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Exome sequencing studies of autism spectrum disorders (ASDs) have identified many de
novo mutations, but few recurrently disrupted genes. We therefore developed a modified
molecular inversion probe method enabling ultra-low-cost candidate gene resequencing in
very large cohorts. To demonstrate the power of this approach, we captured and sequenced
44 candidate genes in 2,446 ASD probands. We discovered 27 de novo events in 16 genes,
59% of which are predicted to truncate proteins or disrupt splicing. We estimate that
recurrent disruptive mutations in six genes—CHD8, DYRK1A, GRIN2B, TBR1, PTEN, and
TBL1XR1—may contribute to 1% of sporadic ASDs. Our data support associations between
specific genes and reciprocal subphenotypes (CHD8-macrocephaly, DYRK1A-
microcephaly) and replicate the importance of a β-catenin/chromatin remodeling network to
ASD etiology.

There is considerable interest in the contribution of rare variants and de novo mutations to
the genetic basis of complex phenotypes such as autism spectrum disorders (ASD).
However, because of extreme genetic heterogeneity, the sample sizes required to implicate
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any single gene in a complex phenotype are extremely large (1). Exome sequencing has
identified hundreds of ASD candidate genes on the basis of de novo mutations observed in
the affected offspring of unaffected parents (2–6). Yet, only a single mutation was observed
in nearly all such genes, and sequencing of over 900 trios was insufficient to establish
mutations at any single gene as definitive genetic risk factors (2–6).

To address this, we sought to evaluate candidate genes identified by exome sequencing (2,
3) for de novo mutations in a much larger ASD cohort. We developed a modified molecular
inversion probe (MIP) strategy (Fig. 1A) (7–9) with novel algorithms for MIP design; an
optimized, automatable workflow with robust performance and minimal DNA input;
extensive multiplexing of samples while sequencing; and reagent costs of less than $1 per
gene per sample. Extensive validation using several probe sets and sample collections
demonstrated 99% sensitivity and 98% positive predictive value for single nucleotide
variants at well-covered positions i.e., 92% to 98% of targeted bases (figs. S1–S7 and tables
S1–S9) (10).

We applied this method to 2,494 ASD probands from the Simons Simplex Collection (SSC)
(11) using two probe sets [ASD1 (6 genes) and ASD2 (38 genes)] to target 44 ASD
candidate genes (12). Preliminary results using ASD1 on a subset of the SSC implicated
GRIN2B as a risk locus (3). The 44 genes were selected from 192 candidates (2, 3), focusing
on genes with disruptive mutations, associations with syndromic autism (13), overlap with
known or suspected neurodevelopmental CNV risk loci (13, 14), structural similarities, and/
or neuronal expression (table S3). Although a few of the 44 genes have been reported
disrupted in individuals with neurodevelopmental or neuropsychiatric disorders (often
including concurrent dysmorphologies), their role in so-called idiopathic ASD has not been
rigorously established. Twenty-three of the 44 genes intersect a 49-member β-catenin/
chromatin remodeling protein-protein interaction (PPI) network (2) or an expanded 74-
member network (figs. S8 and S9) (3, 4).

We required samples to successfully capture with both probe sets, yielding 2,446 ASD
probands with MIP data, 2,364 of which had only MIP data and 82 of which we previously
exome sequenced (2, 3). The high GC content of several candidates required considerable
rebalancing to improve capture uniformity (12) (figs. S3A and S10). Nevertheless, the
reproducible behavior of most MIPs allowed us to identify copy number variation at targeted
genes, including several inherited duplications (figs. S11 and S12 and table S10).

To discover de novo mutations, we first identified candidate sites by filtering against
variants observed in other cohorts, including non-ASD exomes and MIP-based resequencing
of 762 healthy, non-ASD individuals (12). The remaining candidates were further tested by
MIP-based resequencing of the proband’s parents and, if potentially de novo, confirmed by
Sanger sequencing of the parent-child trio (10, 12). We discovered 27 de novo mutations
that occurred in 16 of the 44 genes (Fig. 1, B–E; Table 1; and table S11). Consistent with an
increased sensitivity for MIP-based resequencing, six of these were not reported in exome-
sequenced individuals (Table 1, tables S5 and S11, and fig. S13) (3, 4, 6). Notably, the
proportion of de novo events that are severely disruptive, i.e., coding indels, nonsense
mutations, and splice-site disruptions (17/27 or 0.63), is fourfold greater than the expected
proportion for random de novo mutations (0.16, binomial p = 4.9×10−8) (table S12) (15).

Given their extremely low frequency, accurately establishing expectation for de novo
mutations in a locus-specific manner through the sequencing of control trios is impractical.
We therefore developed a probabilistic model that incorporates the overall rate of mutation
in coding sequences, estimates of relative locus-specific rates based on human-chimpanzee
fixed differences (fig. S14 and table S13), and other factors that may influence the
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distribution of mutation classes, e.g., codon structure (12). We applied this model to
estimate (by simulation) the probability of observing additional de novo mutations during
MIP-based resequencing of the SSC cohort. To compare expectation and observation, we
treated missense mutations as one class and severe disruptions as a second class. Thus, we
could evaluate the probability at a given locus of observing at least X de novo mutations, of
which at least Y belong to the severe class.

We found evidence of mutation burden—a higher rate of de novo mutation than expected—
in the overall set of 44 genes (observed n = 27 vs. mean expected n = 5.6, simulated p <
2×10−9) (Fig. 2A). The burden was driven by the severe class (observed n = 17 vs. mean
expected n = 0.58, simulated p < 2×10−9). Most severe class mutations intersected the 74-
member PPI network (16/17), although only 23/44 genes are in this network (binomial p =
0.0002) (12). Furthermore, 21/27 mutations occurred in network-associated genes (binomial
p = 0.004). Of the six individual genes (CHD8, GRIN2B, DYRK1A, PTEN, TBR1, and
TBL1XR1) with evidence of mutation burden (alpha of 0.05 after a Holm-Bonferroni
correction for multiple testing (Fig. 2A); TBL1XR1 is not significant with a more
conservative Bonferroni correction), five fall within the β-catenin/chromatin remodeling
network. In our combined MIP and exome data, ~1% (24/2,573) of ASD probands harbor a
de novo mutation in one of these six genes, with CHD8 representing 0.35% (9/2,573) (Fig.
1B and Table 1).

For these analyses, we conservatively used the highest available empirical estimate of the
overall mutation rate in coding sequences (3). With the exception of TBL1XR, these results
were robust to doubling the overall mutation rate, or to using the upper bound of the 95%
confidence interval of the locus-specific rate estimate for each of these genes (10).
Moreover, we obtained similar results regardless of whether parameters were estimated from
rare, segregating variation or from de novo mutations in unaffected siblings (10), as well as
with a sequence composition model based on genome-wide de novo mutation (16). Exome
sequencing of non-ASD individuals (unaffected siblings or non-ASD cohorts) further
support these conclusions (table S14) (10).

We also validated 23 inherited, severely disruptive variants in the 44 genes (table S15). Two
probands with such variants carry de novo 16p11.2 duplications (table S16). Combining de
novo and inherited events, severe class variants were observed at twice the rate in MIP-
sequenced probands as compared with MIP-sequenced healthy, non-ASD individuals
(Fisher’s exact test, p = 0.083). Severe class variants were not transmitted to 14/20
unaffected siblings (binomial p = 0.058) (table S15). However, larger cohorts than currently
exist will be needed to fully evaluate these modest trends.

We analyzed phenotypic data on probands with mutations in the six implicated genes. Each
was diagnosed with autism on the basis of current, strict, gold-standard criteria. No obvious
dysmorphologies or recurrent comorbidities were present. Probands tended to fall into the
intellectual disability range for nonverbal IQ (NVIQ) (mean 58.3) (Table 1). However, for
CHD8, probands were found to have NVIQ scores ranging from profoundly impaired to
average (mean 62.2, range 19–98).

Given the previously observed microcephaly in our index DYRK1A mutation case,
macrocephaly in both probands with CHD8 mutations (3), and the association of these traits
with other syndromic loci (13, 17), we reexamined head circumference (HC) in the larger set
of probands with protein-truncation or splice-site de novo events using age and sex
normalized HC Z-scores (12) (Fig. 2B). For CHD8 (n = 8), we observed significantly larger
head sizes relative to individuals screened without CHD8 mutations (two-sample
permutation test, two-sided p = 0.0007). De novo CHD8 mutations are present in ~2% of

O’Roak et al. Page 3

Science. Author manuscript; available in PMC 2013 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



macrocephalic (HC > 2.0) SSC probands (n = 366), suggesting a useful phenotype for
patient subclassification. For DYRK1A (n = 3), we observed significantly smaller head sizes
relative to individuals screened without DYRK1A mutations (two-sample permutation test,
two-sided p = 0.0005). Comparison of head size in the context of the families (Fig. 2, C and
D, and table S17) provides further support for this reciprocal trend (10). These findings are
also consistent with case reports of patients with structural rearrangements and mouse
transgenic models that implicate DYRK1A and CHD8 as regulators of brain growth (18–
21). Macrocephaly was also observed in individuals with de novo and inherited PTEN
mutations (22).

Our data support an important role for de novo mutations in six genes in ~1% of sporadic
ASD. As the SSC was specifically established for simplex ASD and as its probands
generally have higher cognitive functioning than has been reported in other ASD cohorts
(11), it is unknown how our findings will translate into other cohorts. Furthermore, while
implicating specific loci in ASD, our data are insufficient to evaluate whether the observed
de novo mutations are sufficient to cause ASD (tables S16 and S18).

Exome sequencing and CNV studies suggest that there are hundreds of relevant genetic loci
for ASD. Technologies and study designs directed at identifying de novo mutations, both for
the discovery of ASD candidate genes as well as for their validation, provide sufficient
power to implicate individual genes from a relatively small number of events. The analytical
framework described here can be applied to any other disorder—simple or complex—for
which de novo coding mutations are suspected to contribute to risk. Additionally, the
experimental methods presented here are broadly useful for the rapid and economical
resequencing of candidate genes in extremely large cohorts, as may be required for the
definitive implication of rare variants or de novo mutations in any genetically complex
disorder.
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Fig. 1.
Massively multiplex targeted sequencing identifies recurrently mutated genes in ASD
probands. (A) Schematic showing design and general workflow of a modified MIP method
enabling ultra-low-cost candidate gene resequencing in very large cohorts (figs. S1–S7 and
tables S1–S9) (10). (B to E) Protein diagrams of four genes with multiple de novo mutation
events. Significant protein domains for the largest protein isoform are shown (colored
regions) as defined by SMART (23) with mutation locations indicated. (B) CHD8. (C)
GRIN2B. (D) TBR1. (E) DYRK1A. Bold variants are nonsense, frameshifting indels or at
splice-sites (intron-exon junction is indicated). Domain abbreviations: CHR-chromatin
organization modifier, DEX-DEAD-like helicases superfamily, HELC-helicase superfamily
c-terminal, BRK-domain in transcription and CHROMO domain helicases, GLU-ligated ion
channel L-glutamate- and glycine-binding site, PBP-eukaryotic homologs of bacterial
periplasmic substrate binding proteins, TM-transmembrane, STK-serine-threonine kinase
catalytic, TBOX-T-box DNA binding.
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Fig. 2.
Locus-specific mutation probabilities and associated phenotypes. (A) Estimated p-values for
the observed number of additional de novo mutations identified in the MIP screen of 44
ASD candidate genes. Probabilities shown are for observing X or more events of which at
least Y belong to the severe class. The observed numbers of mutations in all 44 genes
(“Total”) and CHD8 were not seen in any of 5×108 simulations. Based on the simulation
mean (0.0153), the Poisson probability for seven or more severe class CHD8 mutations is
3.8×10−17. Dashed line Bonferroni corrected significance threshold for α = 0.05. *Gene
product in the 74-member PPI connected component. (B–D) Standardized head
circumference (HC) Z-scores for SSC. (B) All probands screened with superimposed normal
distribution (dashed). HC Z-scores for individuals with de novo truncating/splice mutations
highlighted for CHD8 (red arrows), DYRK1A (blue arrows), and PTEN (black arrows). (C
and D) Box and whisker plots of the HC Z-scores for the SSC. Mutations carriers are shown
and linked to their respective family members. (C) All family members. (D) Only proband
sex-matched family members.
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