Table 11.
Cross-validation | 10 | 20 | 50 | 100 | 200 | 400 | 800 | 1200 | 2000 | 3000 | 4000 | 6000 | All (12,440) |
MEAN ACROSS 100 PERMUTATIONS | |||||||||||||
2 Sample t-test | 0.630 | 0.620 | 0.573 | 0.564 | 0.575 | 0.591 | 0.606 | 0.613 | 0.617 | 0.620 | 0.621 | 0.622 | 0.626 |
Nested CV | 0.626 | 0.623 | 0.583 | 0.565 | 0.577 | 0.595 | 0.605 | 0.610 | 0.616 | 0.621 | 0.621 | 0.621 | 0.626 |
Recursive FE | 0.592 | 0.593 | 0.609 | 0.615 | 0.618 | 0.620 | 0.625 | 0.625 | 0.625 | 0.624 | 0.626 | 0.626 | 0.626 |
SD OF MEAN ACROSS 100 PERMUTATIONS | |||||||||||||
2 Sample t-test | 0.002 | 0.001 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 |
Nested CV | 0.002 | 0.003 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.001 | 0.002 | 0.002 | 0.002 | 0.002 |
Recursive FE | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 |
Test set | 10 | 20 | 50 | 100 | 200 | 400 | 800 | 1200 | 2000 | 3000 | 4000 | 6000 | All (12,440) |
MEAN ACROSS 100 PERMUTATIONS | |||||||||||||
2 Sample t-test | 0.557 | 0.569 | 0.570 | 0.541 | 0.544 | 0.558 | 0.565 | 0.570 | 0.575 | 0.580 | 0.582 | 0.586 | 0.582 |
Nested CV | 0.558 | 0.553 | 0.540 | 0.529 | 0.532 | 0.536 | 0.556 | 0.561 | 0.565 | 0.575 | 0.577 | 0.581 | 0.582 |
Recursive FE | 0.557 | 0.555 | 0.562 | 0.568 | 0.575 | 0.584 | 0.583 | 0.582 | 0.579 | 0.580 | 0.581 | 0.582 | 0.582 |
SD OF MEAN ACROSS 100 PERMUTATIONS | |||||||||||||
2 Sample t-test | 0.002 | 0.003 | 0.004 | 0.004 | 0.004 | 0.004 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 |
Nested CV | 0.003 | 0.003 | 0.003 | 0.004 | 0.004 | 0.003 | 0.004 | 0.004 | 0.003 | 0.004 | 0.003 | 0.003 | 0.003 |
Recursive FE | 0.004 | 0.004 | 0.004 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.004 | 0.003 | 0.003 | 0.003 | 0.003 |
Results summarizing ADHD prediction using combination of all feature types (non-imaging, anatomical, and network features extracted from SIC networks) with stratification by gender in the permutation testing framework. Entries indicate the accuracy for classifiers built using different feature selection methods (rows) and different numbers of features (columns). Top: results on leave-out folds during cross-validation. Bottom: results on separate test set based on training across all examples in the training/cross-validation set.