Table 6.
Cross-validation | 10 | 20 | 50 | 100 | 200 | 400 | 800 | 1200 | 2000 | 3000 | 4000 | 6000 | All (12,426) |
2 Sample t-test | 0.63 | 0.64 | 0.61 | 0.60 | 0.62 | 0.66 | 0.71 | 0.72 | 0.75 | 0.75 | 0.76 | 0.77 | 0.77 |
Nested CV | 0.62 | 0.64 | 0.65 | 0.63 | 0.62 | 0.64 | 0.68 | 0.70 | 0.75 | 0.77 | 0.76 | 0.77 | 0.77 |
Recursive FE | 0.65 | 0.65 | 0.65 | 0.69 | 0.72 | 0.73 | 0.76 | 0.76 | 0.76 | 0.77 | 0.77 | 0.77 | 0.77 |
Test set | 10 | 20 | 50 | 100 | 200 | 400 | 800 | 1200 | 2000 | 3000 | 4000 | 6000 | All (12,426) |
2 Sample t-test | 0.72 | 0.74 | 0.72 | 0.66 | 0.66 | 0.70 | 0.67 | 0.71 | 0.70 | 0.70 | 0.70 | 0.73 | 0.76 |
Nested CV | 0.49 | 0.63 | 0.62 | 0.64 | 0.57 | 0.69 | 0.68 | 0.69 | 0.70 | 0.72 | 0.74 | 0.73 | 0.76 |
Recursive FE | 0.74 | 0.73 | 0.69 | 0.67 | 0.69 | 0.70 | 0.72 | 0.72 | 0.76 | 0.75 | 0.77 | 0.77 | 0.76 |
Results summarizing ADHD prediction using anatomical features combined with SIC network features (but not non-imaging phenotypic features). Entries indicate the area under the ROC curve (AUC) for classifiers built using different feature selection methods (rows) and different numbers of features (columns). Top: results on leave-out folds during cross-validation. Bottom: results on separate test set based on training across all examples in the training/cross-validation set.