Skip to main content
. 2012 Oct 13;11:45. doi: 10.1186/1476-072X-11-45

Table 5.

Comparison of negative binomial, spatial lag, global and local geographically weighted Poisson models

 
Model type with Coefficient estimates (p-values)
  Negative Binomial Model Spatial Lag Model Global Poisson GWR1Model Local Poisson GWR1Model
Model 1:
 
 
 
Min
Max
Intercept
−7.164 (0.0001)
1.716 (0.000)
- 7.155 (0.000)
−8.187
-6.247
Black Race
−0.015 (0.0001)
−0.169 (0.001)
−0.014 (0.001)
−0.0487
0.0218
No diploma
0.021 (0.0004)
−0.012 (0.112)
0.003 (0.003)
−0.0553
0.0533
Unemployed
−0.041 (0.0141)
−0.030 (0.112)
−0.014 (0.009)
−0.1866
0.0851
Urban
0.235 (0.0154)
0.357 (0.014)
0.186 (0.055)
−0.4526
0.9321
Model 2:
 
 
 
 
 
Intercept
- 6.73 (0.0001)
1.80 (0.000)
- 6.85 (0.000)
−7.71
-4.905
Black Race
−0.0129 (0.0001)
−0.093 (0.000)
−0.012 (0.001)
−0.0161
0.0311
No diploma
0.0175 (0.0009)
−0.018 (0.011)
0.000 (0.003)
−0.0650
0.0882
Unemployed
−0.0330 (0.0433)
−0.026 (0.179)
−0.010 (0.008)
−0.1847
0.0752
Divorced −0.0260 (0.006) −0.004 (0.733) −0.016 (0.005) −0.2485 0.0382

1 Geographically Weighted Regression.