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The problem of hydrodynamic turbulence is reformulated as a heat
flowproblemalonga chainofmechanical systemsdescribingunitsof
fluid of smaller and smaller spatial extent. These units are macro-
scopic but have a few degrees of freedom, and they can be studied
by the methods of (microscopic) nonequilibrium statistical mechan-
ics. The fluctuations predicted by statistical mechanics correspond
to the intermittency observed in turbulent flows. Specifically, we
obtain the formula ζp=

p
3−

1
ln κ ln G(

p
3+1) for the exponents of the

structure functions (〈jΔrvjp〉∼ r ζp ). The meaning of the adjustable
parameter κ is that when an eddy of size r has decayed to eddies
of size r/κ, their energies have a thermal distribution. The above
formula, with ( ln κ)−1 = .32± .01 is in good agreement with ex-
perimental data. This lends support to our physical picture of
turbulence, a picture that can thus also be used in related problems.

Hydrodynamic turbulence is known to be a chaotic phenome-
non (1–4). This means that the time evolution ðf tÞ of a tur-

bulent fluid system belongs to a much studied class of deterministic
dynamics with sensitive dependence on initial conditions (5–8).
The statistical properties of turbulence are described by an ergodic
invariant state ρ for ðf tÞ, and because chaotic dynamical systems
have (uncountably) many ergodic states, a choice has to be made.
A physically reasonable choice is that of so-called Sinai-Ruelle-
Bowen (SRB) states (refs. 9–11 and references therein).
It is fair to say that the chaotic nature of turbulence has been

largely ignored by the turbulence community and that the choice of
an ergodic state to describe the statistical properties of turbulence
has been made by ad hoc assumptions (closure assumptions, Gaus-
sianity, multifractal structure). Indeed, the study of SRB or “physi-
cal” states forNavier–Stokes dynamics appears impossibly difficult at
first. Nevertheless, we propose here an approach of this sort: We
bypass the mathematical problems of SRB states by using our un-
derstanding of the physics of a specific dynamical system, namely,
that corresponding to heat conduction, as seen from the point of
view of nonequilibrium statisticalmechanics.Our approachwill thus
use basic physical ideas and approximations rather than ad hoc
assumptions. In this manner, we shall obtain a surprisingly coherent
view of the fluctuations in turbulence (intermittency).
We shall concern ourselves with incompressible fluids in three

dimensions, described by the Navier–Stokes equation, but without
paying too much attention to the specific form of the dissipative
term. The fluid, with velocity field v, will be enclosed in a cube C0
of side ℓ0, which, for simplicity, we may consider to have periodic
boundary conditions. We choose an integer κ>1 and divide
C0 =C01 into cubesCni of side ℓn = ℓ0κ−n, with i= 1; . . . ; κ3n, where n
is a positive integer. Let ϕni be the homothety mapping C0 to Cni.
One can choose 2ðκ3 − 1Þ real vector fieldsUα on R3 with

R
​ Uα = 0,

div Uα = 0, and such that if the velocity field v satisfies
R
​ v= 0,

div v= 0, there is a unique representation

v=
X∞
n=0

Xκ3n
i=1

X2ðκ3−1Þ
α=1

cniαUα ○ϕ−1
ni

with cniα ∈R. This means that v has a wavelet decomposition into
components (roughly) localized in the cubes Cni.
We think now of the standard physical situation in which en-

ergy is put into the fluid at a large spatial wavelength (i.e., small

n) and dissipated at a small spatial wavelength (i.e., large n).
Intermediate values of n correspond to the inertial range, where
the time evolution should, in some sense, be Hamiltonian. Spe-
cifically, Arnold (12) has shown how an inviscid flow could be
interpreted as geodesic flow on the group of volume-preserving
diffeomorphisms. The corresponding Hamiltonian is the kinetic
energy of the velocity field.
We may thus think of the time evolution for (the finitely many)

coefficients cniα as Hamiltonian, with external forces acting at low
n and high n. This is related to the physical concept of eddies as
dynamical structures localized in space. However, instead of
a cascade of eddies of smaller and smaller size, we think of a sys-
tem of coupled Hamiltonian systems, which we can label ðn; iÞ. If
we assume that the different systems ðn; iÞ are weakly coupled, we
can reinterpret the global dynamics as a heat flow from small n,
where energy is input, to large n, where it is dissipated (i.e., rapidly
carried away to structures of the molecular size of the fluid). Note
that the multifractal description of eddy cascades (13–16) ignores
interactions between ðn; iÞ and ðn; i′Þ, except when these eddies
are created from a common ðn− 1; jÞ. This corresponds to saying
that the lateral interaction between the systems ðn; iÞ and ðn; i′Þ is
weak, but this assumption does not appear to be essential in
our approach.
There is no hope for an exact study of the dynamics of the

coupled systems ðn; iÞ, but we can get a first approximation from
the Kolmogorov scaling theory of homogeneous turbulence (17).
Because this theory gives unique answers, the problem of selecting
an SRB state does not occur here. According to the Kolmogorov
theory (17), the fluid velocity corresponding to Cni is vni ∼ ðeℓnÞ1=3,
where « is the mean dissipation per unit volume, and the kinetic
energy corresponding to Cni is

∼
1
2
ℓ3nðeℓnÞ2=3 =

e2=3

2
ℓ11=3n

(we have put the fluid density equal to 1); the corresponding
temperature is

Tn =
1
k
e2=3ℓ11=3n

2ðκ3 − 1Þ =
1
k
e2=3ℓ11=30 κ−11n=3

2ðκ3 − 1Þ ; [1]

where k is Boltzmann’s constant. In view of the value of k, we see
that Tn is huge for small n, such that the flow of heat from high
temperature to low temperature agrees with the energy cascade
from small ℓ to large ℓ in the fluid. Notice that the heat resistance
ðTn −Tn+1Þ=e is very large, which agrees with a weak coupling
between the systems ðn; iÞ for different values of n.
We see the situation as follows: A heat flow interpretation

of the energy cascade in homogeneous turbulence is possible,
using scaling laws, but ignores fluctuations (intermittency). To
understand fluctuations, we have to study the fluctuations of the
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energy flow in the Hamiltonian system of the coupled ðn; iÞ. This
is a problem of nonequilibrium statistical mechanics, which is
a problem that is known to be difficult (18–20). In general, one
would need the systems ðn; iÞ to be chaotic in some sense (this is
physically reasonable for 3D hydrodynamics), but the Anosov
assumptions of Dolgopyat and Liverani (19) and Ruelle (20) are
unreasonably strong. In the present situation, a rigorous analysis
appears quite out of reach at this time. An approximate study is
possible, however, and will give more specific results than earlier
multifractal approaches (13–16), and there will be a physical
justification rather than ad hoc assumptions.
Although we have no detailed understanding of heat flow from

the point of view of rigorous statistical mechanics at this time, we
expect that Fourier’s law should hold under normal conditions.
This is no great help, however, because Kolmogorov’s theory
yields the precise temperature distribution (Eq. 1). With regard
to the “microscopic” fluctuations, they are a difficult problem
in nonequilibrium (21, 22), being different in nature from the
well-understood equilibrium fluctuations. Here, we shall use the
assumption that the systems ðn; iÞ have weak mutual coupling to
justify a Boltzmannian energy distribution for each Hamiltonian
system ðn; iÞ.
Because of the large temperature gradient, the flow of energy

is overwhelmingly from the system ðn; iÞ to the systems ðn+ 1; jÞ.
To study this energy flow, we use the conservation of energy and
scaling as in the multifractal approaches (14) to write

jvnij3=ℓn =
��vðn+ 1Þj

��3=ℓn+1     or    ��vðn+ 1Þj
��3 = jvnij3κ−1 [2]

Note that jvj3 is proportional to the kinetic energy 1
2jvj2 with

a weight 1/time spent in a certain spatial frequency range. We
then interpret Eq. 2 to mean that, given the energy Vni = jvnij3 in
ðn; iÞ, the velocity v= vðn+1Þj is fluctuating with a Boltzmannian
distribution

∼ exp

 
−

jvj3
Vniκ−1

!
d3v

Therefore, the energy V =Vðn+1Þj has the normalized distribution

1
Vnκ−1

exp
�
−

V
Vnκ−1

�
dV ; [3]

where we write Vn from now on instead of Vni, for example. We
view Eq. 3 as an approximate but physically motivated relation,
the validity of which will be discussed below. Note that if we
replace Vn by V

~
n= κnVn, we have that V

~
=V

~
n+1 is distributed

according to

1

V
~

n

exp

 
−
V
~

V
~

n

!
dV

~

We now discuss the structure functions, that is, the moments

hjvnjpi=
D
Vp=3
n

E

for positive integer p and the exponents ζp such that

hjvnjpi∼ ℓ
ζp
n  or ζpln ℓn ∼ ln

D
Vp=3
n

E
= − n ·

p
3
ln κ+ ln

D
V
~ p=3
n

E

We have here

D
V
~ p=3
n

E
=

Z
dV

~

1
e−V

~

1
=V
~

0

V
~

0

Z ​

⋯

Z
dV

~

n−1
e−V

~

n− 1
=V
~

n− 2

V
~

n−2

×

Z
dV

~

n
e−V

~

n
=V
~

n− 1

V
~

n−1

·V
~ p=3
n

Z∞

0

dV
~

n
e−V

~

n
=V
~

n− 1

V
~

n−1

·V
~ p=3
n = V

~ p=3
n−1

Z∞

0

dξe−ξξ p=3 =V
~ p=3
n−1Γ

�p
3
+ 1
�
;

such that, by induction, we find

D
V
~ p=3
n

E
=
h
Γ
�p
3
+ 1
�in

V
~ p=3
0

ζp ≈
−n

p
3
ln κ+ ln

D
V
~ p=3
n

E
−n ln κ

≈
p
3
−

1
ln κ

ln Γ
�p
3
+ 1
�

In conclusion, we have the (approximate) prediction

ζp =
p
3
−

1
ln κ

ln Γ
�p
3
+ 1
�

[4]

Note that Eq. 4 gives ζ3 = 1.
Using either the heat propagation or the eddy cascade picture,

we see that κ should be chosen such that the initial V
~
n distri-

bution concentrated on one value for ðn; iÞ thermalizes to values
of V

~
n+1 for the systems ðn+ 1; jÞ distributed according to

1

V
~

n

e−V
~

n+ 1
=V
~

ndV
~

n+1

This requires that κ be sufficiently large. However, if the value of κ
is too large, several different temperatures will be present among the
systems ðn+ 1; jÞ connected with ðn; jÞ and the V

~
n+1 distribution will

not beBoltzmannian. Thepicturewehave inmind is a situation inCni
that depends on the spatial wavelength.At a wavelength on the order
of the size of support ðUα ∘ϕ−1

ni Þ, a single value of the kinetic energy is
present. The distribution broadens as the wavelength diminishes and
becomes a thermal distribution when it is divided by κ; at smaller
wavelengths, there are several patches with different temperatures.
Of course, a rigorous justification of this picture is well beyond the
power of current mathematical methods. We can only claim this: κ
should be such that when an eddy of size r has decayed to eddies of
size r=κ, their energies have a thermal distribution, after which the
process can start again. In the dissipative range, the distribution ofVn
should be cut off at large Vn. Numerically, one finds that in the ex-
perimental range p≤ 18, Eq. 4 fits the small set of experimental data
(23) well with 1=log κ= :32± :01 (i.e., κ between 20 and 25). [The fit
of the data in the study by Vincent and Meneguzzi (24) obtained by
numerical simulation is less good.] Note that the Boltzmannian dis-
tribution we used can only be approximate in view of the way it has
been obtained. In fact, Eq. 4 must break down after about p= 50
because it gives decreasing ζp in contradiction to a Hölder inequality
prediction. Also, Eq. 2may be valid as an average and acceptable in
a mean field sense (25) but would not hold for the very large velocity
increments described by the moments ζp for large p.
From a physical point of view, one can try the following in-

terpretation: The change of behavior as one passes from a large
wavelength to a small wavelength corresponds to what is observed
at the onset of turbulence. We use here the physical fact that
transport is much faster in the turbulent regime than in the laminar
regime. Therefore, when sufficiently small scales are reached and we
are in the turbulent regime, thermalization takes place. We may
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compute the length ratio κ= ℓn=ℓn+1 in terms of the Reynolds num-
ber Rc for the onset of turbulence. If « is the energy dissipation per
unit volume and ν is the kinematic viscosity, the Kolmogorov length
is η= ðν3=eÞ1=4, such that ν= ðeη4Þ1=3. The velocity corresponding to
the length λ is given in the turbulent regimeby vλ = ðeλÞ1=3.Therefore,
if the onset of turbulence corresponds to λ, we have

κ=
λ

η
=
�
λ4e

ν3

�1=4
=
�
λvλ
ν

�3=4
=R3=4

c :

The critical Reynolds number Rc is not defined with precision,
but the value Rc = κ4=3 ≈ 60 is not unreasonable. Clearly, the

calculation we have made is quite rough, but the exponent ζp
should not be very sensitive to details, particularly because κ
occurs only as its logarithm in Eq. 4. Notice also that the es-
timate κ=R3=4

c is proposed instead of a fundamental calculation,
which is beyond current possibilities. Altogether, the agreement of
Eq. 4 with the experiment, with a plausible value of κ, supports
the physical picture of turbulence that we have presented. This
picture can thus also be used in related problems.
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