Skip to main content
. 2012 Dec 21;6:78. doi: 10.3389/fnsys.2012.00078

Table 11.

Permutation tests of Table 7 results (accuracy).


Cross-validation 10 20 50 100 200 400 800 1200 2000 3000 4000 6000 All (12,440)

MEAN ACROSS 100 PERMUTATIONS
2 Sample t-test 0.630 0.620 0.573 0.564 0.575 0.591 0.606 0.613 0.617 0.620 0.621 0.622 0.626
Nested CV 0.626 0.623 0.583 0.565 0.577 0.595 0.605 0.610 0.616 0.621 0.621 0.621 0.626
Recursive FE 0.592 0.593 0.609 0.615 0.618 0.620 0.625 0.625 0.625 0.624 0.626 0.626 0.626
SD OF MEAN ACROSS 100 PERMUTATIONS
2 Sample t-test 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Nested CV 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002
Recursive FE 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Test set 10 20 50 100 200 400 800 1200 2000 3000 4000 6000 All (12,440)

MEAN ACROSS 100 PERMUTATIONS
2 Sample t-test 0.557 0.569 0.570 0.541 0.544 0.558 0.565 0.570 0.575 0.580 0.582 0.586 0.582
Nested CV 0.558 0.553 0.540 0.529 0.532 0.536 0.556 0.561 0.565 0.575 0.577 0.581 0.582
Recursive FE 0.557 0.555 0.562 0.568 0.575 0.584 0.583 0.582 0.579 0.580 0.581 0.582 0.582
SD OF MEAN ACROSS 100 PERMUTATIONS
2 Sample t-test 0.002 0.003 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003
Nested CV 0.003 0.003 0.003 0.004 0.004 0.003 0.004 0.004 0.003 0.004 0.003 0.003 0.003
Recursive FE 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.003

Results summarizing ADHD prediction using combination of all feature types (non-imaging, anatomical, and network features extracted from SIC networks) with stratification by gender in the permutation testing framework. Entries indicate the accuracy for classifiers built using different feature selection methods (rows) and different numbers of features (columns). Top: results on leave-out folds during cross-validation. Bottom: results on separate test set based on training across all examples in the training/cross-validation set.