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Abstract
Providing personalized treatments designed to maximize benefits and minimizing harms is of
tremendous current medical interest. One problem in this area is the evaluation of the interaction
between the treatment and other predictor variables. Treatment effects in subgroups having the
same direction but different magnitudes are called quantitative interactions, while those having
opposite directions in subgroups are called qualitative interactions (QIs). Identifying QIs is
challenging since they are rare and usually unknown among many potential biomarkers.
Meanwhile, subgroup analysis reduces the power of hypothesis testing and multiple subgroup
analyses inflate the type I error rate. We propose a new Bayesian approach to search for QI in a
multiple regression setting with adaptive decision rules. We consider various regression models
for the outcome. This method is illustrated in two examples of Phase III clinical trials. The
algorithm is straightforward and easy to implement using existing software packages. A sample
code was provided in the appendix.
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1. Introduction
Recent rapid development of biological drugs has moved cancer treatment into a new era.
Because they are more effective and less toxic than traditional chemotherapy, the biological
drugs have received increasing attention and are being used as single agents or in
conjunction with chemotherapy as an approved treatment in many malignancies. Although
mechanisms of how these biological drugs elicit their actions are relatively well studied in
pre-clinical models, determine the groups of patients which will derive maximal clinical

Copyright © 2010 John Wiley & Sons, Ltd.
*Correspondence to: Biostatistics Core, Karmanos Cancer Institute, 87 E. Canfield, Suite 5603, Detroit, MI 48201.
chenw@karmanos.org.

NIH Public Access
Author Manuscript
Stat Med. Author manuscript; available in PMC 2013 December 10.

Published in final edited form as:
Stat Med. 2012 December 10; 31(28): 3693–3707. doi:10.1002/sim.5429.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



benefit from them is harder to determine. It is likely that drugs that will be effective for one
subgroup may be potentially harmful to another. We present two motivating examples, both
from oncology. A large phase III study [1] comparing epidermal growth factor receptor
(EGFR) inhibitor, gefitinib, with carboplatin plus paclitaxel as a first-line treatment for
patients with pulmonary adenocarcinoma showed that progression-free survival (PFS) was
significantly longer among patients receiving gefitinib than among those receiving
carboplatin-paclitaxel only if patients were positive for EGFR mutation (hazard ratio for
progression, 0.48; 95% CI, 0.36 to 0.64; P< 0.001). However, for patients lacking a EGFR
mutation, PFS was significantly shorter in the gefitinib arm as compared to the carboplatin-
paclitaxel arm (hazard ratio, 2.85; 95% CI, 2.05 to 3.98; P< 0.001). Another example is the
CO.17 study [2] examining the effect of monoclonal anti-EGFR antibody, cetuximab,
compared with supportive care alone among patients with advanced colorectal cancer.
Cetuximab as compared with best supportive care alone was associated with significantly
improved overall survival (OS) (hazard ratio for death, 0.55; 95% CI, 0.41 to 0.74; P<
0.001) and PFS (hazard ratio for progression or death, 0.40; 95% CI, 0.30 to 0.54; P< 0.001)
in patients with the wild-type K-ras gene. The response rate to cetuximab was almost
exclusively detected in patients with the wild-type K-ras (12.8% vs. 1.2%). However,
patients with mutated K-ras tumors had no OS or PFS benefit from cetuximab.

The phenomenon in the first example can be described as a qualitative interaction (QI)
between treatment and a predictive factor. This happens when the treatment effects have
opposite directions in different subgroups defined by the predictor. The term QI was first
introduced by [3]. When the treatment effects in subgroups have the same direction but
different magnitudes (as in the second example above), it is called a quantitative interaction.
There may be no harm when a quantitative interaction exists, as both patient groups benefit.
However, when a true QI is ignored, an experimental treatment that is effective in one
subgroup could be rejected for not reaching statistical significance in the overall group. On
the other hand, a treatment that reaches statistical significance in the overall group due to its
effectiveness in a majority group could be ineffective or harmful to a subgroup. These latter
patients would bear unnecessary toxicity and cost from the treatment. It is of great
importance to identify rare but significant QI, and hence, deliver personalized treatment,
aiming to maximize the probability of reaching the desired outcome.

Identifying QIs is challenging, since they are rare and usually unknown among many
potential biomarkers. It is well-known that subgroup analysis reduces the power of
hypothesis testing, and that multiple subgroup analyses inflate the type I error rate. In
addition, when there are other interactions in the model, QI cannot be considered
independently. Many algorithms searching for interaction effects do not distinguish between
QI and quantitative interactions. The importance of identifying QI was discussed in detail
and a likelihood ratio test was developed by [4]. Previous work on the study of interactions
was discussed and a Bayesian method for subset specific treatment effects was developed by
[5]. Recently, [6] developed supervised learning algorithms for this problem. [7] developed
an approach using Bayes Factor to test for QI restricted to one factor/variable within
multiple subgroups. All these methods dealt with a fixed number of subgroups without any
subgroup selection. Hence, in general, they yield low power of detecting QI. In the
hypothesis-generating/exploratory setting, the number of potential covariates is often large.
Appropriate statistical methods for identifying QI with variable selection are lacking. We
propose a Bayesian approach to search for QI in a multiple regression setting. The algorithm
is straightforward and easy to implement.

The remainder of this paper is organized as follows. Section 2 describes the hierarchical
model structure and decision rules with different outcome variables. An adaptive decision
rule is developed for a large number of candidate predictors as well. Section 3 demonstrates
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the properties of our proposed method through simulated studies. Section 4 illustrates the
implementation of our method in two Phase III trials and a concluding discussion is given in
Section 5.

2. Method
We frame our proposed method using a hierarchical regression model. Estimation of
parameters will be the focus rather than prediction. Furthermore, due to the small sample
sizes in subgroups formed by more than one predictor, only treatment-covariate interactions
will be considered in this paper. When sample size is sufficiently large, exploring covariate-
covariate interactions or treatment-covariate-covariate interactions is a straightforward
extension of the methodology proposed here. We start with introducing the method in the
linear regression setting, followed by logistic regression, and by the Cox proportional
hazards model. We consider the problem of modeling binary covariates first. Then we
extend the method to accommodate categorical covariates with more than two levels and
continuous covariates. We extend our method further to include an adaptive variable
screening phase if the number of covariates is large.

2.1. Linear Multiple Regression Model with Latent Variables
Let y be an N × 1 vector of continuous outcomes, where N is the total sample size. Let α0 be
the intercept, α1 the coefficient of the two treatment options denoted by an N × 1 vector of
indicator variable z with 0 for control and 1 for experimental agent. Let xj be an N × 1
vector of the indicator variable for the jth covariate, j = 1,…, p. For simplicity, xj+p is the
interaction term corresponding to the main effect term xj. For a simple linear regression with
normally distributed errors ∈ ~ N(0, σ2), we have

(1)

We assume that the intercept and the treatment effects will be always in the model, and the
variable selection only occurs on the covariates and the treatment-covariate interactions.
Diffuse normal priors and inverse gamma prior are specified for α0, α1, and α, respectively.
A mixture normal prior, first used by [8], can be specified for each coefficient βj,

(2)

The binary latent variables γj = 1 indicates a true predictor. The tuning parameters c and Γ
are set to distinguish the distribution of the coefficient of a true predictor from that of a false
predictor. The Γ2 should be small enough so that βj is close to zero when γj = 0. The tuning
parameter c determines the magnitude of the difference between the two mixture normal
distributions (Equation 2) representing the signal and noise. In our previous experiences [9–
11], we followed the recommendation of choosing these two tuning parameters that is given
in [8]. Choosing c between 10 and 100 worked well when implementing MCMC and
simulation results were not sensitive to the choice in this range. Using the latent variable γ,
model selection and identifying a QI is a by-product of the Markov chain Monte Carlo
(MCMC) algorithm.

Since interaction terms represent deviations from an additive effect, we adopt the convention
that a model containing interactions should also contain the corresponding main effects [12].
Hence, we modify the before mentioned hierarchical structure by adding a restricted prior
for γ that corresponds to main effects,
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(3)

where πj could be a constant or follow a distribution, such as πj ~ Beta(a, b). To favor
parsimonious models or when n < p, the parameters (a, b) in the Beta prior can be set to
force a small πj. Table 1 illustrates different prior distributions of the model space under
assumptions of πj, indicating that the prior weight of each model can be flexibly specified.

Other prior assumptions could be used for γ. For example, no restriction of any kind or to
restrict the selection of higher order terms based on the existence of the lower order terms.
However, the prior structure for γ specified here yields higher power to detect interactions,
see [10] for more thorough comparisons. The joint posterior distribution of γ1,…, γj reflects
the probability of each model approximating the true unknown model. Hence, the “best”
model or a set of “good” models can be selected accordingly using iterations from MCMC.

The simplified treatment effect δj in each subgroup of the jth covariate based on equation (1)
is

The QI are the terms that satisfy the condition α1 × (α1 + βp+j) < 0 and γp+j = 1. In other
words, the significance of the interaction is decided by γp+j = 1 and the direction of the
interaction is decided by α1 and αp+j. Using the output from the MCMC algorithm, the
posterior distribution Pr{α1 × (α1 + βp=j) < 0|Ml, Data} can be easily obtained at the
iterations where the joint distribution of γ1,…,γj,…,γ2p corresponds to the selected model
Ml.

If the selected model Ml has more than one interaction term, we test interaction terms for QI
using Bayesian loss to control the false discoveries due to multiple testings. We use two-

dimensional complementary Bayesian losses  and . Let  denote the marginal

posterior probability of the jth covariate having a QI with treatment,  = Pr{α1 × (α1 +
βp+j) < 0|Ml, Data}. Since a decision dj is a function of Ml and data,  and  can be
denoted as follows.

and

where D = Σdj, and m the total number of interactions in consideration. To control the 
at certain level αQI while minimizing the , one can find a set of thresholds tQI such that

a decision , results in . Since  is minimized by
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min{tQI}, the optimal threshold is . The proof follows directly from
Muller et al. [13].

2.2. Logistic Multiple Regression Model
Now we consider the situation of a binary response. Assume a logistic link for binomially
distributed outcome data y with probability θ ≡ Pr(y = 1|x1,…, xp). The regression model
takes the form

which yields the following treatment effects in the form of odds ratios (ORs):

The posterior distribution  = Pr{α1 × (α + βp+j) < 0|Ml, Data} can then be used for
inferring QI in the Logistic regression setting as well.

2.3. Cox Proportional Hazard Model
For the Cox model, we used the counting process notation introduced by [14] since it can be
easily extended to frailty models, time-dependent covariates, and multiple events. [15]
discussed estimation of the baseline hazard and regression parameters using MCMC
methods. The implementation of this counting process formulation can be found in the
survival analysis of the BUGS manual. For subjects i = 1,…, n, we observe Ni(t) which
counts the number of failures occurred up to time t, and Yi(t) which takes the value 1 if
subject i is observed at time t and 0 otherwise. Let dNi(t) denote the counting process
increment of Ni over the small time interval [t, t + dt), which is assumed to follow a Poisson
distribution dNi(t) ~ Poisson(Ii(t)dt), where the intensity process Ii(t) is

We can write the dλ0(t)dt as dΛ0(t) and assume the conjugate independent increments prior

suggested by [16] as dΛ0(t) ~ Gamma( ). Small values of c0 correspond to weak

prior beliefs, where  can be thought of as a prior distribution for the unknown hazard

function. In the simulation and application sections below, we set 
where t(h), h = 1,...,T, are ordered unique event times.

The treatment effects in the form of hazard ratios (HRs) are as follows
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The posterior distributions of  = Pr{α1 × (α + βp+j) < 0|Ml, Data} are again used for
detecting QI.

2.4. Multi-level Covariates
When covariates with more than two qualitative levels are considered for sub-group
analysis, multiple dummy variables are used as regressors in the model. In our model
selection procedure, we incorporating restrictions on grouped regressors based on the idea of
the “all included, or all excluded ” grouping principle by [17]. Instead of the one-to-one

mapping of βj and γj in formula (2), a many-to-one mapping of  for g dummy
variables of the (g + 1)-level covariate j to a single γj is assigned as follows:

The hierarchical restriction between an interaction term and its main effects is used in

conjunction with this grouping principle. Let  denote the treatment effects in the
subgroups of jth covariate, then a QI can be detected by estimating the quantity

.

2.5. Continuous Covariates
When continuous covariates are considered in the modeling for clinical decision, two
common approaches are used. The first is to convert the continuous variables to categorical
covariates. The threshold is based on prior clinical knowledge or empirical evidence (e.g.,
using the median or tertiles of a continuous variable). This is a straightforward unsupervised
threshold, where the decision of threshold is independent of the observed treatment
outcomes in the current study. This approach subsumes a strong assumption of same
treatment effect within each subgroup within levels defined by the discrete variable.

The second approach is to fit the continuous covariates as is or with higher order
polynomials, so that the relationship between the covariate and outcome will be fully
described. Thus, for a continuous covariate the subgroup analysis, the focus of this paper, is
a problem of finding thresholds, such that the preferred treatment changes when the
measurement of that continuous covariate is above or below that threshold. Figure 1
illustrates four scenarios in a simple linear regression that only the last scenario the QI effect
exists. Scenarios (a) through (c) all favor one treatment than the other through the observed
range of the continuous predictor, even though (b) and (c) indicate treatment-covariate
interactions. In scenario (d), the preferred treatment would be 0 when the predictor value is
less than the threshold (the intersection) but 1 otherwise.

Theoretically, there is always an intersection for the two fitted lines if the two slopes are not
identical. Similar to the problem of extrapolation, only the intersection that lies within the
observable range of the continuous covariate would be of interest and considered as a
tentative threshold in practice. This type of threshold is supervised in that the threshold
depends on the treatment outcomes. The supervised threshold would increase the chance of
finding a QI effect compared to the unsupervised threshold. Nonetheless, the resulting
threshold should be verified using an independent external data to avoid the problem of
overfitting.

Here we denote by g(θ) the common parametric component of the linear, logistic, and Cox

regression models, where . We have
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The intersection of two regression lines with respect to xj is at xj = . The

term  reflects the contribution from other covariates whose interactions with
treatment are selected as well. Holding , at its mean if it is continuous or at zero if it is
categorical, we test for the QI effect of xj using posterior probability

 < c2|Ml, Data}, where c1 and c2 could be approximated by
the minimum and maximum of the observed xj, respectively. This is equivalent to

. The model with
categorical covariates is a special case when c1 = 0 and c2 = 1.

All of these parameters can be estimated from posterior distributions using standard MCMC
output. At each MCMC iteration where the selected model occurs, we estimate the
intersection. Hence, a distribution of the intersection could be obtained. Bayesian credible
interval of the intersection between the observed range of that continuous covariate could be
obtained as well. A tentative threshold could be decided based on the posterior distribution
of the intersection, e.g. the median. The percentage of the patient population that will benefit
from utilizing this threshold could be presented graphically as well; see Section 4.2 for an
example. Given the practical importance of this problem, we anticipate that this method will
serve as a springboard for future work.

2.6. Variable Screening with large p
When the number of candidate predictors increases, the above described Bayesian model
selection (BMS) method tends to fail, as does any other modeling approach, due to the lack
of information. Two features of BMS are vulnerable: first, the probabilities of main effects
being included in the model are inflated more with increased p based on the hierarchical
prior structure in equation (3). Second, the highest joint posterior distribution of γ1,…,γ2p is
driven by the prior when n is not sufficiently larger than p. When less information is
available, the effect of the prior becomes stronger. The Beta hyperprior in the hierarchical
model can be viewed as a penalty or shrinkage effect. The use of a larger penalty as in the
second to the last panel of Table 1 will reduce the power to identify QI. If we set the Beta
hyperprior to favor larger models (see the first panel of Table 1), the coefficient of interest, a
key component in identifying QI, will be estimated with less efficiency. Hence, the power
will be reduced in this case as well.

We believe that a model with an interaction term should also include its main effect and we
do not wish to lose the power to detect rare QI by requiring a large shrinkage effect. The
solution to improve the performance of BMS lies in variable screening. It is common sense
to screen the candidate variables before fitting a “best” model. The rule of thumb that at
least 10 events per predictor [18] can be used here to decide if variable screening is
necessary.

We propose adaptive BMS (ABMS) by adding an adaptive decision rule to screen the
variables if necessary. We begin with the model selection phase given all the candidate
variables. If under the decision rule there is no model selected, the variable screening phase
will be triggered to reduce the model space. Then the process of selecting a model will be
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reiterated. The algorithm will oscillate between variable screening and model selection
phases until there is a “best” model or models selected, or there are no remaining candidate
variables, or the variable screening phase does not result in a reduced number of candidates.

At the model selection phase for m candidate models (M1,…, Mm), we have m
corresponding decisions d = (d1,…, dm) with value 1 for selected or 0 otherwise. Let vector
ν with elements νl = Pr(Ml|Data), l = 1,…, m, denote the posterior probabilities of models
estimated by the proportion of occurrences of model Ml in the MCMC process. Let

 and  donted the mean νl the set of selected models S1 and the
set of non-selected models S2, respectively. The decision of selecting a model is based on
two posterior expected losses simultaneously: the first, L1(d,ν), assesses how-well the
selected set S1 of models “separates” from the non-selected set S2 using a squared Euclidean
distance:

(4)

the second,

is the posterior false discovery  and the false non-discovery  of the decision with

modification constant λ2, where .

Let λ1 denote the modification constant, we consider the following optimal rule under the
posterior expected loss L(d,ν),

Theorem 1—Under the loss function L(d,ν), the optimal decision takes the form dl = I(νl
> ν(m–D)), where D* is the optimal number of discoveries.

Proof: Let D = Σdl (to simplify the notation, in what follows we omit the subscript l = 1 and
superscript m), we find from directly deriving from (4) that

(5)

(6)

where the additional term ∈ avoids a zero denominator. Subject to a fixed total number of
discoveries D, only the last terms in (5) and (6) involve the decision dl. For any given D, L1
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and L2 are minimized by setting dl=1 for the D largest νl, such that dl ≡ I(νl > ν(m–D)),
where ν(m – D) is the (m – D)th order statistics of ν1,…, νm. Given D, the local minimums
are

Thus, we conclude that the global optimum must be the same form. The optimum D* is
found by minimizing

with respect to D.

Remark 1—L1 is equivalent to the k-mean clustering approach [19] in one dimension with
a squared Euclidean distance metric. The models based on this part of the loss function will
be partitioned into 2 groups, S1 and S2. L1 is considered providing a soft threshold to
partition the models, where the decision is solely driven by the data.

Remark 2—The addition of L2 penalizes the partition through the loss from false discovery
and false non-discovery with a modification constant λ2. L2 is considered providing a hard
threshold to select the models. The decision is invariant to the data. From (6), we have

Thus the minimum is achieved when dl = I(νl > λ2). Note that the distribution of νl changes
when the total number of models m changes. Hence, it is difficult to use L2 alone for
decision making.

Remark 3—In some cases, if νl ≡ ν, the expected loss L1 ≡ 0 is invariant to any decision
dl. To see that, we have from the definition in (4),

Thus, the decision will be solely based on L2 Hence, we recommend to set λ2 = 0.5, which
is linked to traditional hypothesis testing problems [20].

The variable screening phase has two sequential steps due to the restricted hierarchical
structure in (3). At the first step, we apply the adaptive decision rule to the interaction terms.
Selected interaction terms and their main effects will be kept for the next model selection
phase. At the second step, the adaptive decision rule will be applied to the remaining main
effects. The selected additional main effects will be kept for the next model selection phase
as well. The formulation of the decision rule for the variable screening phase is the same as
that of the model selection phase. Let a vector ν with elements νl = Pr(γl|Data),l = 1,…, p,
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denote the posterior marginal probability of a regressor being in the true model, where νl is
estimated by the proportion of occurrences of the lth regressor in the MCMC iterations
produced in the model selection phase. If the variable screening phase yields a reduced
number of p, the model selection phase is reiterated in a new MCMC process.

Remark 4—The modification constant λ1 reflects the relative weighting between L1 and
L2. Note that L1 and L2 are on different scales. In our experience, the scale of L2 has been
more than 100 times greater than L1. The process of variable screening is to reduce the
dimension of the model space. When the loss function is used for screening variables, more
weight is recommended for L1 (e.g. λ1 ∈ [0, 0.01)). When the loss function is used for
selecting models, more weight is recommended for L2 (e.g. 1 ∈ (0.01, 1]).

3. Simulation Studies
Our interest lies in evaluating the frequentist power to detect the QI under various
conditions, such as outcome types, sample size, number of covariates, and treatment effect.
We set the number of covariates p = 5 and 25 with a sample size of 200, and assume that all
of the p covariates are independent and from a Bin(n, 0.5) distribution. The treatment group
z was generated from Bin(n, 0.5) to represent 1:1 randomized clinical trials. Three types of
outcomes were simulated: linear, binary, and survival outcomes. Several true models were
considered for different outcomes. The first true model was η1 = −.7z + 0.5x1 + 1.4x1z. This
is equivalent to a treatment Odds Ratio (OR) or Hazard Ratio (HR) of 0.5 when x1 = 0 and 2
when x1 = 1. The second true model, with an additional interaction term, was η2 = −.7z +
0.5x1 + 0.5x2 + 1.4x1z – x2z. The third true model, with smaller treatment effect, was η3 =
–.5z + 0.5x1 + 0.5x2 + x1z – x2z. This is equivalent to a treatment OR or HR of 0.6 when x1
= 0 and 1.64 when x1 = 1. For linear outcomes, ∈ ~ N(0, 1) was used. We used a logit link
and an exponential link for the binary and survival outcomes, respectively. The uniform
distribution on [0, c] was used to generate non-informative censoring, where c chosen to
generate 30% censoring . We generated 500 replications for each setting. For the binary
outcomes, the frequency of y = 1 was about 56% from model 1, 2, and 3.

The KM curves for one simulated survival dataset under model 1 and 3 were plotted (Figure
2 and 3). x1 is a prognostic factor (Figure 2(a) and Figure 3(a)). As demonstrated, if the QI
effect of x1 is ignored, the treatment effect will not be detected (Figure 2(b)). In addition,
the QI effect is not detectable if the other interaction is ignored (Figure 3(c)). The QI effect
could be detected only if other interactions (QI or quantitative interaction), such as x2 in
model 3 , were jointly considered (Figure 3(d)).

For all of the simulated data sets, we applied the method with c = 10, Γ = .15, and Beta(2,2).
The length of the two parallel MCMC chains was set to be 10, 000, from which the first 1,
000 iterations were discarded. The data generation for the simulations was conducted in R.
Through the R package R2WinBUGS, the model estimation was conducted in BUGS [21], a
popular Bayesian software package for performing Bayesian inference using Gibbs
sampling [22, 23]. The “best” model in this method of BMS was selected based on the
highest joint posterior distribution of γ. The λ1 equal to 1 for selecting models and 0.01 for
selecting variables were used in the ABMS method with the expected loss L(d, ν). The αQI
= 0.5 was used as the threshold for .

The power was calculated as the proportion of occurrences among all the simulations in
which the true QI effect was detected. The FDR was calculated as the average over 500
simulations of proportions of falsely detected QIs among all detected QI. The results were
presented in Table 2.
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Our simulation study suggests the feasibility of detecting the QI using the BMS or the
ABMS approach for a relatively large number of predictors. Our simulated data have one or
two true interaction terms for η1 or η2 and η3, respectively. The mTests ideally should be
close to one or two for η1 or η2 and η3 accordingly. A deviation towards smaller value
indicates the selected model missed true interaction terms. Conversely, a deviation towards
larger values indicates that false interaction terms were included in the selected model for
the QI test. When p = 25, the much smaller mTests from ABMS method indicates the
advantage of using the adaptive variable screen phase. The BMS method does not involve a
variable screening phase. It tends to have poor power if the number of covariates is large
relative to the sample size. However, the ABMS method could falsely remove important
predictors during the variable screening phase. Apparently, when the number of main effects
is relatively small (p = 5) to the sample size, the BMS method is better than ABMS. To
obtain reasonably stable estimates of the regression coefficients, the rule of thumb is to have
a minimum of 10 subjects in the smaller category in logistic regression or 10 events in the
Cox model per predictor variable [18, 24]. A relaxed version could be used in guiding the
choice of BMS or ABMS. If the number of main effects is larger than 1/10th of the effective
sample size, the ABMS method is recommended.

4. Applications
4.1. Colorectal Cancer Phase III Trial

We illustrate the method using the data from a previously reported randomized Phase III
trial [11, 25]. The primary objective of the study was to compare the effect of combinations
of chemotherapy agents in patients with advanced colorectal cancer. At the time of planning
the trial, two chemotherapy drugs had been approved by the Food and Drug Administration
(FDA) for treatment of advanced colon cancer: 5-fluorouracil (5-FU) and irinotecan
(CPT-11), while Oxaliplatin (OXAL), a cis-platinum analogue with activity in colorectal
cancer, was an investigational agent in the U.S. and Canada. Two experimental
combinations of regimens,5-FU+OXAL and OXAL+CPT-11, were compared to the
standard regimen, 5-FU+CPT-11, in the trial. We refer to these regimens as Arm F, Arm G
and the control as Arm A, respectively. A total of 1705 patients were included in the study,
of which 513 (115 patients in arm A, 292 patients in arm F, and 106 patients in arm G) were
genotyped for 23 biomarkers. These biomarkers were selected based on previous reports
indicating that they were related to bioactivity of the chemotherapies by direct or indirect
mechanisms. Descriptive summaries of the covariates were reported in Table 1 in [11].

For the purpose of illustration, we focus on the treatment comparison between Arm F and
the standard treatment Arm A, and prespecified primary endpoint progression free survival.
We applied the ABMS method with c = 10, Γ = .15, and Beta(2, 2). The λ1 equal to 1 for
selecting models and 0.01 for selecting variables were used with the expected loss L(d,ν).
The length of the two parallel MCMC chains was set to be 20,000, from which the first

1,000 iterations were discarded. The posterior mean of  = Pr{α1 × (α1 + βp+j) < 0|Ml,
Data} was used as for testing for QI. Results from the simulation studies (Table 2) suggest
that with a total of about 140 events in 1:1 randomization and 25 potential predictors, the
powers to detect a true QI from models η1 and η2 are 0.978 and 0.858, respectively. Hence,
in this application data set with 296 events and 2:1 randomization, we expect that the power
is not less than 80%.

Our ABMS method resulted in making inference of QI with two iterations of the model
selection phase. At the second iteration, a model with posterior probability of 0.64 was
selected. The selected model only contains one QI with posterior probability of 0.87. The
coefficients and the log HR of treatment effect under the selected model are plotted in
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Figure4. The KM curves by subgroups defined by the status of selected marker (dpyd_6)
and treatment groups are plotted in Figure 5. A different λ1 value was used for sensitivity
analysis, and the results are almost the same (results not shown). The marker dpyd_6 was a
prognostic marker since the wild-type carriers had poor prognosis. It was also a predictive
marker with a qualitative interaction effect. The posterior distribution (Figure 4(b)) of the
HR in the dpyd_6 mutated group suggests that the treatment was superior overall (arm F)
may not benefit this subgroup. Clearly this result is hypothesis generating only and would
require confirmation in independent trials. However, since a majority of the patients had
wild-type dpyd_6, giving experimental treatment to all the patients ignoring the status of
dpyd_6 will not affect the conclusion that experimental treatment is more effective than the
standard treatment.

We underline the importance of simulated power and FDR to guide the choice of different
approaches (BMS or ABMS), as well as the sensitivity analysis of tuning parameters. The
results of the example in this section may appear not persuasive regarding the merits of the
proposed method. Nevertheless, these are likely the typical results in searching for rare QI
effects in cancer clinical trials in practices.

4.2. Non-Small Cell Lung Cancer (NSCLC) Phase III Trial
DNA excision repair protein ERCC1 activity may serve as a marker in resistance to
platinum chemotherapy drugs in patients with gastric, ovarian, colorectal, NSCLC, and
bladder cancers. In NSCLC, patients whose tumors were surgically removed and received
no further therapy have a better survival if ERCC1 high than if ERCC1 low. Thus, high
ERCC1 is a favorable prognostic marker. However, NSCLC patients with high levels of
ERCC1 do not benefit from adjuvant platinum chemotherapy, whereas ERCC1 low patients
receive substantial benefit. High ERCC1 is thus a negative predictive marker for adjuvant
platinum chemotherapy [26, 27]. Most of reported studies evaluated the ERCC1 at the RNA
level, except for [26], in which the ERCC1 was measured by standard immunohistochemical
(IHC) method. The median value of semiquantitative H scores was a priori chosen as the
cutoff point for ERCC1 positivity tumors in [26]. Tissue microarray (TMA) is an efficient
way to evaluate the protein activity in the exploratory phases. A fluorescent-based IHC
method combined with automated quantitative analysis (AQUA)[28] allows rapid automated
analysis of protein activities. AQUA identifies the separation of tumor from stromal
elements and the sub-cellular localization of signals. The resulted quantitative scores lead to
the question of identifying cutoff point for high or low protein activity.

We illustrate our QI searching method with a randomized Phase III NSCLC [29], where the
biomarker activity was measured as a continuous covariate. The trial was conducted in
patients with previously untreated stage IIIB/IV NSCLC, a performance of status of 2, and
measurable disease by RECIST. Blanced randomization to control arm treated with
gemcitabine and experimental arm gemcitabine and carboplatin. A total of 170 patients were
randomized between March 2004 and December 2006. The trial was terminated due to low
patient accrual.

Of the 65 patients with available protein expression of ERCC1 and RRM1, 5 had stage IIIB
tumors and all randomized to experimental arm. Since stage is a well known prognostic
factor, we focus our inference on the 60 stage IV patients whose ERCC1 and RRM1 activity
were available. There were no significant differences between the groups of patients with
and without biomarker data (Table 1 from [29]).

The covariates considered were age, gender, log2(RRM1), log2(ERCC1), and histology
(adenocarcinoma, squamous, and other). Except for gender, which is binary, and histology,
which is categorical with three levels, the remaining covariates were continuous. Each
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continuous covariate was scaled by dividing its range to make the estimated coefficients
comparable to those of categorical covariates. The ABMS method was used because of
relatively small effective samples size (49 OS events) to the number of covariates. The same
choices of tuning parameters and decision rules were used here as in Section 4.1.

At the second iteration, a model with Arm, log2(ERCC1), and histology as main effects and
log2(ERCC1)*Arm as an interaction were selected. The posterior distribution of intersection
and the histogram of observed log2(ERCC1) are plotted in Figure 6. The Bayesian credible
interval of intersection between the minimum and maximum observed log2(ERCC1) was
84.3%. Using the median of the posterior distribution of intersection, a tentative cutoff of 15
on original scale of ERCC1 was used to separate the patients into ERCC1 high and low
subgroups. The KM curves by subgroups are plotted in Figure 7.

In this data, the histology was identified as a prognostic factor and ERCC1 a predictive
factor. Although only 10 out of 60 (17%) stage IV patients were classified as ERCC1 low
using the ABMS method (Figure 6, left side of dot-dashed line classified as ERCC1 Low),
the result was consistent to the literature.

5. Discussion
In this work, we proposed BMS and ABMS methods using Bayesian regression model for
subgroup analysis. We have addressed issues of qualitative interactions in cancer treatment.
The endpoints considered were linear, categorical and censored continuous variables, which
are very common in most phase III clinical trial settings. Our methods increased the power
of detecting QI, which becomes more important in defining targeted group for treating
complex diseases in heterogeneous population.

In addition to the power to detect a QI, another critical issue in subgroup analysis is the
family wise type I error rate (FWER), which is inflated due to multiple testing of covariates.
With our proposed methods, we reduce the FWER by reducing the number of interactions to
be tested for QI. We first select a best model based on the joint posterior distribution of
possible models. This process does not involve multiple testing. If the best model contains

interaction terms, we then test for QI based on marginal poster distribution  for each
selected term. This process involves multiple testing if the number of interaction terms
selected in the final model is larger than one. A Bayesian FDR rule was used to control the
proportion of falsely identified QI.

The estimated FDR from our simulations is small and well controlled at αQI = 0.5 across
three different true models (Table 2). The cutoff αQI = 0.5 can be interpreted as among the
identified QI terms, half of them are genuine QI terms. Since the QI is rare and our method
reduces number of multiple tests greatly, especially the ABMS method, setting αQI at 0.5 is
not unreasonable. Simulation results in Table 2 suggest that the resulted FDR was affected
by, but not limited to, decision rules, effective sample size, number of covariates, and effect
sizes. Because little is known about the truth of complex real data, before analyzing the real
data the distribution of FDR should be studied using simulations with various settings. We
hope that the proposed study stimulates further research on the use of FDR-controlling
procedures in this setting.
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Appendix: Sample WinBUGS code for selection of QI for survival outcomes
model { ############# Set up data for(i in 1:N) { for(j in 1:T) { # risk set = 1 if obs.t >= t
Y[i,j] <- step(obs.t[i] - t[j] + eps) # counting process jump = 1 if obs.t in [ t[j], t[j+1] ) # i.e.
if t[j] <= obs.t < t[j+1] dN[i, j] <- Y[i, j] * step(t[j + 1] - obs.t[i] - eps) * fail[i] } } ### create
interaction terms for(j in 1:p_int){ for (i in 1:N) {X_int[i,j]<-X[i,j]*Treat[i]} }
############# model for(j in 1:T) { for(i in 1:N) { dN[i, j] ~ dpois(Idt[i, j]) # Likelihood
Idt[i, j] <- Y[i, j] * exp(eta[i]) * dL0[j] # Intensity } dL0[j] ~ dgamma(mu[j], c) mu[j] <-
dL0.star[j] * c # prior mean hazard } c <- 0.001 r <- 0.1 for (i in 1:N) { eta[i]<-
alpha1*Treat[i]+inprod(X[i,],Beta[])+inprod(X_int[i,],Beta_int[])} for (j in 1:T)
{ dL0.star[j] <- r * (t[j + 1] - t[j]) } ############# for alpha alpha1~dnorm(0,0.04)
############# for Beta p is the number of covariates # assume all the elements in Beta are
apriori independent for( i in 1:p_int) { Sig_int[i]<-(1-Gamma_int[i])*cont
+Gamma_int[i]*cons*cont Sig_int_inv[i]<-1/pow(Sig_int[i],2)
Beta_int[i]~dnorm(0,Sig_int_inv[i]) Gamma_int[i]~dbern(pi_int[i]) # bernoulli-beta
pi_int[i]~dbeta(a,b) } ### main effects are constrained by interactions for( i in 1:p)
{ Sig[i]<-(1-Gamma[i])*cont+Gamma[i]*cons*cont Sig_inv[i]<-1/pow(Sig[i],2)
Beta[i]~dnorm(0,Sig_inv[i]) PI[i]<-pow(pi[i],step(-Gamma_int[i])) Gamma[i]~dbern(PI[i])
# bernoulli-beta pi[i]~dbeta(a,b) } }

References
1. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono

B, Ichinose Y, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J
Med 2009. 2009; 361:947–957.

2. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, Simes RJ,
Chalchal H, Shapiro JD, Robitaillea S, et al. K-ras mutations and benefit from cetuximab in
advanced colorectal cancer. N Engl J Med. 2008; 359:1757–1765. [PubMed: 18946061]

3. Peto, R. Statistical aspects of cancer trials. In: Halnan, KE., editor. The Treatment of Cancer.
London; Chapman & Hall: 1982. p. 867-871.

4. Gail M, Simon R. Testing for qualitative interactions between treatment effects and patient subsets.
Biometrics. 1985; 41:361–372. [PubMed: 4027319]

5. Dixon DO, Simon R. Bayesian subset analysis. Biometrics. 1991; 47:871–881. [PubMed: 1742443]

6. Gunter, L.; Zhu, J.; Murphy, SA. Statistical Methodology. 2009. Variable selection for qualitative
interactions. DOI: 10.1016/j.stamet.2009.05.003

7. Bayman EO, Chaloner K, Cowles MK. Detecting qualitative interaction: A bayesian approach.
Statistics in Medicine. 2009 DOI: 10.1002/sim.3787.

8. George EI, McCulloch RE. Variable selection via Gibbs sampling. J. Am. Stat. Assoc. 1993;
88:881–889.

9. Ghosh D, Chen W, Raghunathan TE. The false discovery rate: a variable selection perspective. J.
Statist. Planning Inference. 2006; 136:2668–2684.

10. Chen W, Ghosh D, Raghunathan TE, Sargent DJ. A false-discovery-rate-based loss framework for
selection of interactions. Statistics in Medicine. 2008; 27:2004–2021. DOI: 10.1002/sim.3118.
[PubMed: 17979139]

11. Chen W, Ghosh D, Raghunathan TE, Sargent DJ. Bayesian variable selection with joint modeling
of categorical and survival outcomes: An application to individualizing chemotherapy treatment in
advanced colorectal cancer. Biometrics. 2009; 65:1030–1040. DOI: 10.1111/j.
1541-0420.2008.01181.x. [PubMed: 19210736]

12. Neter, J.; Kutner, MH.; Nachtsheim, CJ.; Wasserman, W. Applied Linear Statistical Models.
McGraw-Hill; New York: 1996.

13. Müller P, Parmigiani G, Robert C, Rousseau J. Optimal sample size for multiple testing: the case
of gene expression microarrays. J. Am. Stat. Assoc. 2004; 99:990–1001.

Chen et al. Page 14

Stat Med. Author manuscript; available in PMC 2013 December 10.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



14. Andersen PK, Gill RD. Cox’s regression model for counting processes: A large sample study. The
Annals of Statistics. 1982; 10:1100–1120.

15. Clayton, DG. Technical Report. Medical Research Council Biostatistics Unit; Cambridge, U.K:
1994. Bayesian analysis of frailty models.

16. Kalbfleisch JD. Nonparametric Bayesian analysis of survival time data. J. Roy. Statist. Soc., B.
1978; 40:214–221.

17. Chipman H. Bayesian variable selection with related predictors. The Canadian Journal of Statistics.
1996; 24:17–36.

18. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of
events per variable in logistic regression analysis. Journal of Clinical Epidemiology. 1996;
49:1373–1379. [PubMed: 8970487]

19. MacQueen, JB. Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and
Probability. Vol. vol. 1. University of California Press; Berkeley, CA: 1967. Some Methods for
classification and Analysis of Multivariate Observations; p. 281-297.

20. Lindley, DV. Making Decisions. 2 edn. Wiley; New York: 1971.

21. Gilks WR, Thomas A, Spiegelhalter DJ. A language and program for complex Bayesian
modelling. The Statistician. 1994; 43:169–178.

22. Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images. IEEE-PAMI. 1984; 6:721–741.

23. Gelfand AE, Smith AFM. Sampling based approaches to calculating marginal densities. J. Am.
Stat. Assoc. 1990; 85:398–409.

24. Harrell FE, Lee KL, Mark DB. Multivariate prognostic models: issues in developing models,
evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;
15:361–87. [PubMed: 8668867]

25. Goldberg RM, Sargent DJ, Morton RF, Fuchs CS, Ramanathan RK, Williamson SK, Findlay BP,
Pitot HC, Alberts SR. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan,
and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer.
Journal of Clinical Oncology. 2004; 22:23–30. [PubMed: 14665611]

26. Olaussen KA, Dunant A, Fouret P, Brambilla E, Andr F, Haddad V, Taranchon E, Filipits M,
Pirker R, Popper HH, et al. Dna repair by ercc1 in non-small-cell lung cancer and cisplatin-based
adjuvant chemotherapy. New England Journal of Medicine. 2006; 355(10):983–991. doi:10.1056/
NEJMoa060570. URL http://www.nejm.org/doi/full/10.1056/NEJMoa060570. [PubMed:
16957145]

27. Soria JC. ERCC1-tailored chemotherapy in lung cancer: the first prospective randomized trial. J
Clin Oncol. 2007; 25(19):2648–2649. doi:10.1200/JCO.2007.11.3167. [PubMed: 17602070]

28. Camp RL, Chung GG, Rimm DL. Automated subcellular localization and quantification of protein
expression in tissue microarrays. Nat Med. 2002; 8:1323–1328. [PubMed: 12389040]

29. Reynolds C, Obasaju C, Schell MJ, Li X, Zheng Z, Boulware D, Caton JR, Demarco LC,
O’Rourke MA, Shaw Wright G, et al. Randomized phase III trial of gemcitabine-based
chemotherapy with in situ RRM1 and ERCC1 protein levels for response prediction in Non-Small-
Cell lung cancer. J Clin Oncol. 2009; 27(34):5808–5815. [PubMed: 19884554]

Chen et al. Page 15

Stat Med. Author manuscript; available in PMC 2013 December 10.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

http://www.nejm.org/doi/full/10.1056/NEJMoa060570


Figure 1.
Four scenarios of interactions between treatment group and continuous predictor: (a) no
interaction; (b) quantitative interaction with same directions; (c) quantitative interaction with
opposite directions; (d) qualitative interaction.
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Figure 2.
KM curves by subgroups under simulated model 1. Horizontal axis is months from
randomization. Vertical axis is probability of survival. Fig(2(a)) grouped by x1 status;
Fig(2(b)) grouped by treatment arms; Fig(2(c)) grouped by x1 and treatment arms.
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Figure 3.
KM curves by subgroups under simulated model 3. Horizontal axis is months from
randomization. Vertical axis is probability of survival. Fig(3(a)) grouped by x1 status;
Fig(3(b)) grouped by treatment arms; Fig(3(c)) grouped by x1 and treatment arms; Fig(3(d))
grouped by x1 and treatment arms when x2 = 0.
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Figure 4.
Posterior distributions of coefficients (Fig 4(a)) and log HR of treatment effect in wild type
group with 272 events (dashed line) and in mutated group with 24 events (solid line) (Fig
4(b)) in the colorectal cancer study.
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Figure 5.
KM curves by subgroups based on marker status and treatment arms for colonrectal cancer
study.
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Figure 6.
Posterior distribution of intersection (solid line), median of posterior distribution of
intersection (dash dotted line), and histogram of log2 transformed observed ERCC1 protein
activity in the NSCLC study.
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Figure 7.
KM curves by subgroups based on tentative marker High and Low groups and treatment
arms for NSCLC study.
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Table 1

Prior distributions of model space with one covariate (p = 1) under different assumptions of πmain and πint

model joint prior prob of each model

main int πmain = 0.5 πmain = 0.2 πmain = 0.5

πint = 0.5 πint = 0.2 πint = 0.33

0 0 .25 .64 .33

1 0 .25 .16 .33

0 1 0 0 0

1 1 .5 .2 .33

πmain is equivalent to π1 in Equation (3), since p = 1.

πint is equivalent to π2 in Equation (3), since p = 1.
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