Skip to main content
. 2012 Dec 21;6:78. doi: 10.3389/fnsys.2012.00078

Table 6.

Combined anatomical and network features.


Cross-validation 10 20 50 100 200 400 800 1200 2000 3000 4000 6000 All (12,426)

2 Sample t-test 0.63 0.64 0.61 0.60 0.62 0.66 0.71 0.72 0.75 0.75 0.76 0.77 0.77
Nested CV 0.62 0.64 0.65 0.63 0.62 0.64 0.68 0.70 0.75 0.77 0.76 0.77 0.77
Recursive FE 0.65 0.65 0.65 0.69 0.72 0.73 0.76 0.76 0.76 0.77 0.77 0.77 0.77

Test set 10 20 50 100 200 400 800 1200 2000 3000 4000 6000 All (12,426)

2 Sample t-test 0.72 0.74 0.72 0.66 0.66 0.70 0.67 0.71 0.70 0.70 0.70 0.73 0.76
Nested CV 0.49 0.63 0.62 0.64 0.57 0.69 0.68 0.69 0.70 0.72 0.74 0.73 0.76
Recursive FE 0.74 0.73 0.69 0.67 0.69 0.70 0.72 0.72 0.76 0.75 0.77 0.77 0.76

Results summarizing ADHD prediction using anatomical features combined with SIC network features (but not non-imaging phenotypic features). Entries indicate the area under the ROC curve (AUC) for classifiers built using different feature selection methods (rows) and different numbers of features (columns). Top: results on leave-out folds during cross-validation. Bottom: results on separate test set based on training across all examples in the training/cross-validation set.