knockouts for 
HS3OST-1, central to endothelial cell production of antico-
agulant HS, exhibited lethality only on a specific genetic 
background and showed intrauterine growth retardation but 

showed no obvious coagulopathy (HajMohammadi et al. 
2003). Reduction of 3OST activity in Drosophila resulted 
in compromised Notch signaling with resultant neurogenic 
phenotypes (Kamimura et al. 2004). Thus, 3OST activity 
seems to modulate several distinct developmental 
processes.

Figure 2. Formation and fate of heparan sulfate (HS). The formation of HS takes place in the Golgi network, where most of the 
biosynthetic enzymes are anchored to the Golgi membrane. Biosynthetic precursors (3′-phosphoadenosine-5′-phosphosulfate [PAPS] 
and UDP-sugars) are formed in the cytosol and transported into the Golgi. Prior to HS polymerization, the linkage region is formed 
attached to a serine residue in a core protein. Next, the EXT1/EXT2 polymerase complex adds alternating units of GlcNAc and GlcA 
to the non-reducing end of the growing chain (arrow a indicates the direction of polymerization). The polymerization is followed by a 
series of modification reactions, likely to begin with N-deacetylation/N-sulfation, followed by epimerization and 2-O-sulfation, and finally 
6-O- and 3-O-sulfation. Notably, it has recently been proposed that the direction of N-deacetylation/N-sulfation is opposite to that of 
polymerization (arrow b). Known interactions between enzymes are indicated, but additional protein interactions as well as larger 
GAGosome complexes encompassing many enzymes may exist. After completion of the modification process, the core proteins are 
transported to the cell membrane, where they are exocytosed. HS chains of both membrane-intercalated and secreted proteoglycans 
(PGs) can be trimmed by the actions of heparanase and endosulfatases, and surface-bound PGs can also be shed. Finally, endocytosis 
of PGs leads to degradation of HS by exoenzymes in lysosomes or, alternatively, to recycling and possibly additional rounds of HS 
biosynthesis/modification onto recycled core proteins. Some regulatory steps (Reg.) during the biosynthetic process are indicated.
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Degradation of Surface-Bound and 
Extracellular HS

Two endosulfatases have been identified, SULF1 and 
SULF2, which can remove 6-O-sulfate groups from HS in 
the extracellular space (Ai et al. 2006). In addition, the 
secreted enzyme heparanase degrades extracellular HS, 
resulting in trimming of the HS chains attached to core 
proteins and the release of smaller and potentially bioactive 
HS fragments (Gong et al. 2003). An alternative mecha-
nism for the release of HS from the cell surface is by shed-
ding of the proteoglycan. Syndecans, for example, are shed 
by the action of matrix metalloproteinases (Fitzgerald et al. 
2000), and glypicans can be cleaved by the action of the 
notum protein and phospholipases, leading to release of the 
HS-substituted extracellular domain (Kreuger et al. 2004; 
Traister et al. 2008).

Intracellular Degradation and Recycling
Proteoglycans have also been shown to recycle, with the 
same core protein being internalized and subsequently 
routed back to the cell surface (Fig. 2). Recycling brings 
about the possibility of partial intracellular degradation or 
trimming of HS chains, possibly together with new rounds 
of HS biosynthesis, where after core proteins with altered 
HS chains can be re-exocytosed to the cell membrane 
(Fransson et al. 2004). The final degradation of HS occurs 
intracellularly in the lysosomes through the action of several 
exoenzymes (Freeman and Hopwood 1992), and malfunc-
tion of the exoenzymes leads to different mucopolysacchari-
dosis lysosomal storage diseases (Clarke 2008).

Substrates for HS Biosynthesis: 
Nucleotide Sugars and PAPS
The biosynthesis of HS requires UDP-sugars as well as the 
sulfate donor PAPS (Berninsone and Hirschberg 2000; 
Caffaro et al. 2006). All these precursors are synthesized in 
the cytosol and transported into the Golgi compartment. 
Two PAPS synthases, PAPSS1 and PAPSS2 (Fuda et al. 
2002; Stelzer et al. 2007), and two PAPS transporters, 
PAPST1 and PAPST2, have been identified (Kamiyama 
et al. 2006). As mentioned above, PAPS is required for the 
processive action of NDSTs and as a sulfate donor for the 
NDSTs as well as the different O-sulfotransferases. It 
should be noted that altered synthesis and/or altered trans-
port of these precursors could affect HS biosynthesis.

Regulation of Enzyme Expression at the 
DNA and RNA Levels
Not much is known regarding the transcriptional and trans-
lational regulation of the HS biosynthetic enzymes. Recent 

studies report on the transcriptional regulation of SULFs 
(Langsdorf et al. 2011), NDST2 (Morii et al. 2001), and the 
PAPS synthases (Shimizu et al. 2002). Furthermore, the 
Runx2 transcription factor has been shown to increase the 
expression of EXT1 and heparanase (Teplyuk et al. 2009). 
Epigenetic regulation of EXT1 has been shown to lead to a 
loss of HS biosynthesis (Teplyuk et al. 2009), and the levels 
of some 3OSTs are also determined by this type of regula-
tion (Bui et al. 2010). Evidence for translational regulation 
of HS biosynthesis enzymes has also been presented 
(Bornemann et al. 2008; Grobe and Esko 2002), and it was 
also recently shown that miRNAs have the potential to 
downregulate the levels of enzymes related to HS biosyn-
thesis (Small et al. 2010).

The Hypothetical GAGosome Complex
The GAGosome model proposed in 2002 by Jeffrey Esko 
and Scott Selleck proposes that some of the HS biosyn-
thetic enzymes may act together in a physical complex 
(Esko and Selleck 2002). The ability of the enzymes to 
associate with each other and the stoichiometry and pres-
ence of enzyme isoforms with different catalytic activities 
will likely affect GAGosome function. Compatible with the 
GAGosome hypothesis, the HS polymerases EXT1 and 
EXT2 are known to function as a complex (Kobayashi et al. 
2000; McCormick et al. 2000; Senay et al. 2000), and an 
interaction between EXT2 and NDST1, regulating NDST1 
activity, has also been reported (Presto et al. 2008). Here it 
was shown that the expression levels of the EXT polymer-
ases affected the NDST1 protein levels. Interactions have 
also been observed between XylT and GalT-1 (Schwartz 
1975) and between the C5-epimerase and 2OST (Pinhal  
et al. 2001). The rapid production of HS/heparin, with a 
complete heparin chain being produced in ~1 min (Hook  
et al. 1975; Lidholt et al. 1989), could perhaps be explained 
by the existence of highly efficient GAGosomes.

Compartmentalization of Enzymes
Previous work where the expression of green fluorescent 
protein (GFP)–tagged biosynthesis enzymes have been 
studied indicates that enzymes responsible for the biosyn-
thesis of the linkage region as well as the EXT1/EXT2 co-
polymerase, NDST1, 2OST, the C5-epimerase, and 6OSTs 
all reside in the cis/medial stacks of the Golgi compartment 
(McCormick et al. 2000; Crawford et al. 2001; Pinhal et al. 
2001; Nagai et al. 2004). In contrast, the CS biosynthesis 
enzymes appear to localize more to the trans-Golgi/trans-
Golgi network (Velasco et al. 1988; Uhlin-Hansen and 
Yanagishita 1993; Kolset et al. 2002). More refined tech-
niques, such as the one described by Multhaupt and 
Couchman (2012), will make it possible to get a more 
detailed picture of how the different enzymes localize in 
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different sub-Golgi compartments. Of note, it is possible 
that the compartmentalization of HS and CS biosynthesis 
varies between cell types.

The Interplay between HS and CS 
Biosynthesis
It has been shown that inhibition of HS biosynthesis may 
affect CS biosynthesis (Holmborn et al. 2012; Wei et al. 
2000). Accordingly, EXT1-deficient embryoid bodies were 
recently shown to have doubled their production of CS in the 
absence of HS biosynthesis, and it was suggested that this 
increase in CS production allowed formation of capillary-
like vascular structures (Le Jan et al. 2012). These findings 
may indicate that there is a direct link between HS and CS 
production and that the two polysaccharides even may have 
partially overlapping functions. How, then, could reduced 
HS biosynthesis lead to increased and/or altered CS biosyn-
thesis? It is possible that a reduction in HS biosynthesis 
allows for CS substitution of linkage regions that normally 
should carry HS. Also, a lack of HS production would con-
ceivably lead to larger pools of available PAPS and UDP-
sugar precursors that now could be used for CS biosynthesis. 
Several other mechanisms, including a response to altered 
surface levels of HS and CS, could of course also affect 
both HS and CS biosynthesis.

Future Perspectives
One of the main challenges in this research field is to estab-
lish the functionalities of the postulated enzyme complexes 
in the Golgi and to investigate how dynamic or stable these 
complexes are. We also need to find out more about the 
transcriptional and translational regulation of the different 
biosynthetic enzymes. In addition, methods to analyze the 
structure of extended HS chains at high resolution need to 
be further developed and become widely accessible. It will 
also be important to better understand how primary HS 
sequences relate to three-dimensional structures recognized 
by various protein ligands.
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