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Introduction

Epigenetic mechanisms control the organization of chromatin 
and the expression potential of the genetic code. There are three 
major molecular players carrying epigenetic information: DNA 
methylation, histone posttranslational modifications and RNA 
interference.1-3 DNA methylation is a post-synthetic biochemi-
cal modification. In mammalian genomes, methylation specifi-
cally targets cytosine, mostly when followed by guanosine (CpG 
sites). This CpG methylation presents a memory mark for gene 
silencing.4 There are approximately 30 million CpG sites in 
the human genome, and the majority of them are methylated. 
About 0.7% of DNA contains dense clusters of CpG dinucleo-
tides called CpG islands. These are frequently associated with 
starting sites of gene transcription (TSS) and they are mostly 
unmethylated.5 Cancer is associated with complex changes in 

Genome wide analysis of DNA methylation provides important information in a variety of diseases, including cancer. Here, 
we describe a simple method, Digital Restriction Enzyme Analysis of Methylation (DREAM), based on next generation 
sequencing analysis of methylation-specific signatures created by sequential digestion of genomic DNA with SmaI and 
XmaI enzymes. DREAM provides information on 150,000 unique CpG sites, of which 39,000 are in CpG islands and 30,000 
are at transcription start sites of 13,000 RefSeq genes. We analyzed DNA methylation in healthy white blood cells and 
found methylation patterns to be remarkably uniform. Inter individual differences > 30% were observed only at 227 of 
28,331 (0.8%) of autosomal CpG sites. Similarly, > 30% differences were observed at only 59 sites when we comparing the 
cord and adult blood. These conserved methylation patterns contrasted with extensive changes affecting 18–40% of CpG 
sites in a patient with acute myeloid leukemia and in two leukemia cell lines. The method is cost effective, quantitative 
(r2 = 0.93 when compared with bisulfite pyrosequencing) and reproducible (r2 = 0.997). Using 100-fold coverage, DREAM 
can detect differences in methylation greater than 10% or 30% with a false positive rate below 0.05 or 0.001, respectively. 
DREAM can be useful in quantifying epigenetic effects of environment and nutrition, correlating developmental 
epigenetic variation with phenotypes, understanding epigenetics of cancer and chronic diseases, measuring the effects 
of drugs on DNA methylation or deriving new biological insights into mammalian genomes.

Conserved DNA methylation patterns in healthy 
blood cells and extensive changes in leukemia 

measured by a new quantitative technique
Jaroslav Jelinek,1,2,†,* Shoudan Liang,3,† Yue Lu,2,4 Rong He,2,5 Louis S. Ramagli,6,7 Elizabeth J. Shpall,8 Marcos R.H. Estecio2,5  

and Jean-Pierre J. Issa1,2

1Fels Institute for Cancer Research and Molecular Biology; Temple University School of Medicine; Philadelphia, PA USA; 2Department of Leukemia; The University of Texas MD 
Anderson Cancer Center; Houston, TX USA; 3Department of Bioinformatics and Computational Biology; The University of Texas MD Anderson Cancer Center; Houston, TX USA; 

4Department of Molecular Carcinogenesis; The University of Texas MD Anderson Cancer Center; Houston, TX USA; 5Department of Biochemistry and Molecular Biology;  
The University of Texas MD Anderson Cancer Center; Houston, TX USA; 6Department of Genetics; The University of Texas MD Anderson Cancer Center; Houston, TX USA;  

7DNA Analysis Facility; The University of Texas MD Anderson Cancer Center; Houston, TX USA; 8Department of Stem Cell Transplantation and Cellular Therapy;  
The University of Texas MD Anderson Cancer Center; Houston, TX USA

†These authors contributed equally to this work.

Keywords: DNA methylation, white blood cell, cord blood, leukemia, restriction enzymes, next generation sequencing 

DNA methylation. For the most part, these changes involve 
simultaneous global demethylation and de novo methylation at 
previously unmethylated CpG islands. Aberrant methylation is 
strongly correlated with gene silencing in neoplasia and has been 
proposed to serve as an alternate mechanism for inactivating 
tumor suppressor genes.6

Genome-wide analysis is proving important to reveal the 
multiple biological functions of DNA methylation. It is becom-
ing also clinically useful for exploration of epigenetic changes 
in a variety of diseases, including cancer. Current methods 
for this analysis rely on methylation differentiation via bisul-
fite treatment, affinity-based enrichment or restriction enzyme 
digestion coupled with ultra-deep sequencing.7 The latter two 
methods employ separate enrichment and detection of meth-
ylated and unmethylated DNA, which limits the quantita-
tive precision of the analysis. Bisulfite based methods analyze 
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Results

Digital restriction enzyme analysis of meth-
ylation (DREAM) method. The presented 
method (Fig. 1A) relies on sequential diges-
tion of genomic DNA with a pair of neos-
chizomeric restriction enzymes that recognize 
the same sequence, CCC GGG. The first 
enzyme, SmaI, is completely blocked by CG 
methylation. It cuts only unmethylated sites 
and leaves blunt ends starting with 5'-GGG. 
The second enzyme, XmaI, can cleave sites 
with methylated CGs. It leaves 5'-CCGG 
overhangs. We create methylation-dependent 
signatures by sequential digests. First, the 
SmaI endonuclease cuts all unmethylated 
sites at CCC/GGG, leaving blunt ended 
fragments starting at 5' ends with a GGG 
trinucleotide. Methylated sites CCmeCGGG 
are not digested. Subsequently, the methyl-
ation-tolerant XmaI endonuclease cuts the 
remaining sites at C/CmeCGGG, leaving 
5'-CmeCGG overhangs. Sequential restric-
tion digests thus create distinct signatures for 
unmethylated sites (GGG) and methylated 
sites (CmeCGGG) at 5' ends of restriction 
fragments. DNA polymerase fills in the 3' 
recesses and adds 3'-A overhangs in the next 
step. Sequencing adapters are then ligated to 
the ends of restriction fragments and libraries 
for deep sequencing are made following stan-
dard procedures. Deep sequencing (e.g., on 
the Illumina Genome Analyzer II or HiSeq 
2000) follows. The sequences are mapped to 
SmaI/XmaI sites in the genome and meth-
ylation status for each individual CCC GGG 
site is calculated as a proportion of methyl-
ated signatures to the sum of unmethylated 
and methylated signatures.

Accurate detection of unmethylated and methylated signa-
tures depends on the efficiency of the SmaI and XmaI restriction 
enzymes to cut DNA. We created a set of artificial standards with 
defined levels of CG methylation to be used as calibrators spiked 
in the genomic DNA before the restriction digests. To make the 
standards, we made five different PCR amplicons based on non-
mammalian DNA, each containing 2 CCC GGG sites 168–255 
bases apart. We methylated CG sites in a portion of PCR ampli-
cons using the M.SssI methylase. We mixed unmethylated and 
methylated amplicons in appropriate proportions to achieve 
defined methylation levels of 0, 25, 50, 75 and 100%. We spiked 
these standards in the samples of genomic DNA before processing 
for the DREAM analysis. We compared methylation levels mea-
sured in the standards by the DREAM method with the expected 
values. By spiking in 10 pg of each standard into 5 μg of gDNA, 
we obtained 3,187–452,665 (median 107,349) sequencing reads 
for each standard. We observed a good correlation between the 

methylated and unmethylated DNA simultaneously. However, 
bisulfite treatment converts all unmethylated cytosines to ura-
cils and can result in significant sequence differences between 
methylated and unmethylated alleles, particularly in CpG-rich 
areas of the genome. This has been shown to cause substan-
tial PCR amplification bias,8,9 often limiting the accuracy of 
quantitation.

By necessity, much of the known biology of DNA methylation 
so far has relied on comparing samples with large differences. 
However, detecting relatively small differences could be impor-
tant when studying subtle changes. These may include quan-
tifying environmental or dietary effects on DNA methylation, 
correlating developmental epigenetic variation with phenotypes, 
measuring the effects of DNA methylation modifying drugs or 
deriving new biological insights into mammalian genomes. Here, 
we describe a simple and cost-effective genome-wide method for 
highly quantitative methylation measurement.

Figure 1. Digital Restriction Enzyme Analysis of Methylation (DREAM). (A) Schematic outline of 
the principle. SmaI restriction endonuclease can cut only unmethylated CCC GGG sites creating 
5'-GGG signatures (u). Remaining methylated CCmeCGGG sites are then cut by XmaI restriction 
endonuclease creating 5'-CCG GG signatures (m). Sequencing adapters are ligated to SmaI/
XmaI fragments and the libraries are subjected to next generation sequencing. Methyla-
tion levels at unique SmaI/XmaI sites are calculated based on the numbers of methylated 
and total signatures. (B) Numbers of unique CpG sites captured by DREAM in healthy human 
white blood cells based on the minimum sequencing depth. Black, 4 HiSeq lanes; red, single 
HiSeq lane, 4 samples; blue, ¼ of HiSeq lane, 4 samples. Solid lines show means; colored areas 
between broken lines show mean ± SEM (C) Good correlation between methylation levels at 
unique CpG sites (n = 29,574) covered by 100+ reads in DREAM libraries generated from 5 μg 
or 500 ng of gDNA from the same sample of healthy leukocytes. Pearson r2 = 0.9971. (D) False 
positive rate (FPR) calculation based on methylation differences between 93,420 replicate 
measurements of methylation at CCC GGG sites covered by 100+ reads. Horizontal broken lines 
show FPR of 1% and 5%. Sites with low methylation (0–20%) or high methylation (80–100%) 
showed the lowest FPR.
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SmaI/XmaI sites with a neighboring site up to 400 bp apart. 
These 60,795 sites were covered on average by 745 reads. 
Remaining 107,645 uniquely mapped SmaI/XmaI sites with the 
nearest neighbor > 400 bp apart entered the sequencing libraries 
due to random DNA breakage near a SmaI/XmaI site and were 
covered on average by 18 reads (Fig. S4).

We analyzed the quality of libraries by cloning in the sequenc-
ing vector and Sanger sequencing of the inserts. SmaI/XmaI sites 
at both ends of DNA inserts were observed in 42–85%. SmaI/
XmaI sites at a single end were seen in 11–46% fragments. Non-
informative fragments lacking SmaI/XmaI sites at both ends 
were found in 4–38% sequenced clones. Informative ends were 
thus present in 56–91% sequencing reads (Table S2). Usage of 
high quality unbroken genomic DNA is important to minimize 
the amount of non-informative fragments lacking SmaI/XmaI 
site at their ends.

To reduce sequencing costs, we explored the strategy of bar 
coding and running multiple samples in one sequencing lane. 
We made four libraries with different bar coded adapters and ran 
them in a single sequencing lane. We obtained 12.6–20.5 million 
reads mapped to unique CpG sites for each library. Average num-
bers of reads per site were 80–175. Approximately 30,000 sites 
were covered by 100+ reads in individual libraries run in the ¼ of 
the sequencing lane (17,000 CGI and 13,000 NCGI sites). These 
numbers were close to those obtained from the full lane (Fig. 1B; 
Fig. S5A), suggesting that sequencing costs could be reduced by 
bar coding at least 4-fold.

The amount of genomic DNA available for analysis is fre-
quently a limiting factor in clinical samples. We compared 
sequencing libraries prepared from the same normal blood DNA 
sample using 5 μg and 500 ng of gDNA as the starting amount. 
The coverage of CCC GGG sites was comparable with an 80% 
overlap of sites covered by 100+ reads in both libraries (Fig. S5B). 
Median difference between methylation levels at individual sites 
in these libraries was 0.64%, correlation between the results was 
excellent (Pearson r2 = 0.997) (Fig. 1C). We thus show that reli-
able methylation data can be obtained from 500 ng of gDNA.

To assess reproducibility of the method, we performed rep-
licate analyses of three different DNA samples from normal 
WBCs. Library preparation and sequencing were performed 
on separate occasions for each replicate. There was a high con-
cordance between replicates (Pearson correlation r2 = 0.997,  
Fig. S6). We observed smaller variability of replicates at low 
and high methylation values and larger variability at intermedi-
ate methylation levels. When we analyzed CpG sites covered by 
100+ reads, methylation differences > 10%, > 15% and > 30% 

observed and expected methylation levels of spiked in standards 
(Pearson r2 = 0.911). The unmethylated standard showed meth-
ylation values 0.6–0.9%, implying that the method can reliably 
detect methylation levels as low as 1%. The fully methylated stan-
dard showed 99.0–99.5% methylation by DREAM, confirming 
correct detection of fully methylated CpG sites. We observed that 
methylation values detected in partially methylated standards 
were lower than expected by approximately 30–50%, suggesting 
that methylated CCmeCGGG sites were captured with a lower 
efficiency than unmethylated CCCGGG sites. In order to com-
pensate for the partial inhibition of XmaI by CG methylation, we 
corrected methylation levels measured by DREAM based on the 
values obtained from the spiked in standards (Fig. S1).

To investigate the possibility that the efficiency of restriction 
digests is different for genomic DNA and spiked in methylated 
standards, we compared uncorrected and spike-corrected meth-
ylation levels at 159 CpG sites in CpG islands on the X chromo-
some that showed differential methylation in females compared 
with males. Expected methylation level at these sites is 0% in 
males and 50% in females. Average methylation in female DNA 
was 27–30% before correction and 42–43% after correction. 
Methylation in male DNA was ≤ 1% in all instances (Fig. S2).

NCBI36/hg18 annotation of the human genome provides 
coordinates for 374,165 CCC GGG sites. Of these, 39,084 sites 
are in CpG islands (CGI) and 103,450 sites are outside CpG 
islands (NCGI). We used the UCSC definition of CpG islands: 
GC content of 50% or greater, length > 200 bp, ratio greater 
than 0.6 of observed number of CG dinucleotides to the expected 
number on the basis of the number of Gs and Cs in the segment.10 
Repetitive elements contain 231,631 sites, while 142,534 sites are 
in non-repetitive regions, with 29,725 sites (21%) located within 
-1 kb to +1 kb from transcription start sites (TSS) of 13,256 
RefSeq genes (Table 1).

We analyzed four samples of normal white blood cells (WBC), 
two cord blood samples, one sample from a patient with acute 
myeloid leukemia and two myeloid leukemia cell lines, HEL 
and K562. From millions of 36 nucleotide-long reads obtained 
through next generation sequencing, we could uniquely map 
40,000–146,000 CCC GGG sites with the minimum 20-fold 
coverage (Table S1). As the sequencing technique evolved, the 
yield from a single sequencing lane has increased dramatically 
from 3.5 million to 62 million reads mapped to unique CCC 
GGG sites. One sequencing lane in the Illumina HiSeq 2000 
instrument routinely provides over 60 million reads mapped to 
unique SmaI sites in the human genome, giving the average cov-
erage of over 300 reads per site. In experiments analyzing nor-
mal WBCs, approximately 155,000 unique SmaI sites (37,000 
CGI and 118,000 NCGI sites) were covered by 5+ reads. About 
90,000 sites (30,000 CGI and 60,000 NCGI) were covered by 
20+ reads and 35,000 sites (19,000 CGI and 16,000 NCGI) were 
detected by 100+ reads (Fig. 1B; Fig. S3).

Our method selects preferentially for fragments that have 
SmaI/XmaI sites at both ends. Due to technical requirements 
for Illumina sequencing, we created libraries from DNA frag-
ments with ligated sequencing adapters of apparent sizes 250–
500 bp. This resulted in approximately 40-fold enrichment for 

Table 1. Target sites in the human genome

Total CCC GGG sites 374,165

Sites in repetitive elements 231,631

Sites not in repeats 142,534

Sites in CpG islands (CGI) 39,084

Sites not in CpG islands (NCGI) 103,450

Sites within 1 kb from gene transcription start 29,725

RefSeq genes with sites within 1 kb from TSS 13,256
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quantitation than sequencing of cloned PCR 
products. We used bisulfite pyrosequencing 
assays targeting TSSs of 79 genes to vali-
date results obtained by DREAM analysis. 
Pyrosequencing assays measured methyla-
tion at 2–8 CpG sites within 500 bases from 
CCC GGG sites analyzed by DREAM. We 
observed an excellent correlation between 
DREAM and bisulfite PSQ results (r2 = 
0.930, p < 0.0001, Fig. 2B).

Finally, we compared methylation data 
obtained by DREAM with publicly avail-
able ENCODE project11 data generated in 
R.M. Myers Lab (HudsonAlpha Institute 
for Biotechnology) by two bisulfite-based 
methods: reduced representation bisulfite 
sequencing (RRBS)12 and Illumina 450K 
DNA methylation array.13 We used RRBS 
methylation data for normal blood leuko-
cytes (GSM683876 and GSM683759) and 
for the leukemia cell line K562 (GSM683856 
and GSM683780). We analyzed RRBS val-
ues at CpG sites located within 36 bases from 
CCC GGG sites (DREAM targets). We 
found an excellent correlation of DREAM 
and RRBS data for both normal WBCs 
and K562, with Pearson r2 0.959 and 0.953, 
respectively. Similarly to bisulfite sequencing 
and pyrosequencing, RRBS yielded slightly 
elevated methylation levels (2.9% for WBC 
and 4.0% for K562) at the sites showing zero 
methylation by DREAM (Fig. 2C; Fig. S8). 

An overlap between the sites covered by RRBS and DREAM was 
relatively small, 16% for normal WBCs and 14% for K562 cells 
(Fig. S9). We detected by DREAM 12,055 and 17,370 sites in 
normal WBCs and K562 cells, respectively, that had zero cover-
age by RRBS. Approximately two thirds of these sites were not 
in CpG islands. DREAM can thus provide information on DNA 
methylation of CpG sites not captured by RRBS.

We next compared DREAM data on the leukemia cell line 
K562 to the data from the Methyl 450K Bead Arrays from 
ENCODE/HAIB (GSM999341). We found 6,103 SmaI/XmaI 
sites that were covered by 50+ reads by DREAM and were also 
inside the probes included in the 450K array. The correlation 
between the two assays was excellent with the linear regression  
r2 = 0.854. Interestingly, the Y intercept β1000 value of the 450K 
array for zero methylation by DREAM was 86.4, suggesting the 
450K array has a background close to 10% methylation (Fig. 2D). 
Similarly to DREAM vs. RRBS comparison, the data obtained 
by DREAM and the 450K array overlapped only partially. Beside 
6,103 sites within the probes of the 450K array, additional 34,497 
CpG sites were detected by DREAM by 50+ reads in K562.

DNA methylation patterns in healthy white blood cells. 
DREAM data showed that DNA methylation in normal WBCs 
was bimodally distributed; the main determinants were the loca-
tion inside or outside CpG islands (CGI or NCGI sites) and 

could be distinguished with false positive rate of 2.4%, 0.73% 
and 0.02%, respectively (Fig. 1D).

We validated DREAM results by two independent methods: 
bisulfite sequencing and bisulfite pyrosequencing. We selected 
CpG islands near TSSs of 11 genes showing variable levels of 
methylation by DREAM for validation by bisulfite cloning/
sequencing. We performed bisulfite PCR using 7 different DNA 
samples (4 normal WBCs, 1 AML, HEL and K562 leukemia 
cell lines). Primers for bisulfite PCR are shown in Table S3. 
Altogether, we analyzed 1,080 cloned PCR products (median 
14 clones per sample) by Sanger sequencing (Beckman Coulter 
Genomics). Bisulfite PCR amplification products contained 
8–49 CpG sites including 1–3 CCC GGG sites detected by 
DREAM. Linear regression analysis showed an excellent cor-
relation between DREAM and bisulfite sequencing results both 
for CCC GGG sites (r2 = 0.847, p < 0.0001) (Fig. 2A) and also 
for neighboring CpG sites analyzed in bisulfite PCR products 
200–500 bp long (r2 = 0.857, p < 0.0001) (Fig. S7).

The quantitative nature of bisulfite sequencing is limited by 
the number of clones that are sequenced from each PCR product. 
In contrast, bisulfite pyrosequencing measures average methyla-
tion levels at individual CpG sites by simultaneous analysis of 
multiple DNA copies in the sequenced PCR product. Its accu-
racy is around 1%. Pyrosequencing thus provides more accurate 

Figure 2. Validation of DREAM results. (A) Bisulfite sequencing vs. DREAM. Methylation at CCC 
GGG sites. Linear regression r2 = 0.847, p < 0.0001. (B) Bisulfite pyrosequencing vs. DREAM. Lin-
ear regression r2 = 0.930, p < 0.0001. (C) Reduced representation bisulfite sequencing, K562 cell 
line vs. DREAM. Minimum coverage 50+ reads. Linear regression r2 = 0.953, p < 0.0001. Broken 
lines show linear regression. (D) Methyl 450K Bead Array, K562 cell line vs. DREAM. Minimum 
coverage 50+ reads. Linear regression r2 = 0.854, p < 0.0001.
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Based on the fact that intermediate methylation in CpG islands 
is an exceptional phenomenon, our method can uncover genes 
with potential imprinting or monoallelic methylation. We have 
identified 376 CGI sites methylated at 20–80% in all 4 WBC 
samples (Table S5). Twenty-four of these sites were associated 
with 6 imprinted genes (GRB10, GNAS, KCNQ1OT1, KLF14, 
MESTIT1 and TP73) and 11 sites with 7 genes predicted to be 
imprinted in human DNA (FASTK, FBRSL1, IFITM1, PPAP2C, 
SOX8, TMEM52 and ZFP36L2).15 Additionally, FANK1 gene 
(52% methylation) resides in a haploid differentially methylated 
region.16,17

One of the advantages of DREAM is quantitation, which 
allows accurate comparison of samples. We started by examin-
ing absolute inter individual differences. DNA methylation val-
ues were remarkably uniform when we compared white blood 
cells from 4 healthy individuals (Fig. S11). Analysis of 6 pairs 
of samples showed that methylation differences greater than 
30% were observed only at 227 of 28,331 (0.8%) of autosomal 
CCC GGG sites covered by 100+ reads (Fig. 3C). This sug-
gests that 99% of CpG sites show nearly identical methylation 
patterns between healthy individuals. Of the 227 unique CCC 
GGG sites showing differences in methylation > 30% between 
pairs of samples; half of the sites displayed these differences 
in multiple pairs. The majority of sites with inter individual 
differences > 30% were partially methylated (average meth-
ylation 53%), were outside CpG islands (146 NCGI sites vs. 
81 CGI sites) and were distant from TSS (median distance 
17 kb). Inter individual variability was even smaller at promoter 
CpG sites. Of 13,386 CpG analyzed sites located within 1 kb 

the distance from gene transcription start sites (TSS). CGI sites 
were predominantly unmethylated. Methylation below 5% was 
observed in 86% of sites, methylation 5–20% in 4% of sites, 
methylation 20–80% in 3% of CGI sites, and methylation  
≥ 80% in 7% of sites. NCGI methylation was also bimodal, but 
spread more broadly. Methylation below 5% was found in 16% 
of sites, methylation 5–20% in 4% of sites, methylation 20–80% 
in 14% of sites and methylation ≥ 80% in 66% of sites (Fig. 3A).

NCGI sites were thus predominantly methylated with aver-
age methylation over 70%. However, methylation levels dropped 
sharply in the close vicinity of transcription start sites (TSS). 
CGI sites showed much lower methylation with an average of 
20% up to 10 kb upstream from TSS, then a gradual decrease to 
2% at TSS and a steeper increase reaching 30% at 6 kb down-
stream from TSS (Fig. 3B).

The X chromosome in males is active while one X chromo-
some in females is epigenetically inactivated. We covered 614 
CCC GGG sites on the X chromosome with 100+ reads in nor-
mal WBC samples from 2 males and 2 females. We observed 
clear differences in methylation: female DNA samples showed 
intermediate methylation at CpG sites that were free from meth-
ylation in male DNA (Fig. S10A). We next analyzed methyla-
tion status of CGI sites within 1 kb from TSS of genes reported 
as (1) expressed or (2) silenced on inactive X chromosome.14 
CpG sites in genes escaping X inactivation were not methylated 
in either male or female DNA (Fig. S10B). In contrast, CpG 
sites at TSSs of X-inactivated genes were not methylated in male 
DNA, while showing intermediate methylation levels in female 
DNA (Fig. S10C).

Figure 3. DNA methylation in normal leukocytes. (A) CpG islands (CGI, green) are largely unmethylated. The majority of CpG sites outside of CpG is-
lands (NCGI, orange) is methylated. (B) Methylation of CGI and NCGI sites drops at the vicinity of transcription start sites (TSS). (C) Small inter individual 
differences in DNA methylation in healthy leukocytes. (D) Small methylation differences between cord blood and adult blood. Grey, differences < 30%; 
green, CGI sites; orange NCGI sites.
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Bone marrow DNA from the 
AML patient showed methylation 
differences greater than 30% at 3,686 
(14%) of 25,943 CpG sites covered 
by 100+ reads. Hypermethylation 
affected 2,898 sites (2,374 CGI, 
524 NCGI). Hypomethylation was 
observed at 788 sites (73 CGI and 715 
NCGI) (Fig. 4A). Hypermethylated 
sites were frequently close to tran-
scription start sites: median distance 
to TSS was 1 kb. Hypomethylation 
affected more distant CpG sites; 
median distance from TSSs was  
21 kb. We tried to estimate the 
amount of methylation changes that 
may act as potential drivers of the 
leukemic process using the Cancer 
Gene Census list containing 487 
genes with proven function in can-
cer.18 When we compared the list of 
1,810 genes associated with CpG sites 
differentially methylated in the AML 
patient, 54 genes were listed in the 
Cancer Gene Census (i.e., 3% of the 
differentially methylated genes and 
11% of the Cancer Gene Census). 
We next searched for functional 
groups of genes affected by meth-
ylation changes using a functional 

annotation tool DAVID.19,20 Functional annotation revealed the 
following top categories: transcription factor activity (237 genes, 
2.6-fold enrichment, FDR 7.7 × 10-45), sequence-specific DNA 
binding (176 genes, enrichment 3.1, FDR 5.5 × 10-43), develop-
mental protein (193 genes, enrichment 2.9, FDR 5.9 × 10-40) and 
homeobox (100 genes, 4.8-fold enrichment, FDR 1.1 × 10-39).

Changes in DNA methylation were further accentuated in leu-
kemia cell lines. HEL human erythroleukemia cell line showed 
methylation differences greater than 30% compared with nor-
mal WBCs at 4,892 sites (28%) of 17,558 CpG sites covered by 
100+ reads. Hypermethylation was observed at 1,698 CGI and 
567 NCGI sites. Hypomethylation affected 207 CGI and 2,420 
NCGI sites (Fig. 4B). Methylation changes in the HEL leukemia 
cell line were associated with 2,131 genes. Top functional terms 
were neuron differentiation (128 genes, enrichment 2.8, FDR  
8.0 × 10-25), sequence-specific DNA binding (157 genes, enrich-
ment 2.4, FDR 5.2 × 10-24), developmental protein (177 genes, 
enrichment 2.2, FDR 2.8 × 10-22) and homeobox (84 genes, 
enrichment 3.4, FDR 1.8 × 10-21).

K562 myeloid leukemia cell line revealed methylation dif-
ferences greater than 30% compared with normal WBCs at 
5,964 sites (36%) of 16,694 CpG sites covered by 100+ reads. 
Hypermethylation was observed at 1,344 CGI and 295 NCGI 
sites. Large-scale hypomethylation was a dominant feature 
in K562, affecting 382 CGI and 3,943 NCGI sites (Fig. 4C). 

from TSSs, only 21 CpG sites (0.16%) showed differences in  
methylation > 30%.

We next analyzed 2 samples of cord blood mononuclear cells 
and compared the results with adult blood samples. Methylation 
patterns of the cord blood and adult blood cells were almost iden-
tical. Only 59 (0.2%) of 28,331 autosomal CCC GGG sites cov-
ered by 100+ reads (7 sites in CGIs and 52 NCGI sites) showed 
differences between the cord blood and adult blood greater than 
30% (Fig. 3D). When we analyzed the sites with differences 
in methylation, adult blood showed more frequent hypometh-
ylation in NCGI sites (43 sites had decreased methylation vs. 
9 sites with increased methylation) and hypermethylation in 
CGI sites (5 sites increased vs. 2 sites decreased methylation) 
(p = 0.006, Fisher’s exact test). The sites affected by hyper or 
hypomethylation were mostly in regions distant from a TSS. 
Nine CpG sites were within 1 kb from a TSS. Interestingly, 4 
of these differentially methylated sites mapped to non-coding 
RNA (MIR219-2, LOC150381, HAR1A). These small changes 
between the cord blood and adult blood cells may reflect early 
age-related epigenetic events.

Neoplastic cells. To characterize changes in neoplastic cells, 
we analyzed bone marrow cells from a patient with acute myeloid 
leukemia (AML) and two myeloid leukemia cell lines, HEL and 
K562. We compared methylation values in leukemia samples to 
the values in normal WBCs at individual CpG sites.

Figure 4. Methylation changes in leukemia. (A) Acute myeloid leukemia bone marrow. (B) HEL erythro-
leukemia cell line. (C) K562 leukemia cell line. Hypermethylation of CpG islands (CGI, green), hypo-
methylation outside CpG islands (NCGI, orange). Grey, CpG sites with methylation changes vs. healthy 
leukocytes < 30%. (D) Numbers of genes with CpG sites affected by methylation changes over 30% 
compared with normal leukocytes.
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the most frequent (20% or total reads), low complexity repeats, 
LTR and LINE repeats followed with 6%, 3% and 2% of total 
reads, respectively (Fig. 5A).

Methylation of repetitive sequences followed the pattern observed 
at uniquely mapped CCC GGG sites. We found no significant 
differences in methylation of different repeat classes between the 
cord blood samples and normal adult WBCs. Repetitive sequences 
with high levels of methylation in cord blood and normal WBCs 
(SINE, LINE, LTR and satellite repeats) showed significant hypo-
methylation (p < 0.05) in leukemia samples (the AML patient and 
2 leukemia cell lines). The most profound hypomethylation was 
observed in the K562 cell line (Fig. 5B). Conversely, repeats with 
low methylation in the cord blood and normal WBC (low com-
plexity repeats, simple repeats, rRNA and tRNA repeats) revealed 
increased methylation in leukemia (Fig. 5C). The differences in 
methylation of low complexity and RNA repeats between normal 
blood cells and leukemia were statistically significant (p < 0.05).

Methylation changes were associated 
with 2,443 genes. Top functional terms 
were transcription factor activity (211 
genes, enrichment 1.8, FDR 5.0 × 10-16), 
sequence-specific DNA binding (147 
genes, enrichment 2.0, FDR 1.2 × 10-14), 
developmental protein (172 genes, enrich-
ment 1.9, FDR 1.5 × 10-14), neuron dif-
ferentiation (109 genes, enrichment 2.1, 
FDR 3.0 × 10-11) and homeobox (72 genes, 
enrichment 2.6, FDR 5.4 × 10-11).

We observed a significant overlap of 
751 genes affected by methylation changes 
among the AML patient sample and the 
leukemia cell lines (Fig. 4D). The genes 
with common methylation changes were 
enriched for the following functional 
terms: transcription factor activity (110 
genes, enrichment 3.0, FDR 9.2 × 10-23), 
sequence-specific DNA binding (82 
genes, enrichment 3.6, FDR 6.5 × 10-21) 
and homeobox (48 genes, enrichment 5.6, 
FDR 9.8 × 10-19).

We next asked whether methyla-
tion changes in leukemia affect similar 
or different categories of genes based on 
the distance of CpG sites from TSSs. 
Altogether, 161 CpG sites located within 
1 kb from TSSs had consistent methyla-
tion differences of more than 30% from 
normal WBCs in all 3 leukemia samples. 
These sites were associated with 129 
genes, showing functional enrichment for 
sequence-specific DNA binding (16 genes, 
enrichment 4.1, FDR 0.008) and homeo-
box (10 genes, enrichment 6.8, FDR 
0.021). There were also 159 sites distant 
more than 5 kb from a TSS showing > 
30% methylation changes consistent in all 
3 leukemia samples. These sites were associated with 123 genes. 
Median distance of differentially methylated CpG sites from TSS 
was 18 kb. Interestingly, these genes affected by distant methyla-
tion changes showed higher statistical significance for functional 
enrichment than the genes affected by methylation changes close 
to TSS. Top functional terms were DNA binding (43 genes, 
enrichment 2.8, FDR 7.0 × 10-8), regulation of transcription (45 
genes, enrichment 2.5, FDR 7.4 × 10-7) and homeobox (11 genes, 
enrichment 7.3, FDR 0.003). Although there was practically no 
overlap between the genes associated with “close” vs. “distant” 
affected sites with the exception of ARRDC2 gene, functional 
gene categories were virtually identical.

Repetitive sequences. Uniquely mapped CpG sites repre-
sented approximately two thirds (65% ± 1%) of the total num-
ber of sequencing reads. One third (35 ± 1%) of reads (over 30 
million per a HiSeq flow cell lane) could be mapped to multiple 
locations in the genome (Table S1). Of these, SINE repeats were 

Figure 5. Methylation of repetitive elements. (A) Proportions of uniquely mapped reads and reads 
mapped to repetitive elements. (B) Repetitive elements showing high levels of methylation in 
normal blood were hypomethylated in leukemia. (C) Repeats with low methylation levels in nor-
mal blood became hypermethylated in leukemia. CB, cord blood; WBC, adult blood white blood 
cells; AML, bone marrow from an acute myeloid leukemia patient; HEL, human erythroleukemia 
cell line; K562, human myeloid leukemia cell line.
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of bisulfite-converted genome make this method impractical 
for studies of larger amounts of samples. Distribution of CpG 
dinucleotides in the human genome shows great heterogeneity, 
therefore the majority of reads from WGSBS do not carry any 
information on cytosine methylation. Focusing on regions with 
moderate to high CpG density carrying the most of epigenetic 
information brings considerable savings. Reduced representation 
bisulfite sequencing (RRBS)12,37 analyzes approximately 1% of 
the genome enriched for CpG sites by a restriction digest with a 
CpG methylation-insensitive enzyme MspI (C/CGG), selection 
of small fragments, bisulfite treatment and sequencing. DNA 
methylation status of individual CpG sites is determined from 
the sequence of bisulfite converted DNA. However, quantitative 
accuracy of RRBS may be affected by unequal efficiency of PCR 
amplification of unmethylated and methylated DNA due to dif-
ferent C content in the sequences and also by < 100% efficiency 
of bisulfite conversion.

Specific restriction enzymes can detect methylation with a high 
precision, since CpG methylation in the recognition sequence 
can completely block their activity. Most restriction enzyme 
based assays distinguish DNA methylation status by compari-
son of parallel samples digested with methylation-sensitive and 
methylation-insensitive enzymes. For example, HELP assay28 
analyzes methylation at CCGG sites. A library of unmethylated 
DNA fragments digested by HpaII is compared with a library of 
all fragments with CCGG recognition sites, created by digestion 
with CpG methylation-insensitive enzyme MspI. CpG methyla-
tion at a particular CCGG site is inferred from its absence in the 
HpaII library. Another approach for indirect estimation of meth-
ylation status was to compare libraries of unmethylated frag-
ments created by three different enzymes cutting unmethylated 
DNA (MRE-seq) with a library enriched for methyl-cytosine-
containing DNA fragments by an antibody against 5-methyl-
cytosine (MeDIP).32 In contrast with these indirect methods, 
DREAM reads methylation status directly from the sequence in 
a single library.

The advantage of our DREAM method is that nucleotides 
are unchanged, which simplifies mapping of sequencing reads. 
Additionally, potential SNPs at recognition CCC GGG sites do 
not result in false methylation readings unless the region is sub-
ject to mono-allelic methylation. The sites changed by a SNP 
are not recognized by the restriction enzymes and are thus not 
included in the analysis. The method is able to reliably detect 
very low levels of methylation (over 1%) and has thus a lower 
background than bisulfite pyrosequencing or methylation micro-
arrays. Compared with the bisulfite-based approach, the method 
is technically very simple. Multiplexing of several libraries in a 
single sequencing lane makes the method affordable for studies 
using large number of samples.

Although simple, accurate and versatile, our proposed method 
has several limitations. It can measure DNA methylation only 
in a restricted subset of CpG sites that are within the CCC 
GGG recognition site. The human genome contains approxi-
mately 374,000 of these sites, which is only 1.3% of the total 
number of CpG sites. Methylation status is determined only at 
the edges of restriction fragments. In this sense, the method is 

Discussion

We have described a novel method measuring DNA methylation 
based on methylation-specific signatures generated by sequen-
tial restriction digests of genomic DNA. Using next generation 
sequencing for reading of these signatures at individual restric-
tion sites, our method provides highly quantitative information 
on methylation levels at approximately 150,000 unique CpG sites 
across the human genome. The method can detect methylation 
levels over 1%, is highly reproducible and can distinguish differ-
ences in methylation over 10% with a false positive rate below 
0.05.

We have shown that CpG sites within 1 kb from gene tran-
scription start sites are mostly unmethylated, while CpG sites 
distant from TSS are largely methylated. Relatively few genes 
showed intermediate methylation at TSS. These included 
genes located on the X chromosome in females, known or 
predicted imprinted genes15 and haploid differentially meth-
ylated regions.16 Methylation patterns were remarkably con-
served between different healthy individuals. Inter individual 
differences in methylation greater than 30% were observed at 
0.8% of interrogated CpG sites, mostly outside of CpG islands 
and distant from TSS. Comparison of healthy adult leuko-
cytes and cord blood cells showed changes affecting only less 
than hundred CpG sites. Adult blood cells showed more CGI 
sites hypermethylated and more NCGI sites hypomethylated. 
Albeit small, these DNA methylation changes may be signs 
of epigenome aging.21 Importantly, they show a similar pat-
tern as the changes found in leukemia samples: hypermeth-
ylation of sites close to the TSS and within CpG islands plus 
hypomethylation of sites outside CpG islands and distant to 
the TSS. Our results are in a good agreement with previous 
studies documenting the unmethylated status of CpG islands, 
paucity of methylation near TSS and general methylated status 
of NCGI regions distant from TSS.12,22,23 We have also shown 
the capacity of our method to map thousands of CpG sites 
affected by focal hypermethylation and global hypomethyl-
ation in leukemia.

Methods for mapping of DNA methylation rely on three main 
principles: (1) affinity capture of methylated DNA with an anti-
body against 5-methylcytosine24 or methyl-binding proteins,25,26 
(2) bisulfite conversion of unmethylated cytosines to uracil27 and 
(3) distinction of methylated and unmethylated cytosines by 
methylation-sensitive restriction enzymes.28,29 All three principles 
of DNA methylation analysis have been applied to next genera-
tion sequencing.12,30-33

Methods based on affinity enrichment of methylated 
DNA30,33,34 provide a good genome-wide detection of methylated 
regions, however, they do not give information on methylation 
status of individual CpG sites, they are affected by varying CpG 
density and thus difficult to quantify.35

Bisulfite based methods are still regarded as the gold standard 
for detection of cytosine methylation status. Whole genome shot-
gun bisulfite sequencing (WGSBS) gives complete information 
on DNA methylome with a single base resolution.16,23,36 However, 
high sequencing costs associated with shotgun sequencing 
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Digital restriction enzyme analysis of methylation 
(DREAM). Five micrograms of genomic DNA spiked with 5 
methylation standards with defined methylation levels of 0, 25, 
50, 75 and 100% were digested with 100 units of SmaI endo-
nuclease (NEB) for 3 h at 25°C. Subsequently, 100 units of XmaI 
endonuclease (NEB) were added and the digestion was continued 
for additional 16 h at 37°C. Digested DNA was purified using 
QIAquick PCR purification kit (Qiagen) and eluted in TRIS-
HCl 10 mM pH 8.5 (EB). Eluted DNA was supplemented with 
NEB buffer #2, dCTP, dGTP and dATP (0.4 mM final con-
centration of each), 15 units of Klenow Fragment (3'→5' exo-
nuclease deficient) DNA polymerase (NEB) and incubated for 
30 min at 37°C. This step filled in the recesses at 3' DNA ends 
created by XmaI digestion and added 3' dA tails to all fragments. 
Illumina paired end41 or barcoded Truseq (Illumina) sequenc-
ing adapters were then ligated at 10:1 adaptor:fragment ratio 
using Rapid T4 DNA ligase (Enzymatics). The ligation mix was 
size selected by electrophoresis in 2% agarose. Two slices cor-
responding to 250–350 bp and 350–500 bp sizes based on a  
100 bp DNA ladder (NEB) were cut out and DNA was extracted 
from agarose. DNA eluted from the slices was separately ampli-
fied with Illumina paired end PCR primers41 using iProof high-
fidelity DNA polymerase (Bio-Rad Laboratories) and 18 cycles 
of amplification. Resulting sequencing libraries were purified 
with AMPure magnetic beads (Agencourt). The libraries were 
sequenced by paired-end 36 nt sequencing on Illumina Genome 
Analyzer II or Illumina HiSeq 2000 at the MD Anderson Center 
for Cancer Epigenetics. We spiked in 10% of PhiX standard in 
each HiSeq lane to compensate for the lack of diversity in the 
first 5 bases of sequencing. Typically, about 20 million (Genome 
Analyzer II) or 100 million (HiSeq 2000) sequences represent-
ing individual DNA molecules were collected from each sequenc-
ing lane. Sequencing reads were mapped to SmaI sites in the 
human genome and signatures corresponding to methylated and 
unmethylated CpG were enumerated for each SmaI site. The cov-
erage by sequencing reads (sequencing depth) and methylation 
frequencies for each individual SmaI sites were then calculated. 
The results were assembled for further analysis in the Microsoft 
Access relational database containing the full annotation of all 
SmaI sites in the human genome.

Mapping of sequencing reads. Mapping to SmaI sites can be 
performed by the standard aligners to reference genomes, such 
as Bowtie42 and BWA.43 To improve the efficiency, the software 
places an upper limit on the number of allowed mismatches. At 
the beginning of the project, it could not align all the reads, since 
the sequencing quality was lower at that time. We therefore wrote 
a program in C++ that maps the reads to 374,165 SmaI sites in 
the human genome (NCBI36/hg18) allowing arbitrary number 
of mutations. We first selected only the reads that had passed 
Illumina purity filter. We then sorted the reads by their sequence 
so that we only mapped the repetitive sequences once. We then 
computed the Hamming distance between the reads and of all 
the SmaI fragments. Hamming distance is equal to the number 
of different nucleotides. We kept track of the best and second 
best matches. We empirically determined the thresholds: the best 
match was required to have a Hamming distance of less than or 

similar to methylation microarrays where probes are designed for 
a few representative CpG sites for a gene promoter.38 However, 
this approach is justified by the fact that methylation status of 
CpG sites in the neighborhood of several hundred bases is mostly 
concordant.16,39 Moreover, we have shown an excellent correla-
tion of DREAM with methylation values of neighboring CpG 
sites obtained by bisulfite sequencing, bisulfite pyrosequencing 
and also with publicly available results of reduced representa-
tion bisulfite sequencing. Our method also cannot distinguish 
methyl-cytosine from hydroxymethyl-cytosine, a shortcoming 
common to all methods based on restriction enzymes and bisul-
fite conversion.

The quantitative nature and high sensitivity of our method 
make it suitable for studies of DNA methylation changes in can-
cer and of the effects of epigenetic therapies. The method can 
be used outside of the cancer field to measure DNA methyla-
tion changes in common diseases, aging and for dissecting the 
effects of environment or diet on the epigenome. The use of 
sequencing for reading methylation signatures makes the method 
more versatile than microarrays and suitable for gaining insights 
in mammalian epigenomes where the reference genome exists. 
We have shown the potential for mapping DNA methylation 
changes associated with the loss of Dnmt3a function in the 
mouse model.40 Detecting relatively small differences in DNA 
methylation could be important when studying subtle changes. 
These may include quantifying environmental or dietary effects 
on DNA methylation, correlating developmental epigenetic 
variation with phenotypes, measuring the effects of DNA meth-
ylation modifying drugs or deriving new biological insights into 
mammalian genomes.

Materials and Methods

DNA samples. We used genomic DNA isolated from white 
blood cells of 4 healthy individuals, 2 samples of cord blood 
mononuclear cells, bone marrow cells from a patient with acute 
myeloid leukemia (AML) and 2 myeloid leukemia cell lines. 
The Institutional Review Board at MD Anderson and Temple 
University approved all protocols, and all individuals gave 
informed consent for the collection of blood and residual tis-
sues as per institutional guidelines and in accordance with the 
Declaration of Helsinki. The leukemia cell lines K562 (CCL-
243) and HEL 92.1.7 (TIB-180) used in this study were obtained 
from the American Type Culture Collection.

Methylation standards. We created methylation standards 
to be spiked in genomic DNA before each analysis. The stan-
dards consist of five different PCR products based on DNA 
sequences of the lambda bacteriophage, luciferase, GFP and Taq 
polymerase. We used existing and created additional CCC GGG 
sites, so that each PCR product had 2 CCC GGG sites with a 
distance from 168 to 255 bp (Table S3). Portions of the PCR 
products were fully methylated at CG sites by the M.SssI methyl-
ase (New England Biolabs) and mixed with unmethylated PCR 
products to achieve methylation levels of 0, 25, 50, 75 and 100%. 
We spiked in 10 picograms of each standard into 5 μg of gDNA 
before further processing.
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reads, while sm and u are observed numbers of methylated and 
unmethylated reads. Differences in the expected minus observed 
log ratios were calculated for each standard. Correction factor c 
was calculated as an antilog of the average log difference (expected 
– observed). Corrected methylation values were then computed as 
100% × [c × sm/(c × sm+u)] for each CpG site.

Bisulfite sequencing and pyrosequencing. Genomic DNA 
was treated with bisulfite using Epitect kit (Qiagen). Bisulfite 
cloning/sequencing and pyrosequencing were performed as 
described previously.40 Briefly, bisulfite PCR products were cloned 
in the TOPO-TA sequencing vector. Twelve to 24 clones were 
sequenced at Beckman Coulter Genomics. The sequences of indi-
vidual clones were analyzed by the QUMA online tool.44 We per-
formed bisulfite pyrosequencing as described previously.45,46
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equal to nine. If the Hamming distance for the best match is close 
to the second best match, it means that reads can be mapped to 
more than one location. The threshold was determined empiri-
cally to be six from the histogram of the gap as the difference of 
Hamming distance between the best and second best matches.

Modeling methylation standards. Restriction enzymes are 
less than 100% efficient, which can distort the methylation esti-
mate. The standards of known methylation ratio were designed 
to monitor and validate the measurement, making sure that the 
methylation ratio was accurate. They could also be used to correct 
any distortion in the methylation ratio. In practice, SmaI is close 
to 100% efficient. Thus we derived a formula assuming the effi-
ciency of the XmaI enzyme for methylated DNA is s = e

x
, where  

0 < e
x
 ≤ 1. Let m and u be the number of molecules that are meth-

ylated and unmethylated for a particular SmaI site. After digestion 
with two restriction enzymes, we have u molecules with unmeth-
ylation signature and sm moleculest with methylated signature. 

Therefore the measured methylation ratio is . The 

true methylation ratio is , which is related to the mea-

sured methylation by . It is also easy to show 
 
that when the efficiency of filling-in reaction is not 100%, the 
same formula holds true, but now s=e

x
f, where f is the efficiency 

of filling-in reaction.
We corrected methylation levels measured by DREAM based 

on the values obtained from the spiked in standards. First, we 
calculated log ratios ln(m/u) and ln(sm/u) for each standard, 
where m/u is the expected ratio of methylated and unmethylated 
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